共查询到20条相似文献,搜索用时 0 毫秒
1.
Mi‐Hyoung Kim Seung‐Youn Jung Kyung‐Hee Song Jeong‐In Park Jiyeon Ahn Eun‐Ho Kim Jong Kuk Park Sang‐Gu Hwang Hee‐Jong Woo Jie‐Young Song 《Journal of cellular and molecular medicine》2020,24(1):830-840
Pulmonary fibrosis (PF) is chronic and irreversible damage to the lung characterized by fibroblast activation and matrix deposition. Although recently approved novel anti‐fibrotic agents can improve the lung function and survival of patients with PF, the overall outcomes remain poor. In this study, a novel imidazopurine compound, 3‐(2‐chloro‐6‐fluorobenzyl)‐1,6,7‐trimethyl‐1H‐imidazo[2,1‐f]purine‐2,4(3H,8H)‐dione (IM‐1918), markedly inhibited transforming growth factor (TGF)‐β‐stimulated reporter activity and reduced the expression of representative fibrotic markers, such as connective tissue growth factor, fibronectin, collagen and α‐smooth muscle actin, on human lung fibroblasts. However, IM‐1918 neither decreased Smad‐2 and Smad‐3 nor affected p38MAPK and JNK. Instead, IM‐1918 reduced Akt and extracellular signal‐regulated kinase 1/2 phosphorylation increased by TGF‐β. Additionally, IM‐1918 inhibited the phosphorylation of fibroblast growth factor receptors 1 and 3. In a bleomycin‐induced murine lung fibrosis model, IM‐1918 profoundly reduced fibrotic areas and decreased collagen and α‐smooth muscle actin accumulation. These results suggest that IM‐1918 can be applied to treat lung fibrosis. 相似文献
2.
Role of endothelial‐to‐mesenchymal transition induced by TGF‐β1 in transplant kidney interstitial fibrosis 下载免费PDF全文
Jun Wang Xuzhong Liu Wanli Zhou Zhen Xu Chunchun Zhao Zengjun Wang Ruoyun Tan Min Gu 《Journal of cellular and molecular medicine》2017,21(10):2359-2369
Chronic allograft dysfunction (CAD) induced by kidney interstitial fibrosis is the main cause of allograft failure in kidney transplantation. Endothelial‐to‐mesenchymal transition (EndMT) may play an important role in kidney fibrosis. We, therefore, undertook this study to characterize the functions and potential mechanism of EndMT in transplant kidney interstitial fibrosis. Proteins and mRNAs associated with EndMT were examined in human umbilical vein endothelial cells (HUVECs) treated with transforming growth factor‐beta1 (TGF‐β1) at different doses or at different intervals with western blotting, qRT‐PCR and ELISA assays. Cell motility and migration were evaluated with motility and migration assays. The mechanism of EndMT induced by TGF‐β1 was determined by western blotting analysis of factors involved in various canonical and non‐canonical pathways. In addition, human kidney tissues from control and CAD group were also examined for these proteins by HE, Masson's trichrome, immunohistochemical, indirect immunofluorescence double staining and western blotting assays. TGF‐β1 significantly promoted the development of EndMT in a time‐dependent and dose‐dependent manner and promoted the motility and migration ability of HUVECs. The TGF‐β/Smad and Akt/mTOR/p70S6K signalling pathways were found to be associated with the pathogenesis of EndMT induced by TGF‐β1, which was also proven in vivo by the analysis of specimens from the control and CAD groups. EndMT may promote transplant kidney interstitial fibrosis by targetting the TGF‐β/Smad and Akt/mTOR/p70S6K signalling pathways, and hence, result in the development of CAD in kidney transplant recipients. 相似文献
3.
Man‐IL Huh Yeoun‐Hee Kim Jong‐Hyuck Park Sung‐Won Bae Min‐Hee Kim Yongmin Chang Song‐Ja Kim Sun‐Ryung Lee Young‐Sup Lee Eun‐Jung Jin Jong‐Kyung Sonn Shin‐Sung Kang Jae‐Chang Jung 《Journal of cellular biochemistry》2009,108(2):476-488
In this study, temporal and spatial distribution of three TGF‐β isoforms and their downstream signaling pathways including pSmad2 and p38MAPK were examined during fibrotic wound repair. In normal chick corneas, TGF‐β1, ‐2, and ‐3 were weakly detected in Bowman's layer (BL). In healing corneas, TGF‐β1 was primarily deposited in the fibrin clot and the unwounded BL. TGF‐β2 was highly expressed in healing epithelial and endothelial cells, and numerous active fibroblasts/myofibroblasts. TGF‐β3 was mainly detected in the unwound region of basal epithelial cells. α‐Smooth muscle actin (α‐SMA) was initially appeared in the posterior region of repairing stroma at day 3, and was detected in the entire healing stroma by day 7. Notably, α‐SMA was absent in the central region of healing stroma by day 14, and its staining pattern was similar to those of TGF‐β2 and p38MAPK. By contrast, pSmad2 was mainly detected in the fibroblasts. In normal cornea, laminin was mainly detected in both epithelial basement membrane (BM) and Descemet's membrane (DM). By contrast to reconstitution of the BM in the wound region, the DM was not repaired although endothelial layer was regenerated, indicating that high levels of TGF‐β2 were released into the posterior region of healing stroma on day 14. High levels of α‐SMA staining, shown in cultured repair stromal cells from healing corneas on day 14 and in TGF‐β2 treated normal stromal cells, were significantly reduced by p38MAPK inhibition. Collectively, this study suggests that TGF‐β2‐mediated myofibroblast transformation is mediated, at least partly, by the p38MAPK pathway in vivo. J. Cell. Biochem. 108: 476–488, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
4.
Xiangdong Wang 《Journal of cellular and molecular medicine》2016,20(11):2183-2193
Pulmonary fibrosis is characterized by an extensive activation of fibrogenic cells and deposition of extracellular matrix (ECM). Transforming growth factor (TGF)‐β1 plays a pivotal role in the pathogenesis of pulmonary fibrosis, probably through the epithelial‐ to‐mesenchymal transition (EMT) and ECM production. The present study investigates potential mechanism by which TGF‐β1 induces EMT and ECM production in the fibrogenesis of human lung epithelial cells during pulmonary fibrosis. The expression of EMT phenotype and other proteins relevant to fibrogenesis were measured and the cell bio‐behaviours were assessed using Cell‐IQ Alive Image Monitoring System. We found that TGF‐β1‐induced EMT was accompanied with increased collagen I deposition, which may be involved in the regulation of connective tissue growth factor (CTGF) and phosphoinositide 3‐kinase (PI3K) signalling pathway. Treatment with PI3K inhibitors significantly attenuated the TGF‐β1‐ induced EMT, CTGF expression and collagen I synthesis in lung epithelial cells. The interference of CTGF expression impaired the basal and TGF‐β1‐stimulated collagen I deposition, but did not affect the process of EMT. Our data indicate that the signal pathway of TGF‐β1/PI3K/CTGF plays an important role in the fibrogenesis of human lung epithelial cells, which may be a novel therapeutic approach to prevent and treat pulmonary fibrosis. 相似文献
5.
Tannic acid attenuates TGF‐β1‐induced epithelial‐to‐mesenchymal transition by effectively intervening TGF‐β signaling in lung epithelial cells 下载免费PDF全文
Dhamotharan Pattarayan Ayyanar Sivanantham Venkateshwaran Krishnaswami Lakshmanan Loganathan Rajaguru Palanichamy Subramanian Natesan Karthikeyan Muthusamy Subbiah Rajasekaran 《Journal of cellular physiology》2018,233(3):2513-2525
6.
7.
The effect of wnt/β‐catenin signalling in the response to acute myocardial infarction (AMI) remains controversial. The membrane receptor adaptor protein Disabled‐2 (Dab2) is a tumour suppressor protein and has a critical role in stem cell specification. We recently demonstrated that down‐regulation of Dab2 regulates cardiac protein expression and wnt/β‐catenin activity in mesenchymal stem cells (MSC) in response to transforming growth factor‐β1 (TGF‐β1). Although Dab2 expression has been shown to have effects in stem cells and tumour suppression, the molecular mechanisms regulating this expression are still undefined. We identified putative binding sites for miR‐145 in the 3′‐UTR of Dab2. In MSC in culture, we observed that TGF‐β1 treatment led to rapid and sustained up‐regulation of pri–miR‐145. Through gain and loss of function studies we demonstrate that miR‐145 up‐regulation was required for the down‐regulation of Dab2 and increased β‐catenin activity in response to TGF‐β1. To begin to define how Dab2 might regulate wnt/β‐catenin in the heart following AMI, we quantified myocardial Dab2 as a function of time after left anterior descending ligation. There was no significant Dab2 expression in sham‐operated myocardium. Following AMI, Dab2 levels were rapidly up‐regulated in cardiac myocytes in the infarct border zone. The increase in cardiac myocyte Dab2 expression correlated with the rapid and sustained down‐regulation of myocardial pri–miR‐145 expression following AMI. Our data demonstrate a novel and critical role for miR‐145 expression as a regulator of Dab2 expression and β‐catenin activity in response to TGF‐β1 and hypoxia. 相似文献
8.
Kamila Delaney Paulina Kasprzycka Maria Anna Ciemerych Malgorzata Zimowska 《Cell biology international》2017,41(7):706-715
The injury of adult skeletal muscle initiates series of well‐coordinated events that lead to the efficient repair of the damaged tissue. Any disturbances during muscle myolysis or reconstruction may result in the unsuccessful regeneration, characterised by strong inflammatory response and formation of connective tissue, that is, fibrosis. The switch between proper regeneration of skeletal muscle and development of fibrosis is controlled by various factors. Amongst them are those belonging to the transforming growth factor β family. One of the TGF‐β family members is TGF‐β1, a multifunctional cytokine involved in the regulation of muscle repair via satellite cells activation, connective tissue formation, as well as regulation of the immune response intensity. Here, we present the role of TGF‐β1 in myogenic differentiation and muscle repair. The understanding of the mechanisms controlling these processes can contribute to the better understanding of skeletal muscle atrophy and diseases which consequence is fibrosis disrupting muscle function. 相似文献
9.
SIRT1 inhibits TGF‐β‐induced endothelial‐mesenchymal transition in human endothelial cells with Smad4 deacetylation 下载免费PDF全文
Zhen Li Fei Wang Siyuan Zha Qing Cao Jing Sheng Shuyan Chen 《Journal of cellular physiology》2018,233(11):9007-9014
Endothelial‐mesenchymal transition (EndMT) plays a pivotal role in organ fibrosis. This study examined the effect of SIRT1 on transforming growth factor beta (TGF‐β)‐induced EndMT in human endothelial cells (ECs) and its probable molecular mechanism. We assessed EndMT by immunofluorescence staining, quantitative real‐time polymerase chain reaction, Western blotting, and migration and invasion assays. Adenovirus was used to overexpress or knockdown SIRT1 in ECs. The regulatory relationship between SIRT1 and Smad4 was analyzed by coimmunoprecipitation assay. We found that SIRT1 was decreased in TGF‐β‐induced EndMT, and SIRT1 inhibited TGF‐β‐induced EndMT through deacetylating Smad4. Our findings suggest that SIRT1 has an important role in inhibiting EndMT by regulating the TGF‐β/Smad4 pathway in human ECs and, thus, protecting against fibrosis. 相似文献
10.
11.
Renal damage following Alloxan‐induced diabetes is associated with generation of reactive oxygen species,alterations of p53, TGF‐β1, and extracellular matrix metalloproteinases in rats 下载免费PDF全文
Mohamed A. Abdel Aziz Dalia M. Badary Mahmoud Rezk Abdelwahed Hussein 《Cell biology international》2017,41(5):525-533
12.
Li Sun Ming Xiu Shuhua Wang David R. Brigstock Hongyan Li Limei Qu Runping Gao 《Journal of cellular and molecular medicine》2018,22(4):2346-2356
Pancreatic stellate cells (PSCs) play a critical role in fibrogenesis during alcoholic chronic pancreatitis (ACP). Transforming growth factor‐beta1 (TGF‐β1) is a key regulator of extracellular matrix production and PSC activation. Endotoxin lipopolysaccharide (LPS) has been recognized as a trigger factor in the pathogenesis of ACP. This study aimed to investigate the mechanisms by which LPS modulates TGF‐β1 signalling and pancreatic fibrosis. Sprague‐Dawley rats fed with a Lieber‐DeCarli alcohol (ALC) liquid diet for 10 weeks with or without LPS challenge during the last 3 weeks. In vitro studies were performed using rat macrophages (Mφs) and PSCs (RP‐2 cell line). The results showed that repeated LPS challenge resulted in significantly more collagen production and PSC activation compared to rats fed with ALC alone. LPS administration caused overexpression of pancreatic TLR4 or TGF‐β1 which was paralleled by an increased number of TLR4‐positive or TGF‐β1‐positive Mφs or PSCs in ALC‐fed rats. In vitro, TLR4 or TGF‐β1 production in Mφs or RP‐2 cells was up‐regulated by LPS. LPS alone or in combination with TGF‐β1 significantly increased type I collagen and α‐SMA production and Smad2 and 3 phosphorylation in serum‐starved RP‐2 cells. TGF‐β pseudoreceptor BAMBI production was repressed by LPS, which was antagonized by Si‐TLR4 RNA or by inhibitors of MyD88/NF‐kB. Additionally, knockdown of Bambi with Si‐Bambi RNA significantly increased TGF‐β1 signalling in RP‐2 cells. These findings indicate that LPS increases TGF‐β1 production through paracrine and autocrine mechanisms and that LPS enhances TGF‐β1 signalling in PSCs by repressing BAMBI via TLR4/MyD88/NF‐kB activation. 相似文献
13.
Activation of Wnt/β‐catenin signalling is required for TGF‐β/Smad2/3 signalling during myofibroblast proliferation 下载免费PDF全文
Liang Xu Wen‐Hui Cui Wen‐Cheng Zhou De‐Lin Li Liu‐Cheng Li Ping Zhao Xiao‐Ting Mo Zhihui Zhang Jian Gao 《Journal of cellular and molecular medicine》2017,21(8):1545-1554
Fibrosis in animal models and human diseases is associated with aberrant activation of the Wnt/β‐catenin pathway. Despite extensive research efforts, effective therapies are still not available. Myofibroblasts are major effectors, responsible for extracellular matrix deposition. Inhibiting the proliferation of the myofibroblast is crucial for treatment of fibrosis. Proliferation of myofibroblasts can have many triggering effects that result in fibrosis. In recent years, the Wnt pathway has been studied as an underlying factor as a primary contributor to fibrotic diseases. These efforts notwithstanding, the specific mechanisms by which Wnt‐mediated promotes fibrosis reaction remain obscure. The central role of the transforming growth factor‐β (TGF‐β) and myofibroblast activity in the pathogenesis of fibrosis has become generally accepted. The details of interaction between these two processes are not obvious. The present investigation was conducted to evaluate the level of sustained expression of fibrosis iconic proteins (vimentin, α‐SMA and collagen I) and the TGF‐β signalling pathway that include smad2/3 and its phosphorylated form p‐smad2/3. Detailed analysis of the possible molecular mechanisms mediated by β‐catenin revealed epithelial–mesenchymal transition and additionally demonstrated transitions of fibroblasts to myofibroblast cell forms, along with increased activity of β‐catenin in regulation of the signalling network, which acts to counteract autocrine TGF‐β/smad2/3 signalling. A major outcome of this study is improved insight into the mechanisms by which epithelial and mesenchymal cells activated by TGFβ1‐smad2/3 signalling through Wnt/β‐catenin contribute to lung fibrosis. 相似文献
14.
Gypenoside (GP), the main active ingredient of Gynostemma pentaphyllum, possesses a variety of pharmacological capacities including anti‐inflammation, anti‐oxidation, and anti‐tumor. However, the effects of GP on IL‐1β‐stimulated human osteoarthritis (OA) chondrocytes are still unknown. Therefore, this study aimed to investigate the anti‐inflammatory effects of GP on IL‐1β‐stimulated human OA chondrocytes and explore the possible mechanism. Our results showed that GP dose‐dependently inhibited IL‐1β‐induced NO and PGE2 production in human OA chondrocytes. In addition, treatment of GP inhibited the expression of MMP3 and MMP13, which was increased by IL‐1β. Finally, we found that pretreatment of GP obviously suppressed NF‐κB activation in IL‐1β‐stimulated human OA chondrocytes. Taken together, the results demonstrated that GP has chondro‐protective effects, at least in part, through inhibiting the activation of NF‐κB signaling pathway in human OA chondrocytes. Thus, these findings suggest that GP may be considered as an alternative therapeutic agent for the management of OA patients. 相似文献
15.
16.
In the present study, the effects of the two classical anti‐epileptic drugs, carbamazepine and valproic acid, and the non‐classical anti‐seizure drug vinpocetine were investigated on the expression of the pro‐inflammatory cytokines IL‐1β and TNF‐α in the hippocampus of rats by PCR or western blot after the administration of one or seven doses. Next, the effects of the anti‐seizure drugs were investigated on the rise in cytokine expression induced by lipopolysaccharides (LPS) inoculation in vivo. To validate our methods, the changes induced by the pro‐convulsive agents 4‐aminopyridine, pentylenetetrazole and pilocarpine were also tested. Finally, the effect of the anti‐seizure drugs on seizures and on the concomitant rise in pro‐inflammatory cytokine expression induced by 4‐aminopyridine was explored. Results show that vinpocetine and carbamazepine reduced the expression of IL‐1β and TNF‐α from basal conditions, and the increase in both pro‐inflammatory cytokines induced by LPS. In contrast, valproic acid failed to reduce both the expression of the cytokines from basal conditions and the rise in IL‐1β and TNF‐α expression induced by LPS. Tonic‐clonic seizures induced either by 4‐aminopyridine, pentylenetetrazole or pilocarpine increased the expression of IL‐1β and TNF‐α markedly. 4‐aminopyridine‐induced changes were reduced by all the tested anti‐seizure drugs, although valproic acid was less effective. We conclude that the anti‐seizure drugs, vinpocetine and carbamazepine, whose mechanisms of action involve a decrease in ion channels permeability, also reduce cerebral inflammation.
17.
18.
MicroRNA‐30c suppresses the pro‐fibrogenic effects of cardiac fibroblasts induced by TGF‐β1 and prevents atrial fibrosis by targeting TGFβRII 下载免费PDF全文
Juan Xu Haiqing Wu Songwen Chen Baozhen Qi Genqing Zhou Lidong Cai Liqun Zhao Yong Wei Shaowen Liu 《Journal of cellular and molecular medicine》2018,22(6):3045-3057
Atrial fibrosis serves as an important contributor to atrial fibrillation (AF). Recent data have suggested that microRNA‐30c (miR‐30c) is involved in fibrotic remodelling and cancer development, but the specific role of miR‐30c in atrial fibrosis remains unclear. The purpose of this study was to investigate the role of miR‐30c in atrial fibrosis and its underlying mechanisms through in vivo and in vitro experiments. Our results indicate that miR‐30c is significantly down‐regulated in the rat abdominal aortic constriction (AAC) model and in the cellular model of fibrosis induced by transforming growth factor‐β1 (TGF‐β1). Overexpression of miR‐30c in cardiac fibroblasts (CFs) markedly inhibits CF proliferation, differentiation, migration and collagen production, whereas decrease in miR‐30c leads to the opposite results. Moreover, we identified TGFβRII as a target of miR‐30c. Finally, transferring adeno‐associated virus 9 (AAV9)‐miR‐30c into the inferior vena cava of rats attenuated fibrosis in the left atrium following AAC. These data indicate that miR‐30c attenuates atrial fibrosis via inhibition of CF proliferation, differentiation, migration and collagen production by targeting TGFβRII, suggesting that miR‐30c might be a novel potential therapeutic target for preventing atrial fibrosis. 相似文献
19.
20.
Testing the potency of anti‐TNF‐α and anti‐IL‐1β drugs using spheroid cultures of human osteoarthritic chondrocytes and donor‐matched chondrogenically differentiated mesenchymal stem cells 下载免费PDF全文
Sara Žigon‐Branc Ariana Barlič Miomir Knežević Matjaž Jeras Gordana Vunjak‐Novakovic 《Biotechnology progress》2018,34(4):1045-1058
Inflammation plays a major role in progression of rheumatoid arthritis, a disease treated with antagonists of tumor necrosis factor‐alpha (TNF‐α) and interleukin 1β (IL‐1β). New in vitro testing systems are needed to evaluate efficacies of new anti‐inflammatory biological drugs, ideally in a patient‐specific manner. To address this need, we studied microspheroids containing 10,000 human osteoarthritic primary chondrocytes (OACs) or chondrogenically differentiated mesenchymal stem cells (MSCs), obtained from three donors. Hypothesizing that this system can recapitulate clinically observed effects of anti‐inflammatory drugs, spheroids were exposed to TNF‐α, IL‐1β, or to supernatant containing secretome from activated macrophages (MCM). The anti‐inflammatory efficacies of anti‐TNF‐α biologicals adalimumab, infliximab, and etanercept, and the anti‐IL‐1β agent anakinra were assessed in short‐term microspheroid and long‐term macrospheroid cultures (100,000 OACs). While gene and protein expressions were evaluated in microspheroids, diameters, amounts of DNA, glycosaminoglycans, and hydroxiproline were measured in macrospheroids. The tested drugs significantly decreased the inflammation induced by TNF‐α or IL‐1β. The differences in potency of anti‐TNF‐α biologicals at 24 h and 3 weeks after their addition to inflamed spheroids were comparable, showing high predictability of short‐term cultures. Moreover, the data obtained with microspheroids grown from OACs and chondrogenically differentiated MSCs were comparable, suggesting that MSCs could be used for this type of in vitro testing. We propose that in vitro gene expression measured after the first 24 h in cultures of chondrogenically differentiated MSCs can be used to determine the functionality of anti‐TNF‐α drugs in personalized and preclinical studies. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1045–1058, 2018 相似文献