首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Epidermal growth factor receptor (EGFR), which is overexpressed in psoriatic lesions, has been proven to contribute to the hyperproliferation of keratinocytes in psoriasis. Single nucleotide polymorphisms (SNPs) involved in miRNAs that can regulate the expression of EGFR could potentially influence the development of psoriasis. The present study investigated the association between a functional SNP of rs2910164 in miR‐146a and the risk of psoriasis in the Chinese Han population. A total of 521 Han Chinese patients with psoriasis and 582 healthy controls were recruited in this study. The miR‐146a rs2910164 SNP was genotyped by polymerase chain reaction‐restriction fragment length polymorphism. Overall, a significantly increased risk of psoriasis was associated with the rs2910164 miR‐146a CG and GG genotypes (adjusted OR, 1.38; 95% CI, 1.06–1.80). Furthermore, the rs2910164G allele in miR‐146a attenuated its inhibitory regulation on the expression of EGFR as well as the proliferation of human keratinocytes, and lowered the level of miR‐146a in the psoriatic lesions. These findings indicate that the rs2910164G allele in miR‐146a weakens its suppression on the proliferation of keratinocytes probably through the decreased inhibition of the target gene, EGFR, which may account for the increased risk of psoriasis in this study population.  相似文献   

2.
This pilot study was aimed at comparing TLR7/TLR9 expression, cytoskeletal arrangement, and cell proliferation by indirect immunofluorescence in parallel lesional and non lesional skin samples of guttate psoriasis (PG) and psoriasis vulgaris (PV) in five male patients for each group (n=10). TLR7 expression was detected throughout all the epidermal compartment in PV samples, while in PG skin was restricted to the granular layer. TLR9 was present in the granular layer of non lesional skin and in the suprabasal layers of PV/PG lesional skin. Cell proliferation was localized in all the epidermal layers in lesional PG and PV, consistently with the immunopositivity for the “psoriatic keratin” K16. In the suprabasal layers of lesional PG and PV skin, a similar K17 expression was detected and K10 exhibited a patchy distribution. The present results suggest that TLR7 expression can be considered an intrinsic and differential histomorphological feature of PV.Key words: Keratinocyte proliferation, adaptive immunity, keratins, immunofluorescence  相似文献   

3.
HIV‐1 invades CNS in the early course of infection, which can lead to the cascade of neuroinflammation. NADPH oxidases (NOXs) are the major producers of reactive oxygen species (ROS), which play important roles during pathogenic insults. The molecular mechanism of ROS generation via microRNA‐mediated pathway in human microglial cells in response to HIV‐1 Tat protein has been demonstrated in this study. Over‐expression and knockdown of microRNAs, luciferase reporter assay, and site‐directed mutagenesis are main molecular techniques used in this study. A significant reduction in miR‐17 levels and increased NOX2, NOX4 expression levels along with ROS production were observed in human microglial cells upon HIV‐1 Tat C exposure. The validation of NOX2 and NOX4 as direct targets of miR‐17 was done by luciferase reporter assay. The over‐expression and knockdown of miR‐17 in human microglial cells showed the direct role of miR‐17 in regulation of NOX2, NOX4 expression and intracellular ROS generation. We demonstrated the regulatory role of cellular miR‐17 in ROS generation through over‐expression and knockdown of miR‐17 in human microglial cells exposed to HIV‐1 Tat C protein.

  相似文献   


4.
The aim of this research is to explore the effect of miR‐200b‐3p targeting DNMT3A on the proliferation and apoptosis of osteoarthritis (OA) cartilage cells. Quantitative RT‐PCR was performed to analyse the expression of miR‐200b‐3p, DNMT3A, MMP1, MMP3, MMP9, MMP13 and COL II in normal and OA cartilage tissues. The dual‐luciferase reporter assay and Western blot assay were conducted to confirm the targeting relationship between miR‐200b‐3p and DNMT3A. We also constructed eukaryotic expression vector to overexpress miR‐200b‐3p and DNMT3A. We detected the expression level of MMPs and COL II in stable transfected cartilage cells using RT‐PCR and Western blot. Cell proliferation and apoptosis were evaluated using the MTS, pellet culture and Hoechst 33342 staining method. Finally, we explored the effect of miR‐200b‐3p targeting DNMT3A on the proliferation and apoptosis of OA cartilage cells. The results of RT‐PCR indicated that both miR‐200b‐3p and COL II were down‐regulated in OA cartilage tissues, while the expression of DNMT3A and MMPs was up‐regulated in OA cartilage tissues. The expressions of DNMT3A, MMPs and COL II detected by Western blot showed the same trend of the results of RT‐PCR. The dual‐luciferase reporter assay and Western blot assay confirmed the targeting relationship between miR‐200b‐3p and DNMT3A. In overexpressed miR‐200b‐3p cartilage cells, DNMT3A and MMPs were significantly down‐regulated, COL II was significantly up‐regulated, cell viability was enhanced and apoptosis rate was decreased (P < 0.05). In overexpressed DNM3T cartilage cells, MMPs were significantly up‐regulated, COL II was significantly down‐regulated, cell viability was weakened and apoptosis rate was increased (P < 0.05). MiR‐200b‐3p inhibited the secretion of MMPs, promoted the synthesis of COL II and enhanced the growth and proliferation of OA cartilage cells through inhibiting the expression of DNMT3A.  相似文献   

5.
BackgroundPsoriasis is a chronic skin disorder manifested by recurrent episodes of scaly, red, itchy skin patches that occur within apparently normal skin.ObjectivesThis study was performed to detect the expression of serum and tissue (lesion and non-lesion) LncRNA MALAT-1 and MiRNA-9 that might be used as biomarkers for psoriasis.MethodsBlood samples were obtained from 60 psoriasis patients and 40 controls, as well as 4 mm punch biopsy from lesional and non lesional skin of psoriatic patient and normal skin of healthy controls. Expression of LncRNA MALAT-1 and miRNNA-9 in serum and tissues was detected by real time qRT-PCR.Resultsa statistically significant increase in the expression of MALAT-1 in lesional and non-lesional skin and serum of psoriatic patients in comparison to controls were detected. Moreover, there was statistically significant increase in serum MiRNA-9 in patients in comparison to controls, while its tissue level was significantly lower in patients.ConclusionThis study highlights the dysregulation of LncRNA MALAT-1 and miRNA-9 in psoriasis. Elevated expression of MALAT-1 in lesional skin of psoriatic patients compared to non-lesional skin may possibly contribute to the development of psoriatic plaques.  相似文献   

6.
Despite initial dramatic efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR‐TKIs) in EGFR‐mutant lung cancer patients, subsequent emergence of acquired resistance is almost inevitable. Resveratrol and its derivatives have been found to exert some effects on EGFR‐TKI resistance in non‐small cell lung cancer (NSCLC), but the underlying mechanisms remain unclear. We screened several NSCLC cell lines with gefitinib resistance by MTT assay and analysed the miR‐345/miR‐498 expression levels. NSCLC cells were pre‐treated with a resveratrol derivative, trans‐3,5,4‐trimethoxystilbene (TMS) and subsequently challenged with gefitinib treatment. The changes in apoptosis and miR‐345/miR‐498 expression were analysed by flow cytometry and q‐PCR respectively. The functions of miR‐345/miR‐498 were verified by CCK‐8 assay, cell cycle analysis, dual‐luciferase reporter gene assay and immunoblotting analysis. Our results showed that the expression of miR‐345 and miR‐498 significantly decreased in gefitinib resistant NSCLC cells. TMS pre‐treatment significantly upregulated the expression of miR‐345 and miR‐498 increasing the sensitivity of NSCLC cells to gefitinib and inducing apoptosis. MiR‐345 and miR‐498 were verified to inhibit proliferation by cell cycle arrest and regulate the MAPK/c‐Fos and AKT/Bcl‐2 signalling pathways by directly targeting MAPK1 and PIK3R1 respectively. The combination of TMS and gefitinib promoted apoptosis also by miR‐345 and miR‐498 targeting the MAPK/c‐Fos and AKT/Bcl‐2 signalling pathways. Our study demonstrated that TMS reduced gefitinib resistance in NSCLCs via suppression of the MAPK/Akt/Bcl‐2 pathway by upregulation of miR‐345/498. These findings would lay the theoretical basis for the future study of TMS for the treatment of EGFR‐TKI resistance in NSCLCs.  相似文献   

7.
This study aimed to investigate the relationship between the expression of microRNA (miR)‐181b, protein inhibitor of activated STAT3 (PIAS3) and STAT3, and to examine the function of the miR‐181b/PIAS3/STAT3 axis on the Warburg effect and xenograft tumour growth of colon cancer. Moreover, a positive feedback loop between miR‐181b and STAT3 that regulated the Warburg effect in colon cancer was explored. A luciferase reporter assay was used to identify whether PIAS3 was a direct target of miR‐181b. The gain‐of‐function and loss‐of‐function experiments were performed on HCT 116 cells to investigate the effect of miR‐181b/PIAS3/STAT3 on the Warburg effect and xenograft tumour growth of colon cancer, as determined by commercial kits and xenograft experiments. The relationship between the expression of miR‐181b, PIAS3 and STAT3 in HCT 116 and HT‐29 cells was determined using RT‐qPCR and Western blot. We found miR‐181b was a direct regulator of PIAS3. miR‐181b promoted the Warburg effect and the growth of colon cancer xenografts; however, these effects could be reversed by PIAS3. miR‐181b expression interacted with STAT3 phosphorylation in a positive feedback loop in colon cancer cells via regulating PIAS3 expression. In conclusion, this study for the first time demonstrated that miR‐181b contributed to the Warburg effect and xenograft tumour growth of colon cancer by targeting PIAS3. Moreover, a positive feedback loop between miR‐181b and STAT3 that regulated the Warburg effect in colon cancer was also demonstrated. This study suggested miR‐181b/PIAS3/STAT3 axis as a novel target for colon cancer treatment.  相似文献   

8.
In this study, we investigated how miR‐10b‐3p regulated the proliferation, migration, invasion in hepatocellular carcinoma (HCC) at both in vitro and in vivo levels. CMTM5 was among the differentially expressed genes (data from TCGA). The expression of miR‐10b‐3p and CMTM5 was detected by qRT‐PCR and Western blot (WB). TargetScan was used to acquire the binding sites. Dual‐luciferase reporter gene assay was used to verify the direct target relationship between miR‐10b‐3p and CMTM5. WB analysis proved that miR‐10b‐3p suppressed CMTM5 expression. Furthermore, proliferation, invasion and migration of HCC cells were measured by MTT assay, colony formation assay, transwell assay and wound‐healing assay, respectively. Kaplan‐Meier plotter valued the overall survival of CMTM5. Finally, xenograft assay was also conducted to verify the effects of miR‐10b‐3p/CMTM5 axis in vivo. Up‐regulation of miR‐10b‐3p and down‐regulation of CMTM5 were detected in HCC tissues and cell lines. CMTM5 was verified as a target gene of miR‐10b‐3p. The overexpression of CMTM5 contributed to the suppression of the proliferative, migratory and invasive abilities of HCC cells. Moreover, the up‐regulation of miR‐10b‐3p and down‐regulation of CMTM5 were observed to be associated with worse overall survival. Lastly, we have confirmed the carcinogenesis‐related roles of miR‐10b‐3p and CMTM5 in vivo. We concluded that the up‐regulation of miR‐10b‐3p promoted the progression of HCC cells via targeting CMTM5.  相似文献   

9.
MicroRNAs are considered to play critical roles in the pathogenesis of human inflammatory arthritis, including rheumatoid arthritis (RA). The purpose of this study was to determine the relationship between miR‐10a‐5p and TBX5 in synoviocytes and evaluate their contribution to joint inflammation. The expression of miR‐10a‐5p and TBX5 in the synovium of RA and human synovial sarcoma cell line SW982 stimulated by IL‐1β was determined by RT‐qPCR and Western blotting. The direct interaction between miR‐10a‐5p and TBX5 3′UTR was determined by dual‐luciferase reporter assay in HeLa cells. Mimics and inhibitors of miR‐10a‐5p were transfected into SW982 cells. TBX5 was overexpressed by plasmid transfection or knocked down by RNAi. Proinflammatory cytokines and TLR3 and MMP13 expressions were determined by RT‐qPCR and Western blotting. Down‐regulated expression of miR‐10a‐5p and up‐regulation of TBX5 in human patients with RA were found compared to patients with OA. IL‐1β could reduce miR‐10a‐5p and increase TBX5 expression in SW982 cells in vitro. The direct target relationship between miR‐10a‐5p and 3′UTR of TBX5 was confirmed by luciferase reporter assay. Alterations of miR‐10‐5p after transfection with its mimic and inhibitor caused the related depression and re‐expression of TBX5 and inflammatory factors in SW982 cells. Overexpression of TBX5 after pCMV3‐TBX5 plasmid transfection significantly promoted the production of TLR3, MMP13 and various inflammatory cytokines, while this effect was rescued after knocking down of TBX5 with its specific siRNA. We conclude that miR‐10a‐5p in a relation with TBX5 regulates joint inflammation in arthritis, which would serve as a diagnostic and therapeutic target for RA treatment.  相似文献   

10.
How lncRNA SNHG1 influences the aggressiveness of nasopharyngeal carcinoma cells as well as the underlying mechanism was studied. The lncRNA differences were analysed by GSE12452 gene microarray. The expression of SNHG1, MiR‐145‐5p and NUAK1 was identified by qRT‐PCR and western blot. Transfection was conducted to construct nasopharyngeal carcinoma cells with different expressions of SNHG1, miR‐145‐5p and NUAK1. Dual‐luciferase reporter assay was performed to explore the relationship between SNHG1, miR‐145‐5p and NUAK1. Wound‐healing assay and transwell invasion experiments were employed to study changes in cell migration capacity and cell invasion, respectively. Tumour xenografts were performed to observe lung metastasis of nude mice inoculated with transfected CNE cells. SNHG1 is highly expressed in nasopharyngeal carcinoma tissues and in cell lines. Down‐regulation of SNHG1 facilitated the expression of miR‐145‐5p and further suppressed the level of NAUK1 in CNE and HNE‐1 cells. Silencing of SNHG1, up‐regulation of miR‐145‐5p and inhibition of NAUK1 by relative transfection all attenuated the aggressiveness of CNE and HNE‐1 cells both in vivo and in vitro. Moreover, the impaired cell migration and invasion by SNHG1 siRNA could be rescued by cotransfection of miR‐145‐5p in CNE and HNE‐1 cells. LncRNA SNHG1 promoted the expression of NUAK1 by down‐regulating miR‐145‐5p and thus promoted the aggressiveness of nasopharyngeal carcinoma cells through AKT signalling pathway and induced epithelial‐mesenchymal transition (EMT).  相似文献   

11.
MicroRNAs (miRNAs) have been reported to participate in many biological behaviours of multiple malignancies. Recent studies have shown that miR‐15b‐5p (miR‐15b) exhibits dual roles by accelerating or blocking tumour progression. However, the molecular mechanisms by which miR‐15b contributes to prostate cancer (PCa) are still elusive. Here, miR‐15b expression was found significantly up‐regulated in PCa in comparison with the normal samples and was positively correlated with age and Gleason score in patients with PCa. Notably, PCa patients with miR‐15b high expression displayed a higher recurrence rate than those with miR‐15b low expression (P = 0.0058). Knockdown of miR‐15b suppressed cell growth and invasiveness in 22RV1 and PC3 cells, while overexpression of miR‐15b reversed these effects. Then, we validated that RECK acted as a direct target of miR‐15b by dual‐luciferase assay and revealed the negative correlation of RECK with miR‐15b expression in PCa tissues. Ectopic expression of RECK reduced cell proliferation and invasive potential and partially abrogated the tumour‐promoting effects caused by miR‐15b overexpression. Additionally, miR‐15b knockdown inhibited tumour growth activity in a mouse PCa xenograft model. Taken together, our findings indicate that miR‐15b promotes the progression of PCa cells by targeting RECK and represents a potential marker for patients with PCa.  相似文献   

12.
MiR‐130b and SAM and SH3 domain containing 1 (SASH1) play an important role in many types of human cancers. The aim of our research was to study their interactions in the process of the proliferation and aggressiveness of oesophageal squamous cell carcinoma (ESCC) cells. Microarray analysis was done to screen the differentially expressed genes in the ESCC tissues. miR‐130b and SASH1 mRNA levels in the ESCC tissues and cells were detected by qRT‐PCR. Dual luciferase reporter system was used to verify the target relationship between miR‐130b and SASH1. The effects of miR‐130b on SASH1 expression were explored by western blot in KYSE30 and TE1 cell lines. CCK‐8 assay, flow cytometry, Transwell, and wound healing assays were conducted to explore the effects of miR‐130b and SASH1 in vitro. In addition, in vivo experiments were conducted to study the roles of miR‐130b and SASH1. miR‐130b was highly expressed, while SASH1 was the opposite in both the ESCC tissues and cells. The expression of SASH1 was inhibited by the direct binding of miR‐130b. The inhibition of miR‐130b reduced the proliferation and aggressiveness of ESCC cells, while it also induced apoptosis and cell cycle arrest in the ESCC cells by suppressing SASH1. The in vivo assay suggested that the overexpression of miR‐130b promoted the growth of ESCC tumours. MiR‐130b was up‐regulated in the ESCC tumour tissues and cells, acting as a tumour promoter. A stimulating effect was demonstrated on ESCC cell growth and aggressiveness by suppressing SASH1, which is an anti‐oncogene.  相似文献   

13.
14.
Lung cancer is the most common incident cancer, with a high mortality worldwide, and non‐small‐cell lung cancer (NSCLC) accounts for approximately 85% of cases. Numerous studies have shown that the aberrant expression of microRNAs (miRNAs) is associated with the development and progression of cancers. However, the clinical significance and biological roles of most miRNAs in NSCLC remain elusive. In this study, we identified a novel miRNA, miR‐34b‐3p, that suppressed NSCLC cell growth and investigated the underlying mechanism. miR‐34b‐3p was down‐regulated in both NSCLC tumour tissues and lung cancer cell lines (H1299 and A549). The overexpression of miR‐34b‐3p suppressed lung cancer cell (H1299 and A549) growth, including proliferation inhibition, cell cycle arrest and increased apoptosis. Furthermore, luciferase reporter assays confirmed that miR‐34b‐3p could bind to the cyclin‐dependent kinase 4 (CDK4) mRNA 3′‐untranslated region (3′‐UTR) to suppress the expression of CDK4 in NSCLC cells. H1299 and A549 cell proliferation inhibition is mediated by cell cycle arrest and apoptosis with CDK4 interference. Moreover, CDK4 overexpression effectively reversed miR‐34‐3p‐repressed NSCLC cell growth. In conclusion, our findings reveal that miR‐34b‐3p might function as a tumour suppressor in NSCLC by targeting CDK4 and that miR‐34b‐3p may, therefore, serve as a biomarker for the diagnosis and treatment of NSCLC.  相似文献   

15.
Although the non‐small cell lung cancer (NSCLC) is one of the most malignant tumours worldwide, the mechanisms controlling NSCLC tumourigenesis remain unclear. Here, we find that the expression of miR‐520b is up‐regulated in NSCLC samples. Further studies have revealed that miR‐520b promotes the proliferation and metastasis of NSCLC cells. In addition, miR‐520b activates Hedgehog (Hh) pathway. Inhibitor of Hh pathway could relieve the oncogenic effect of miR‐520b upon NSCLC cells. Mechanistically, we demonstrate that miR‐520b directly targets SPOP 3′‐UTR and decreases SPOP expression, culminating in GLI2/3 stabilization and Hh pathway hyperactivation. Collectively, our findings unveil that miR‐520b promotes NSCLC tumourigenesis through SPOP‐GLI2/3 axis and provide miR‐520b as a potential diagnostic biomarker and therapeutic target for NSCLC.  相似文献   

16.
This study focuses on the effect of miR‐129‐5p on docetaxel‐resistant (DR) prostate cancer (PCa) cells invasion, migration and apoptosis. In our study, the expression of CAMK2N1 was assessed by qRT‐PCR in PCa patient tissues and cell lines including PC‐3 and PC‐3‐DR. Cells transfected with miR‐129‐5p mimics, inhibitor, CAMK2N1 or negative controls (NC) were used to interrogate their effects on DR cell invasions, migrations and apoptosis during docetaxel (DTX) treatments. The apoptosis rate of the PCa cells was validated by flow cytometry. Relationships between miR‐129‐5p and CAMK2N1 levels were identified by qRT‐PCR and dual‐luciferase reporter assay. CAMK2N1 was found to be down‐expressed in DR PCa tissue sample, and low levels of CAMK2N1 were correlated with high docetaxel resistance and clinical prediction of poor survival. CAMK2N1 levels were decreased in DR PCa cells treated with DXT. We further explored that up‐regulation of miR‐129‐5p could promote DR PCa cells viability, invasion and migration but demote apoptosis. Involved molecular mechanism studies revealed that miR‐129‐5p reduced downstream CAMK2N1 expression to further impact on chemoresistance to docetaxel of PCa cells, indicating its vital role in PCa docetaxel resistance. Our findings revealed that miR‐129‐5p contributed to the resistance of PC‐3‐DR cells to docetaxel through suppressing CAMK2N1 expression, and thus targeting miR‐129‐5p may provide a novel therapeutic approach in sensitizing PCa to future docetaxel treatment.  相似文献   

17.
This study purposed to explore the correlation between miR‐129‐5p and TGIF2 and their impacts on glioma cell progression. Differentially expressed miRNA was screened through microarray analysis. MiR‐129‐5p expression levels in glioma tissues and cells were measured by qRT‐PCR. CCK‐8 assay, flow cytometer, transwell assay and wound‐healing assay were employed to detect cell proliferation, apoptosis and cycle, invasiveness and migration, respectively. Dual‐luciferase reporting assay was performed to confirm the targeted relationship between miR‐129‐5p and TGIF2. The effects of TGIF2 expression on cell biological functions were also investigated using the indicated methods. Tumour xenograft was applied to explore the impact of miR‐129‐5p on tumorigenesis in vivo. MiR‐129‐5p expression was down‐regulated in both glioma tissues and glioma cells, while TGIF2 expression was aberrantly higher than normal level. Dual‐luciferase reporter assay validated the targeting relation between miR‐129‐5p and TGIF2. Overexpression of miR‐129‐5p or down‐regulation of TGIF2 inhibited the proliferation, invasion and migration capacity of glioma cells U87 and U251, and meanwhile blocked the cell cycle as well as induced cell apoptosis. MiR‐129‐5p overexpression repressed the tumour development in vivo. MiR‐129‐5p and TGIF2 had opposite biological functions in glioma cells. MiR‐129‐5p could inhibit glioma cell progression by targeting TGIF2, shining light for the development of target treatment for glioma.  相似文献   

18.
Long non‐coding RNAs (lncRNAs) have emerged as new and important regulators of pathological processes including tumour development. In this study, we demonstrated that differentiation antagonizing non‐protein coding RNA (DANCR) was up‐regulated in lung adenocarcinoma (ADC) and that the knockdown of DANCR inhibited tumour cell proliferation, migration and invasion and restored cell apoptosis rescued; cotransfection with a miR‐496 inhibitor reversed these effects. Luciferase reporter assays showed that miR‐496 directly modulated DANCR; additionally, we used RNA‐binding protein immunoprecipitation (RIP) and RNA pull‐down assays to further confirm that the suppression of DANCR by miR‐496 was RISC‐dependent. Our study also indicated that mTOR was a target of miR‐496 and that DANCR could modulate the expression levels of mTOR by working as a competing endogenous RNA (ceRNA). Furthermore, the knockdown of DANCR reduced tumour volumes in vivo compared with those of the control group. In conclusion, this study showed that DANCR might be an oncogenic lncRNA that regulates mTOR expression through directly binding to miR‐496. DANCR may be regarded as a biomarker or therapeutic target for ADC.  相似文献   

19.
Non‐small‐cell lung cancer (NSCLC) is one of the most common and lethal malignant tumours worldwide with a poor 5‐year survival rate. Recent studies indicated that miRNAs have been involved in the tumorigenic driver pathways in NSCLC, but the relevant molecular mechanisms are not well‐understood. In this study, we investigated the biological functions and molecular mechanisms of miR‐138 in human NSCLC. The effects of miR‐138 on the NSCLC cell growth and epithelial‐mesenchymal transition (EMT) were first examined. Then the targeting connections of miR‐138 with G‐protein‐coupled receptor kinase‐interacting protein 1 (GIT1) and semaphorin 4C (SEMA4C) were confirmed by dual luciferase reporter assays. Finally, the effects of GIT1 and SEMA4C on the NSCLC cell growth and EMT were investigated respectively. We found that the ectopic expression of miR‐138 resulted in a significant inhibition of NSCLC growth and reversion of EMT. GIT1 and SEMA4C were identified as two novel targets of miR‐138. Furthermore, GIT1 and SEMA4C knockdown inhibited the cell growth and reversed EMT, just like the effects of miR‐138 overexpression on NSCLC cells, whereas ectopic expression of GIT1 and SEMA4C partly rescued the suppressive effects of miR‐138 in NSCLC cells. These data represent a crucial step towards the understanding of the novel roles and molecular mechanism of miR‐138, GIT1 and SEMA4C in NSCLC progression, which may provide some new targets or prognostic biomarkers for NSCLC treatment, thus having implications in translational oncology.  相似文献   

20.
The purpose of this study was to investigate the biological effect of miR‐16 on myocarditis and the underlying molecular mechanism. H9c2 cells were treated with 10 µg/mL lipopolysaccharide (LPS) for 12 hours to form a myocarditis injury model. We observed that LPS treatment distinctly decreased the level of miR‐16 in H9c2 cells. Upregulation of miR‐16 increased cell proliferation and reduced cell apoptosis. Then, CD40 was predicted and verified as a target gene of miR‐16 by TargetScan and luciferase reporter assay, respectively. Furthermore, the messenger RNA and protein expression of CD40 are negatively regulated by miR‐16. The relative expression of inflammatory factors was dramatically decreased by the miR‐16 mimic. Cells cotransfected with miR‐16 mimic and si‐CD40 could significantly abolish the injury of cardiomyocytes caused by myocarditis. Our study illustrated that the upregulation of miR‐16 has a protective effect on LPS‐damaged H9c2 cells, which may be achieved by regulating CD40 and the nuclear factor kappa B pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号