首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study aims to investigate the in vivo and in vitro anti‐tumour properties of phenethyl isothiocyanate (PEITC) alone and in combination with doxorubicin (Dox). The anti‐tumour activity was evaluated in vitro by MTT assay using cultured human breast cancer cell line (MCF‐7) and human hepatoma cell line (HepG‐2) cell lines. In vivo, Ehrlich solid tumour model was used. Tumour volume, weight and antioxidant parameters were determined. Immunohistochemistry analysis for active (cleaved) caspase‐3 was also performed. We tested the effect of PEITC treatment on pAkt/Akt ratio, NF‐κB p65 DNA binding activity and caspase‐9 enzyme activity in both MCF‐7 and HepG‐2 cell lines. Effect of PEITC treatment on cell migration was assessed by wound healing assay. PEITC and/or Dox treatment significantly inhibited solid tumour volume and tumour weight when compared with control mice. PEITC treatment significantly reduced oxidative stress caused by Dox treatment as indicated by significant increase in total antioxidant capacity and decrease in malondialdehyde level. Microscopic examination of tumour tissues showed a significant increase in active (cleaved) caspase‐3 expression in PEITC and/or Dox treated groups. PEITC showed a dose‐dependent inhibition of MCF‐7 and HepG‐2 cellular viability. PEITC inhibited Akt and NF‐κB activation and increased caspase‐9 activity in a dose‐dependent manner. PEITC treatment effectively inhibited both MCF‐7 and HepG‐2 cell migration. We can conclude that PEITC acts via multiple molecular targets to elicit anti‐carcinogenic activity. PEITC/Dox combination therapy might be a potential novel strategy, which may benefit patients with breast and liver cancers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
In this study, our aim was to exploring the influences of DNA methylation of PON1 on cell proliferation, migration and apoptosis of renal cancer cells. The genome‐wide methylation array of renal cell carcinoma samples and adjacent tissues were obtained from the cancer genome atlas (TCGA) database. By analysing the DNA methylation and conducting the CpG islands array, methylation status expressed in renal tumour samples and normal renal tissue samples were detected. Methylation‐specific PCR (MS‐PCR) and qRT‐PCR were employed to detect the methylation level and mRNA expression of PON1. Wound‐healing assay, transwell assay and MTT assay were utilized to detecting the migration, invasion and proliferation abilities, respectively. The cell apoptosis was testified by Tunnel assay. In addition, the effect of PON1 on renal cancer cells was verified by experiments in vivo. The methylation status of different genes in renal cell carcinoma samples was obtained by CpG islands arrays and hypermethylated PON1 was selected for further study. PON1 was down‐regulated in renal cell carcinoma tissues detected by qRT‐PCR and Western blot. Both in vitro and vivo experiments indicated that the sunitinib‐resistant in renal cancer cells could be suppressed by treat with 5‐Aza‐dC or TSA, and the effect came out more obvious after 5‐Aza‐dC and TSA co‐treatment. In detail, the demethylation of PON1 inhibited the migration, invasion and proliferation of renal cancer cells and also arrested more cells in G0/G1 phase. The vivo experiment indicated that demethylated PON1 suppressed the growth of tumour. Hypermethylated PON1 promoted migration, invasion and proliferation of sunitinib‐resistance renal cancer cells and arrested more cells in G0/G1 phase.  相似文献   

3.
2‐Methoxyestradiol, a natural metabolite of estradiol, exerts antiproliferative and antitumour properties in vitro and in vivo. Because of its low oral bioavailability, several promising analogues of 2‐methoxyestradiol have been developed. In this study, the in vitro influence of the compound, 2‐ethyl‐3‐O‐sulphamoyl‐estra‐1,3,5(10)16‐tetraene (C19), a non‐commercially available 17‐β‐estradiol analogue, was tested on the breast adenocarcinoma MCF‐7 cell line. The in vitro influence of 24 h exposure to 0.18 μM of C19 on MCF‐7 cells was evaluated on cell morphology, cell cycle progression and possible induction of apoptosis and autophagy. Polarization‐optical transmitted light differential interference contrast and fluorescence microscopy revealed the presence of cells blocked in metaphase, occurrence of apoptotic bodies and compromised cell density in C19‐treated cells. Hallmarks of autophagy, namely an increase in the number of acidic vacuoles and lysosomes, were also observed in C19‐treated samples. An increase in the number of cells present in the sub‐G1 fraction, as well as a reduction in mitochondrial membrane potential was observed. No significant alterations in caspase 8 activity were observed. A twofold increase in aggresome formation was observed in C19‐treated cells. C19 induced both apoptosis and autophagy in MCF‐7 cells. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
In the pursuit of novel anticancer leads, new bisindole‐oxadiazoles were synthesized using propyl phosphonic anhydride as a mild and efficient reagent. The molecule, 3‐[5‐(1H‐indol‐3‐ylmethyl)‐1,3,4‐oxadiazol‐2‐yl]‐1H‐indole ( 3a ) exhibited selective cytotoxicity to MCF‐7 cells with a cell cycle arrest in the G1 phase. The mechanism of cytotoxicity of 3a involved caspase‐2‐dependent apoptotic pathway with characteristic apoptotic morphological alterations as observed in acridine orange/ethidium bromide and Hoechst staining. The wound healing migratory assay exhibited an intense impairment in the motility of MCF‐7 cells on incubation with 3a . Docking simulations with anti‐apoptotic protein Bcl‐2, which is also involved in cancer metastasis displayed good affinity and high binding energy of 3a into the well characterized BH3 binding site. The positive correlation between the Bcl‐2 binding studies and the results of in vitro investigations exemplifies compound 3a as a lead molecule exhibiting MCF‐7 differential cytotoxicity via apoptotic mode of cell death in addition to its anti‐metastatic activity.  相似文献   

5.
Thymoquinone (TQ; 1 ) is a weak anticancer constituent of black seed oil. Derivatives bearing terpene‐terminated 6‐alkyl residues were tested in cells of human HL‐60 leukemia, 518A2 melanoma, multidrug‐resistant KB‐V1/Vbl cervix, and MCF‐7/Topo breast carcinomas, as well as in non‐malignant human foreskin fibroblasts. Derivatives with a short four‐atom spacer between quinone and cyclic monoterpene moieties were more antiproliferative than analogues with longer spacers. 6‐(Menthoxybutyryl)thymoquinone ( 3a ) exhibited single‐digit micromolar IC50 (72 h) values in all four cell lines. It was seven times more active than TQ ( 1 ) in 518A2 melanoma cells and four times in KB‐V1/Vbl cervix carcinoma cells, while only half as toxic in the fibroblasts. Compound 3a was also not a substrate for the P‐gp and BCRP drug transporters of the resistant cancer cells. The caryophyllyl and germacryl conjugates 3e and 3f specifically inhibited the growth of the resistant MCF‐7 breast carcinoma cells. Conjugation of TQ with the triterpene betulinic acid via the OH group as in 3g led to a loss in activity, while conjugation via the carboxylic acid afforded compound 4 with nanomolar IC50 (72 h) activity against HL‐60 cells. All anticancer‐active derivatives of TQ ( 1 ) induced apoptosis associated with DNA laddering, a decrease in mitochondrial membrane potential and a slight increase in reactive oxygen species.  相似文献   

6.
Embryonic stem cells (ESCs) are a population of pluripotent cells which can differentiate into different cell types. However, there are few reports with regard to differentiate ESCs into epidermal cells in vitro. In this study, we aimed to investigate differentially methylated promoters involved in process of differentiation from ESCs into epidermal‐like cells (ELCs) induced by human amnion. We successfully induced ESCs into ELCs, which expressed the surface markers of CK19, CK15 and β1‐integrin. With MeDIP‐chip arrays, we identified 3435 gene promoters to be differentially methylated, involving 894 HCP (high CpG‐containing promoter), 974 ICP (intermediate CpG‐containing promoter) and 1567 LCP (low CpG‐containing promoter) among all the 17 500 DNA methylation regions of gene promoters in both ESCs and ELCs. Gene oncology and pathway analysis demonstrated that these genes were involved in all the three categories of GO enrichment analysis, including biological process, molecular function and cellular component. All these data suggested that embryonic stem cells can differentiate into epidermal‐like cells and promoter methylation is of great importance in this process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
We show that activation of Wnt/β‐catenin and attenuation of Bmp signals, by combined gain‐ and loss‐of‐function mutations of β‐catenin and Bmpr1a, respectively, results in rapidly growing, aggressive squamous cell carcinomas (SCC) in the salivary glands of mice. Tumours contain transplantable and hyperproliferative tumour propagating cells, which can be enriched by fluorescence activated cell sorting (FACS). Single mutations stimulate stem cells, but tumours are not formed. We show that β‐catenin, CBP and Mll promote self‐renewal and H3K4 tri‐methylation in tumour propagating cells. Blocking β‐catenin–CBP interaction with the small molecule ICG‐001 and small‐interfering RNAs against β‐catenin, CBP or Mll abrogate hyperproliferation and H3K4 tri‐methylation, and induce differentiation of cultured tumour propagating cells into acini‐like structures. ICG‐001 decreases H3K4me3 at promoters of stem cell‐associated genes in vitro and reduces tumour growth in vivo. Remarkably, high Wnt/β‐catenin and low Bmp signalling also characterize human salivary gland SCC and head and neck SCC in general. Our work defines mechanisms by which β‐catenin signals remodel chromatin and control induction and maintenance of tumour propagating cells. Further, it supports new strategies for the therapy of solid tumours.  相似文献   

8.
The prokaryotic CpG‐specific DNA methylase from Spiroplasma, SssI methylase, has been extensively used to methylate plasmid DNA in vitro to investigate the effects of methylation in vertebrate systems. Currently available methods to produce CpG‐methylated plasmid DNA have certain limitations and cannot generate large quantities of methylated DNA without cost or problems of purity. Here we describe an approach in which the SssI methylase gene has been introduced into the Escherichia coli bacterial genome under the control of an inducible promoter. Plasmid DNA propagated in this bacterium under conditions which induce the methylase gene result in significant (> 90%) CpG methylation. Methylated DNA produced by this approach behaves similarly to methylated DNA produced in vitro using the purified methylase. The approach is scalable allowing for the production of milligram quantities of methylated plasmid DNA.  相似文献   

9.
Telomerase reactivation and immortalization are critical for human carcinoma progression. However, little is known about the mechanisms controlling this crucial step, due in part to the paucity of experimentally tractable model systems that can examine human epithelial cell immortalization as it might occur in vivo. We achieved efficient non-clonal immortalization of normal human mammary epithelial cells (HMEC) by directly targeting the 2 main senescence barriers encountered by cultured HMEC. The stress-associated stasis barrier was bypassed using shRNA to p16INK4; replicative senescence due to critically shortened telomeres was bypassed in post-stasis HMEC by c-MYC transduction. Thus, 2 pathologically relevant oncogenic agents are sufficient to immortally transform normal HMEC. The resultant non-clonal immortalized lines exhibited normal karyotypes. Most human carcinomas contain genomically unstable cells, with widespread instability first observed in vivo in pre-malignant stages; in vitro, instability is seen as finite cells with critically shortened telomeres approach replicative senescence. Our results support our hypotheses that: (1) telomere-dysfunction induced genomic instability in pre-malignant finite cells may generate the errors required for telomerase reactivation and immortalization, as well as many additional “passenger” errors carried forward into resulting carcinomas; (2) genomic instability during cancer progression is needed to generate errors that overcome tumor suppressive barriers, but not required per se; bypassing the senescence barriers by direct targeting eliminated a need for genomic errors to generate immortalization. Achieving efficient HMEC immortalization, in the absence of “passenger” genomic errors, should facilitate examination of telomerase regulation during human carcinoma progression, and exploration of agents that could prevent immortalization.  相似文献   

10.
DNA methylation plays an important role in regulation of gene expression and is increasingly being recognized as a determinant of chemosensitivity of human cancers. With the aim of improving the chemotherapeutic efficacy of breast carcinoma, the effect of DNA methyltransferase inhibitor, 5-Aza-2′-deoxycytidine (5-aza-CdR), on the chemosensitivity of anticancer drugs was investigated. The cytotoxicity of paclitaxel (PTX), adriamycin (ADR), and 5-fluorouracil (5-FU) was analyzed against human breast cancer cell lines, MDA MB 231 and MCF 7 cell lines using the MTT assay, and the synergy of 5-aza-CdR and these agents was determined by Drewinko’s fraction method. The effects of each single agent or the combined treatment on cell cycle arrest were analyzed by flow cytometric analysis. We also investigated the effect of each single agent or the combined treatment of anticancer drugs with 5-aza-CdR on the methylation status of the selected genes by methylation specific PCR. In MDA MB 231 cells, a synergistic antiproliferative effect was observed with a combination of 10 μM 5-aza-CdR and these three anticancer drugs, while in MCF 7 cells, a semiadditive effect was observed. Treatment with 5-aza-CdR and anticancer drug resulted in partial demethylation of a panel of genes including RARβ2, Slit2, GSTP1, and MGMT. Based on these findings, we propose that 5-aza-CdR enhances the chemosensitivity of anticancer drugs in breast cancer cells and may be a promising approach for increasing the chemotherapeutic potential of these anticancer agents for more effective management of breast carcinomas.  相似文献   

11.
Cyclo[EKTOVNOGN] (AFPep), a cyclic 9‐amino acid peptide derived from the active site of alpha‐fetoprotein, has been shown to prevent carcinogen‐induced mammary cancer in rats and inhibit the growth of ER+ human breast cancer xenografts in mice. Recently, studies using replica exchange molecular dynamics predicted that the TOVN region of AFPep might form a dynamically stable putative Type I beta‐turn, and thus be biologically active without additional amino acids. The studies presented in this paper were performed to determine whether TOVN and other small analogs of AFPep would inhibit estrogen‐stimulated cancer growth and exhibit a broad effective‐dose range. These peptides contained nine or fewer amino acids, and were designed to bracket or include the putative pharmacophoric region (TOVN) of AFPep. Biological activities of these peptides were evaluated using an immature mouse uterine growth inhibition assay, a T47D breast cancer cell proliferation assay, and an MCF‐7 breast cancer xenograft assay. TOVN had very weak antiestrogenic activity in comparison to AFPep's activity, whereas TOVNO had antiestrogenic and anticancer activities similar to AFPep. OVNO, which does not form a putative Type I beta‐turn, had virtually no antiestrogenic and anticancer activities. A putative proteolytic cleavage product of AFPep, TOVNOGNEK, significantly inhibited E2‐stimulated growth in vivo and in vitro over a wider dose range than AFPep or TOVNO. We conclude that TOVNO has anticancer potential, that TOVNOGNEK is as effective as AFPep in suppressing growth of human breast cancer cells, and that it does so over a broader effective‐dose range. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
Epigenetic drugs are promising add‐ons to cancer treatment; still, adverse effects concerning tumour promotion have been reported occasionally. In this in vitro study, we investigated the effect of combination treatment of decitabine with anthracycline‐based chemotherapy [5‐fluorouracil plus epirubicine plus cyclophosphamide (FEC)] on viability and metastatic activity of breast cancer cell lines, MDA‐MB‐231 (estrogen receptor‐negative) and MCF‐7 (estrogen receptor‐positive). The effect of decitabine and its combined treatment with FEC on viability of both cancer cell lines was assessed using the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazoliumbromide and adenosine triphosphate (ATP) cell survival assays. DNA methylation specific real‐time polymerase chain reaction (PCR) (Methylight®) was employed to document the methylation status of the metastasis‐relevant urokinase‐type plasminogen activator (uPA) and plasminogen activator inhibitor‐I (PAI‐1) genes. Additionally, protein expression levels of uPA and PAI‐1 were determined using enzyme‐linked immunosorbent assays. Invasion capacity of cells was assayed using Matrigel® invasion assay. Decitabine lowered the viability of MCF‐7 cells, although MDA‐MB‐231 cells were not affected. Decitabine did not augment FEC‐mediated cytotoxicity in both cell lines. In MCF‐7 cells, methylation of the uPA and PAI‐1 gene promoter was significantly reduced by decitabine or decitabine plus FEC. Protein levels of uPA and PAI‐1 were induced by all treatments. Decitabine significantly induced the invasion capacity of MCF‐7 cells, whereas all of the drugs resulted in decreased invasion capacity of MDA‐MB‐231. Our results suggest differential effects of single‐dose decitabine and its combination with FEC on the metastatic capacity and survival of breast cancer cell lines endowed with different metastatic behaviour. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Abnormal phenotypes in cloned pigs can be partly due to changes in epigenetic modifications such as methylation levels of promoter CpG islands. Neuronatin is an imprinted gene, conserved in human, pig, cattle and mouse, which is expressed exclusively from the paternal allele. Three CpG islands located in the promoter region of the porcine neuronatin gene have the potential to regulate the gene expression by cytosine methylation. To illustrate whether neuronatin was differentially expressed among nuclear transfer macroglossia–positive and nuclear transfer macroglossia–negative pigs and in vitro‐fertilized pigs, we detected its expression level by qRT‐PCR and further quantified methylation levels by pyrosequencing DNA from the liver. The results showed that neuronatin was expressed at a significantly higher level in livers of nuclear transfer macroglossia‐positive pigs compared with normal cloned and in vitro‐fertilized pigs. Livers of nuclear transfer macroglossia‐positive pigs also had a significantly lower methylation level at CpG island 2 and CpG island 3 in the promoter region.  相似文献   

14.

Background

The present study sought to further investigate the in vitro and in vivo anticancer effects of a representative omega-3 fatty acid, docosahexaenoic acid (DHA), with a focus on assessing the induction of oxidative stress and apoptosis as an important mechanism for its anticancer actions.

Methodology/Principal Findings

In vitro studies showed that DHA strongly reduces the viability and DNA synthesis of MCF-7 human breast cancer cells in culture, and also promotes cell death via apoptosis. Mechanistically, accumulation of reactive oxygen species and activation of caspase 8 contribute critically to the induction of apoptotic cell death. Co-presence of antioxidants or selective inhibition or knockdown of caspase 8 each effectively abrogates the cytotoxic effect of DHA. Using athymic nude mice as an in vivo model, we found that feeding animals the 5% fish oil-supplemented diet for 6 weeks significantly reduces the growth of MCF-7 human breast cancer cells in vivo through inhibition of cancer cell proliferation as well as promotion of cell death. Using 3-nitrotyrosine as a parameter, we confirmed that the fish oil-supplemented diet significantly increases oxidative stress in tumor cells in vivo. Analysis of fatty acid content in plasma and tissues showed that feeding animals a 5% fish oil diet increases the levels of DHA and eicosapentaenoic acid in both normal and tumorous mammary tissues by 329% and 300%, respectively.

Conclusions/Significance

DHA can strongly induce apoptosis in human MCF-7 breast cancer cells both in vitro and in vivo. The induction of apoptosis in these cells is selectively mediated via caspase 8 activation. These observations call for further studies to assess the effectiveness of fish oil as a dietary supplement in the prevention and treatment of human breast cancer.  相似文献   

15.
DNA methyltransferase1o (Dnmt1o), which is specific to oocyte and preimplantation embryo, plays a role in maintaining DNA methylation in mammalian cells. Here, we investigated the methylation status of CpGs sites in the Dnmt1o 5′‐flanking region in germ cells at different stages of oogenesis or spermatogenesis. The methylation levels of the CpG sites at the 5′‐flanking regions were hypermethylated in growing oocytes of all follicular stages, while the oocytes in meiotic metaphase II (MII) were demethylated. The methylation pattern within the CpGs sites in the 5′‐flanking region, however, was dramatically changed during spermatogenesis. We observed that there was significant non‐CpG methylation both in MII oocytes and spermatocytes. Although a low methylation level in non‐CpG sites was observed in primary and secondary oocytes, the CpA site of position 25 and CpT site of position 29 within the no‐CpG region in the 5′‐flanking region of Dnmt1o was highly methylated in MII oocytes. During spermatogenesis, the low degree of methylation at CpG sites in spermatocytes increased to a higher degree in sperm, while the high ratio of methylation in non‐CpG sites in spermatocytes decreased. Together, germ cells showed inverted methylation patterns between CpG and non‐CpG sites in the Dnmt1o 5′‐upstream region, and the methylation pattern during oogenesis did not drastically change, remaining generally hypomethylated at the MII stage. Mol. Reprod. Dev. 80: 212–222, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
《Luminescence》2003,18(4):218-223
Studies were performed to compare green ?uorescent protein (GFP)‐transfected and ?re?y luciferase (Luc)‐transfected MCF‐7 human breast tumour cells both in vitro and in vivo. For in vitro studies, cells were serially diluted in 96‐well microplates and analysed using a NightOwl LB 981 Molecular Light Imager and a Victor multilabel reader. For in vivo studies, nude mice were injected either intraperitoneally, intravenously or subcutaneously with transfected cells and then imaged using the NightOwl Imager after intraperitoneal injection of d ‐luciferin for Luc tumours, or excitation at 470 nm for GFP tumours. In vitro imaging studies revealed that both GFP and Luc transfectants were quanti?able. However, the Luc‐transfected cells were detectable at a signi?cantly lower concentration compared to GFP transfectants. In vivo studies demonstrated that GFP‐transfected tumours were detectable as subcutaneous and intraperitoneal tumours but not as deep tissue lesions, whereas Luc‐transfected tumours were detectable as subcutaneous and intraperitoneal tumours and as deep tissue lesions resulting from intraperitoneal or intravenous inoculation. These ?ndings demonstrate that GFP‐transfected cells may be useful for imaging studies of super?cial tumours where both excitation and emission wavelengths are able to penetrate tissues, whereas luciferase‐transfected cells appear superior for imaging studies of primary and metastatic tumours in distant sites and deep tissues. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Anti-breast cancer action of novel human carbonic anhydrase IX (hCA IX) inhibitor BSM-0004 has been investigated using in vitro and in vivo models of breast cancer. BSM-0004 was found to be a potent and selective hCA IX inhibitor with a Ki value of 96 nM. In vitro anticancer effect of BSM-0004 was analysed against MCF 7 and MDA-MA-231 cells, BSM-0004 exerted an effective cytotoxic effect under normoxic and hypoxic conditions, inducing apoptosis in MCF 7 cells. Additionally, this compound significantly regulates the expression of crucial biomarkers associated with apoptosis. The investigation was extended to confirm the efficacy of this hCA IX inhibitor against in vivo model of breast cancer. The results specified that the treatment of BSM-0004 displayed an effective in vivo anticancer effect, reducing tumour growth in a xenograft cancer model. Hence, our investigation delivers an effective anti-breast cancer agent that engenders the anticancer effect by inhibiting hCA IX.  相似文献   

18.
19.

Background

Previously, we validated capability of human adipose tissue‐derived mesenchymal stem cells (AT‐MSC) to serve as cellular vehicles for gene‐directed enzyme prodrug molecular chemotherapy. Yeast fusion cytosine deaminase : uracil phosphoribosyltransferase expressing AT‐MSC (CDy‐AT‐MSC) combined with systemic 5‐fluorocytosine (5FC) significantly inhibited growth of human colon cancer xenografts. We aimed to determine the cytotoxic efficiency to other tumour cells both in vitro and in vivo.

Methods

CDy‐AT‐MSC/5FC‐mediated proliferation inhibition against a panel of human tumour cells lines was evaluated in direct and indirect cocultures in vitro. Antitumour effect was tested on immunodeficient mouse model in vivo.

Results

Although culture expansion of CDy‐AT‐MSC sensitized these cells to 5FC mediated suicide effect, expanded CDy‐AT‐MSC/5FC still exhibited strong bystander cytotoxic effect towards human melanoma, glioblastoma, colon, breast and bladder carcinoma in vitro. Most efficient inhibition (91%) was observed in melanoma A375 cell line when directly cocultured with 2% of therapeutic cells CDy‐AT‐MSC/5FC. The therapeutic paradigm of the CDy‐AT‐MSC/5FC system was further evaluated on melanoma A375 xenografts on nude mice in vivo. Complete regression in 89% of tumours was achieved when 20% CDy‐AT‐MSC/5FC were co‐injected along with tumour cells. More importantly, systemic CDy‐AT‐MSC administration resulted in therapeutic cell homing into subcutaneous melanoma and mediated tumour growth inhibition.

Conclusions

CDy‐AT‐MSC capability of targeting subcutaneous melanoma offers a possibility to selectively produce cytotoxic agent in situ. Our data further demonstrate beneficial biological properties of AT‐MSC as a cellular vehicle for enzyme/prodrug therapy approach to molecular chemotherapy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Late‐stage hepatocellular carcinoma (HCC) usually has a low survival rate because of the high risk of metastases and the lack of an effective cure. Disulfiram (DSF) has copper (Cu)‐dependent anticancer properties in vitro and in vivo. The present work aims to explore the anti‐metastasis effects and molecular mechanisms of DSF/Cu on HCC cells both in vitro and in vivo. The results showed that DSF inhibited the proliferation, migration and invasion of HCC cells. Cu improved the anti‐metastatic activity of DSF, while Cu alone had no effect. Furthermore, DSF/Cu inhibited both NF‐κB and TGF‐β signalling, including the nuclear translocation of NF‐κB subunits and the expression of Smad4, leading to down‐regulation of Snail and Slug, which contributed to phenotype epithelial–mesenchymal transition (EMT). Finally, DSF/Cu inhibited the lung metastasis of Hep3B cells not only in a subcutaneous tumour model but also in an orthotopic liver metastasis assay. These results indicated that DSF/Cu suppressed the metastasis and EMT of hepatic carcinoma through NF‐κB and TGF‐β signalling. Our study indicates the potential of DSF/Cu for therapeutic use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号