首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The depletion of glomerular podocytes is the key mechanism of glomerulosclerosis and progressive renal failure. Transforming growth factor-β (TGFβ) is a central mediator of signaling networks that control a diverse set of cellular processes, such as cell proliferation, differentiation, and apoptosis. Though many key events in TGFβ1 signaling have been documented at cellular and molecular level in podocytes, the complete effects of TGFβ1 on podocyte integrity are still elusive. In this study, the function of adhesion protein integrin β1, focal adhesion kinase (FAK), and a small GTPase Ras was explored in TGFβ1-induced podocyte injury. In cultured mouse podocyte, caspase 3-positive cells were counted by flow cytometry to evaluate podocyte damage at different time points after TGFβ1 treatment. Immunoblotting assay showed that integrin β1, FAK, Src kinase, and an adaptor protein Grb2 were activated rapidly after TGFβ1 stimulation. Active Ras Pull-Down assay revealed that the active Ras (GTP-bound Ras) level was upregulated in TGFβ1-treated cell. Immunoprecipitation results displayed that TGFβ1 enhanced the complex formation of integrin β1, FAK and Src kinase, as well as FAK, Grb2 and Ras. The FAK inhibitor TAE226 and the specific knockdown of Grb2 remarkably alleviated TGFβ1-induced podocyte apoptosis. The activation of p38MAPK and Erk1/2, and the nuclear translocation of NFκB(p65) were increased evidently in TGFβ1-treated cell, which could be dramatically prohibited by the application of the p38MAPK inhibitor SB202190 and the Ras inhibitor FPT Inhibitor III. The Src kinase inhibitor PP2 obviously prevented the activation of FAK and Ras, as well as the translocation of NFκB(p65) from cytoplasm to nuclei. The PP2, FPT Inhibitor III, and SB202190 significantly decreased TGFβ1-induced podocyte apoptosis. Taken together, these data demonstrated that the activation of integrin β1/Src/FAK and Grb2/RasGTP should be responsible for TGFβ1-induced podocyte damage through the p38MAPK and Erk1/2-mediated nuclear translocation of NFκB(p65).  相似文献   

2.
Osteoblast cells synthesize collagen‐rich ECM (extracellular matrix) in response to various environmental cues, but little is known about ECM‐dependent variations in phosphorylation patterns. Using MC3T3 E1 osteoblast‐like cells and mouse whole‐genome microarrays, we investigated molecular signalling affected by collagen‐based ECMs. A genome‐wide expression analysis revealed that cells grown in the 3D collagen matrix partially suppressed the genes associated with cell adhesion and cell cycling. Western analysis demonstrated that the expression of the active (phosphorylated) form of p130Cas, FAK (focal adhesion kinase) and ERK1/2 (extracellular‐signal‐regulated protein kinase 1/2) was reduced in cells grown in the 3D matrix. Conversely, phosphorylation of p38 MAPK (p38 mitogen‐activated protein kinase) was elevated in the 3D matrix, and its up‐regulation was linked to an increase in mRNA levels of dentin matrix protein 1 and bone sialoprotein. Although multiple characteristics such as surface topography, chemical composition and mechanical properties differ in the preparations of our collagen‐rich milieu, our observations support the notion that geometrical alterations in ECM environments can alter the phosphorylation pattern of p130Cas, FAK, ERK1/2 and p38 MAPK and lead to a differential developmental fate.  相似文献   

3.
Dehydrozingerone (DHZ) exerts beneficial effects on human health; however, its mechanism of action remains unclear. Here, we found that DHZ suppressed high‐fat diet‐induced weight gain, lipid accumulation and hyperglycaemia in C57BL/6 mice and increased AMP‐activated protein kinase (AMPK) phosphorylation and stimulated glucose uptake in C2C12 skeletal muscle cells. DHZ activated p38 mitogen‐activated protein kinase (MAPK) signalling in an AMPK‐dependent manner. Inhibiting AMPK or p38 MAPK blocked DHZ‐induced glucose uptake. DHZ increased GLUT4 (major transporter for glucose uptake) expression in skeletal muscle. Glucose clearance and insulin‐induced glucose uptake increased in DHZ‐fed animals, suggesting that DHZ increases systemic insulin sensitivity in vivo. Thus, the beneficial health effects of DHZ could possibly be explained by its ability to activate the AMPK pathway in skeletal muscle.  相似文献   

4.
Thiazolidinediones, the antidiabetic agents such as ciglitazone, has been proved to be effective in limiting atherosclerotic events. However, the underlying mechanism remains elucidative. Ox‐LDL receptor‐1 (LOX‐1) plays a central role in ox‐LDL‐mediated atherosclerosis via endothelial nitric oxide synthase (eNOS) uncoupling and nitric oxide reduction. Therefore, we tested the hypothesis that ciglitazone, the PPARγ agonist, protected endothelial cells against ox‐LDL through regulating eNOS activity and LOX‐1 signalling. In the present study, rat microvascular endothelial cells (RMVECs) were stimulated by ox‐LDL. The impact of ciglitazone on cell apoptosis and angiogenesis, eNOS expression and phosphorylation, nitric oxide synthesis and related AMPK, Akt and VEGF signalling pathway were observed. Our data showed that both eNOS and Akt phosphorylation, VEGF expression and nitric oxide production were significantly decreased, RMVECs ageing and apoptosis increased after ox‐LDL induction for 24 hrs, all of which were effectively reversed by ciglitazone pre‐treatment. Meanwhile, phosphorylation of AMP‐activated protein kinase (AMPK) was suppressed by ox‐LDL, which was also prevented by ciglitazone. Of interest, AMPK inhibition abolished ciglitazone‐mediated eNOS function, nitric oxide synthesis and angiogenesis, and increased RMVECs ageing and apoptosis. Further experiments showed that inhibition of PPARγ significantly suppressed AMPK phosphorylation, eNOS expression and nitric oxide production. Ciglitazone‐mediated angiogenesis and reduced cell ageing and apoptosis were reversed. Furthermore, LOX‐1 protein expression in RMVECs was suppressed by ciglitazone, but re‐enhanced by blocking PPARγ or AMPK. Ox‐LDL‐induced suppression of eNOS and nitric oxide synthesis were largely prevented by silencing LOX‐1. Collectively, these data demonstrate that ciglitazone‐mediated PPARγ activation suppresses LOX‐1 and moderates AMPK/eNOS pathway, which contributes to endothelial cell survival and function preservation.  相似文献   

5.

Objective:

Obesity is a prominent component of metabolic syndrome and a major risk factor for renal disease. The aim of this study was to explore the effect of cross‐talk between peroxisome proliferator‐activated receptor (PPAR)δ and p38 mitogen‐activated protein kinase (p38 MAPK) on obesity‐related glomerulopathy.

Design and Methods:

Male Wistar rats were randomly assigned to standard laboratory chow or a high‐fat diet for 32 weeks. Glomerular mesangial cells HBZY‐1 and mature differentiation 3T3‐L1 cells were cocultured and were transfected with PPARδ‐expressing vectors or treated with agonist or inhibitor of PPARδ or p38 MAPK.

Results:

Rats on a high‐fat diet showed typical characteristics of metabolic syndrome including obesity, dyslipidemia, insulin resistance, and hypertension. Rats on a high‐fat diet also had significant glomerular hypertrophy and extracellular matrix accumulation, which were accompanied by increased p38 MAPK phosphorylation and decreased PPARδ expression in the kidney tissue. The roles of p38 MAPK and PPARδ in a coculture system of mesangial cells and mature differentiation 3T3‐L1 cells were further explored. PPARδ suppression promoted laminin and type IV collagen secretion through p38 MAPK phosphorylation in mesangial cells, whereas PPARδ overexpression or PPARδ agonist attenuated phosphorylation of p38 MAPK and laminin and type IV collagen secretion.

Conclusions:

The characteristics of obesity‐related glomerulopathy, which might be partly caused by PPARδ suppression‐induced p38 MAPK activation and laminin and type IV collagen secretion was demonstrated.  相似文献   

6.
Stretch-induced cell proliferation is mediated by FAK-MAPK pathway   总被引:6,自引:0,他引:6  
Wang JG  Miyazu M  Xiang P  Li SN  Sokabe M  Naruse K 《Life sciences》2005,76(24):2817-2825
Previously we reported that a uni-axial cyclic stretch treatment of rat 3Y1 fibroblasts induced focal adhesion kinase (FAK) tyrosine phosphorylation followed by mitogen-activated protein kinase (MAPK) activation (Wang et al., 2001) [Wang, J.G., Miyazu, M., Matsushita, E., Sokabe, M., Naruse, K., 2001. Uni-axial cyclic stretch induces focal adhesion kinase (FAK) tyrosine phosphorylation followed by mitogen-activated protein kinase (MAPK) activation. Biochem. Biophys. Res. Comm. 288, 356-361]. In the present study, we investigated whether stretch-induced MAPK activation leads to proliferation of fibroblasts. 3Y1 fibroblasts were subjected to a uni-axial cyclic stretch treatment (1 Hz, 120% in length) and the bromodeoxyuridine (BrdU) incorporation was measured to access cell proliferation. BrdU incorporation increased in a time-dependent manner and became significant within 6 hours. To investigate the involvement of FAK, we transiently expressed FAK mutants that lacked tyrosine phosphorylation site (s) (F397Y, F925Y, F397/925Y). Transient expression of wild-type FAK or mock vector did not inhibit the stretch-induced BrdU incorporation, however, the FAK mutants significantly blocked BrdU incorporation. Treatment of the cells with MAPK inhibitors, PD98059 or SB203580, blocked extracellular signal-regulated kinase (ERK) phosphorylation and p38 MAPK phosphorylation, respectively, and also blocked stretch-induced BrdU incorporation. These results suggest that the stretch-induced FAK activation followed by MAPK activation plays an important role in the stretch-induced proliferation of 3Y1 fibroblasts.  相似文献   

7.
8.
The lipid moiety of natural haemozoin (nHZ, malarial pigment) was previously shown to enhance expression and release of human monocyte matrix metalloproteinase‐9 (MMP‐9), and a major role for 15‐(S,R)‐hydroxy‐6,8,11,13‐eicosatetraenoic acid (15‐HETE), a nHZ lipoperoxidation product, was proposed. Here, the underlying mechanisms were investigated, focusing on the involvement of mitogen‐activated protein kinases (MAPKs). Results showed that nHZ promoted either early or late p38 MAPK phosphorylation; however, nHZ did not modify basal phosphorylation/expression ratios of extracellular signal‐regulated kinase‐1/2 and c‐jun N‐terminal kinase‐1/2. 15‐HETE mimicked nHZ effects on p38 MAPK, whereas lipid‐free synthetic (s)HZ and delipidized (d)HZ did not. Consistently, both nHZ and 15‐HETE also promoted phosphorylation of MAPK‐activated protein kinase‐2, a known p38 MAPK substrate; such an effect was abolished by SB203580, a synthetic p38 MAPK inhibitor. SB203580 also abrogated nHZ‐dependent and 15‐HETE‐dependent enhancement of MMP‐9 mRNA and protein (latent and activated forms) levels in cell lysates and supernatants. Collectively, these data suggest that in human monocytes, nHZ and 15‐HETE upregulate MMP‐9 expression and secretion through activation of p38 MAPK pathway. The present work provides new evidence on mechanisms underlying MMP‐9 deregulation in malaria, which might be helpful to design new specific drugs for adjuvant therapy in complicated malaria. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
There is increasing evidence that statins, which are widely used in lowering serum cholesterol and the incidence of cardiovascular diseases, also exhibits anti‐tumour properties. The underlying mechanisms by which statins‐induced cancer cell death, however, remain incompletely understood. In this study, we explored the anti‐tumour mechanisms of a lipophilic statin, lovastatin, in MCF‐7 breast cancer cells. Lovastatin inhibited cell proliferation and induced cell apoptosis. Lovastatin caused p21 elevation while reduced cyclin D1 and survivin levels. Lovastatin also increased p53 phosphorylation, acetylation and its reporter activities. Results from chromatin immunoprecipitation analysis showed that p53 binding to the survivin promoter region was increased, while Sp1 binding to the region was decreased, in MCF‐7 cells after lovastatin exposure. These actions were associated with liver kinase B1 (LKB1), AMP‐activated protein kinase (AMPK) and p38 mitogen‐activated protein kinase (p38MAPK) activation. Lovastatin's enhancing effects on p53 activation, p21 elevation and survivin reduction were significantly reduced in the presence of p38MAPK signalling inhibitor. Furthermore, LKB1‐AMPK signalling blockade abrogated lovastatin‐induced p38MAPK and p53 phosphorylation. Together these results suggest that lovastatin may activate LKB1‐AMPK‐p38MAPK‐p53‐survivin cascade to cause MCF‐7 cell death. The present study establishes, at least in part, the signalling cascade by which lovastatin induces breast cancer cell death.  相似文献   

10.
Tumor malignancy is associated with several features such as proliferation ability and frequency of metastasis. Connective tissue growth factor (CTGF), a secreted protein that binds to integrins, modulates the invasive behavior of certain human cancer cells. However, the effect of CTGF on migration activity in human chondrosarcoma cells is mostly unknown. Here we found that CTGF increased the migration and expression of matrix metalloproteinase (MMP)‐13 in human chondrosarcoma cells (JJ012 cells). RGD peptide, αvβ3 monoclonal antibody (mAb) and MAPK kinase (MEK) inhibitors (PD98059 and U0126) but not RAD peptide inhibited the CTGF‐induced increase of the migration and MMP‐13 up‐regulation of chondrosarcoma cells. CTGF stimulation increased the phosphorylation of focal adhesion kinase (FAK) and extracellular signal‐regulated kinase (ERK). In addition, treatment of JJ012 cells with NF‐κB inhibitor (PDTC) or IκB protease inhibitor (TPCK) inhibited CTGF‐induced cell migration and MMP‐13 up‐regulation. Stimulation of JJ012 cells with CTGF also induced IκB kinase α/β (IKK α/β) phosphorylation, IκBα phosphorylation, p65 Ser536 phosphorylation, and κB‐luciferase activity. The CTGF‐mediated increases in κB‐luciferase activities were inhibited by RGD, PD98059, U0126 or FAK, and ERK2 mutant. Taken together, our results indicated that CTGF enhances the migration of chondrosarcoma cells by increasing MMP‐13 expression through the αvβ3 integrin, FAK, ERK, and NF‐κB signal transduction pathway. J. Cell. Biochem. 107: 345–356, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Focal adhesion kinase (FAK) is a 125-kDa non-receptor type tyrosine kinase that localizes to focal adhesions. FAK overexpression is frequently found in invasive and metastatic cancers of the breast, colon, thyroid, and prostate, but its role in osteolytic metastasis is not well understood. In this study, we have analyzed anti-tumor effects of the novel FAK Tyr397 inhibitor TAE226 against bone metastasis in breast cancer by using TAE226. Oral administration of TAE226 in mice significantly decreased bone metastasis and osteoclasts involved which were induced by MDA-MB-231 breast cancer cells and increased the survival rate of the mouse models of bone metastasis. TAE226 also suppressed the growth of subcutaneous tumors in vivo and the proliferation and migration of MDA-MB-231 cells in vitro. Significantly, TAE226 inhibited the osteoclast formation in murine pre-osteoclastic RAW264.7 cells, and actin ring and pit formation in mature osteoclasts. Moreover, TAE226 inhibited the receptor activator for nuclear factor κ B Ligand (RANKL) gene expression induced by parathyroid hormone-related protein (PTHrP) in bone stromal ST2 cells and blood free calcium concentration induced by PTHrP administration in vivo. These findings suggest that FAK was critically involved in osteolytic metastasis and activated in tumors, pre-osteoclasts, mature osteoclasts, and bone stromal cells and TAE226 can be effectively used for the treatment of cancer induced bone metastasis and other bone diseases.  相似文献   

12.
Here we demonstrated that the ‘loss of function’ of not‐rearranged c‐ABL in chronic myeloid leukemia (CML) is promoted by its cytoplasmic compartmentalization bound to 14‐3‐3 sigma scaffolding protein. In particular, constitutive tyrosine kinase (TK) activity of p210 BCR‐ABL blocks c‐Jun N‐terminal kinase (JNK) phosphorylation leading to 14‐3‐3 sigma phosphorylation at a critical residue (Ser186) for c‐ABL binding in response to DNA damage. Moreover, it is associated with 14‐3‐3 sigma over‐expression arising from epigenetic mechanisms (promoter hyper‐acetylation). Accordingly, p210 BCR‐ABL TK inhibition by the TK inhibitor Imatinib mesylate (IM) evokes multiple events, including JNK phosphorylation at Thr183, p38 mitogen‐activated protein kinase (MAPK) phosphorylation at Thr180, c‐ABL de‐phosphorylation at Ser residues involved in 14‐3‐3 binding and reduction of 14‐3‐3 sigma expression, that let c‐ABL release from 14‐3‐3 sigma and nuclear import, and address BCR‐ABL‐expressing cells towards apoptotic death. Informational spectrum method (ISM), a virtual spectroscopy method for analysis of protein interactions based on their structure, and mathematical filtering in cross spectrum (CS) analysis identified 14‐3‐3 sigma/c‐ABL binding sites. Further investigation on CS profiles of c‐ABL‐ and p210 BCR‐ABL‐containing complexes revealed the mechanism likely involved 14‐3‐3 precluded phosphorylation in CML cells.  相似文献   

13.
The signals involved in restitution during mucosal healing are poorly understood. We compared focal adhesion kinase (FAK) and paxillin protein and phosphorylation, extracellular signal-regulated kinase (ERK) 1, ERK2, and p38 activation, as well as FAK and paxillin organization in static and migrating human intestinal Caco-2 cells on matrix proteins and anionically derivatized polystyrene dishes (tissue culture plastic). We also studied effects of FAK, ERK, and p38 blockade in a monolayer-wounding model. Compared with static cells, cells migrating across matrix proteins matrix-dependently decreased membrane/cytoskeletal FAK and paxillin and cytosolic FAK. Tyrosine phosphorylated FAK and paxillin changed proportionately to FAK and paxillin protein. Conversely, cells migrating on plastic increased FAK and paxillin protein and phosphorylation. Migration matrix-dependently activated p38 and inactivated ERK1 and ERK2. Total p38, ERK1, and ERK2 did not change. Caco-2 motility was inhibited by transfection of FRNK (the COOH-terminal region of FAK) and PD-98059, a mitogen-activated protein kinase-ERK kinase inhibitor, but not by SB-203580, a p38 inhibitor, suggesting that FAK and ERK modulate Caco-2 migration. In contrast to adhesion-induced phosphorylation, matrix may regulate motile intestinal epithelial cells by altering amounts and distribution of focal adhesion plaque proteins available for phosphorylation as well as by p38 activation and ERK inactivation. Motility across plastic differs from migration across matrix.  相似文献   

14.
15.
Plasma C‐reactive protein (CRP) concentration is associated positively with cardiovascular risk, including dyslipidemia. We suggested a regulating role of CRP on pro‐protein convertase subtilisin/kexin type 9 (PCSK9), a key regulator of low‐density lipoprotein (LDL) metabolism, and demonstrated the PCSK9 as a pathway linking CRP and LDL regulation. Firstly, experiments were carried out in the presence of human CRP on the protein and mRNA expression of PCSK9 and LDL receptor (LDLR) in human hepatoma cell line HepG2 cells. Treatment with CRP (10 μg/ml) enhanced significantly the mRNA and protein expression of PCSK9 and suppressed the expression of LDLR. Of note, a late return of LDLR mRNA levels occurred at 12 hrs, while the LDLR protein continued to decrease at 24 hrs, suggesting that the late decrease in LDLR protein levels was unlikely to be accounted for the decrease in LDL mRNA. Secondly, the role of PCSK9 in CRP‐induced LDLR decrease and the underlying pathways were investigated. As a result, the inhibition of PCSK9 expression by small interfering RNA (siRNA) returned partly the level of LDLR protein and LDL uptake during CRP treatment; CRP‐induced PCSK9 increase was inhibited by the p38MAPK inhibitor, SB203580, resulting in a significant rescue of LDLR protein expression and LDL uptake; the pathway was involved in hepatocyte nuclear factor 1α (HNF1α) but not sterol responsive element‐binding proteins (SREBPs) preceded by the phosphorylation of p38MAPK. These findings indicated that CRP increased PCSK9 expression by activating p38MAPK‐HNF1α pathway, with a certain downstream impairment in LDL metabolism in HepG2 cells.  相似文献   

16.
Peritoneal dissemination is one of the most terrible types of colorectal cancer progression. Focal adhesion kinase (FAK) plays a crucial role in the biological processes of cancer, such as cell attachment, migration, proliferation and survival, all of which are essential for the progression of peritoneal dissemination. Since we and other groups have reported that the inhibition of FAK activity exhibited a potent anticancer effect in several cancer models, we hypothesized that TAE226, a novel ATP-competitive tyrosine kinase inhibitor designed to target FAK, can prevent the occurrence and progression of peritoneal dissemination. In vitro, TAE226 greatly inhibited the proliferation and migration of HCT116 colon cancer cells, while their adhesion on the matrix surface was minimally inhibited when FAK activity and expression was suppressed by TAE226 and siRNA. In vivo, when HCT116 cells were intraperitoneally inoculated in mice, the cells could attach to the peritoneum and begin to grow within 24 h regardless of the pretreatment of cells with TAE226 or FAK-siRNA, suggesting that FAK is not essential, at least for the initial integrin-matrix contact. Interestingly, the treatment of mice before and after inoculation significantly suppressed cell attachment to the peritoneum. Furthermore, oral administration of TAE226 greatly reduced the size of disseminated tumors and prolonged survival in tumor-bearing mice. Taken together, a possible strategy for inhibiting peritoneal dissemination by targeting FAK with TAE226 appears to be applicable through anti-proliferative and anti-invasion/anti-migration mechanisms.  相似文献   

17.
8‐chloro‐cyclic AMP (8‐Cl‐cAMP), which induces differentiation, growth inhibition, and apoptosis in various cancer cells, has been investigated as a putative anti‐cancer drug. However, the exact mechanism of 8‐Cl‐cAMP functioning in cancer cells is not fully understood. Akt/protein kinase B (PKB) genes (Akt1, Akt2, and Akt3) encode enzymes belonging to the serine/threonine‐specific protein kinase family. It has been suggested that Akt/PKB enhances cell survival by inhibiting apoptosis. Recently, we showed that 8‐Cl‐cAMP and 5‐aminoimidazole‐4‐carboxamide ribonucleoside (AICAR) inhibited cancer cell growth through the activation of AMPK and p38 MAPK. Therefore, we anticipated that the phosphorylation of Akt/PKB would be decreased upon treatment with 8‐Cl‐cAMP. However, treatment with 8‐Cl‐cAMP and AICAR induced the phosphorylation of Akt/PKB, which was inhibited by ABT702 (an adenosine kinase inhibitor) and NBTI (an adenosine transporter inhibitor). Furthermore, whereas Compound C (an AMPK inhibitor), AMPK‐DN (AMPK‐dominant negative) mutant, and SB203580 (a p38 MAPK inhibitor) did not block the 8‐Cl‐cAMP‐induced phosphorylation of Akt/PKB, TCN (an Akt1/2/3 specific inhibitor) and an Akt2/PKBβ‐targeted siRNA inhibited the 8‐Cl‐cAMP‐ and AICAR‐mediated phosphorylation of AMPK and p38 MAPK. TCN also reversed the growth inhibition mediated by 8‐Cl‐cAMP and AICAR. Moreover, an Akt1/PKBα‐targeted siRNA did not reduce the phosphorylation of AMPK and p38 MAPK after treatment with 8‐Cl‐cAMP. These results suggest that Akt2/PKBβ activation promotes the phosphorylation of AMPK and p38 MAPK during the 8‐Cl‐cAMP‐ and AICAR‐induced growth inhibition. J. Cell. Physiol. 228: 890–902, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Binding of low density lipoprotein (LDL) to platelets enhances platelet responsiveness to various aggregation-inducing agents. However, the identity of the platelet surface receptor for LDL is unknown. We have previously reported that binding of the LDL component apolipoprotein B100 to platelets induces rapid phosphorylation of p38 mitogen-activated protein kinase (p38MAPK). Here, we show that LDL-dependent activation of this kinase is inhibited by receptor-associated protein (RAP), an inhibitor of members of the LDL receptor family. Confocal microscopy revealed a high degree of co-localization of LDL and a splice variant of the LDL receptor family member apolipoprotein E receptor-2 (apoER2') at the platelet surface, suggesting that apoER2' may contribute to LDL-induced platelet signaling. Indeed, LDL was unable to induce p38MAPK activation in platelets of apoER2-deficient mice. Furthermore, LDL bound efficiently to soluble apoER2', and the transient LDL-induced activation of p38MAPK was mimicked by an anti-apoER2 antibody. Association of LDL to platelets resulted in tyrosine phosphorylation of apoER2', a process that was inhibited in the presence of PP1, an inhibitor of Src-like tyrosine kinases. Moreover, phosphorylated but not native apoER2' co-precipitated with the Src family member Fgr. This suggests that exposure of platelets to LDL induces association of apoER2' to Fgr, a kinase that is able to activate p38MAPK. In conclusion, our data indicate that apoER2' contributes to LDL-dependent sensitization of platelets.  相似文献   

19.
While mitogen-activated protein kinase (MAPK) activation has been implicated in the pathogenesis of various glomerular diseases, including nephrotic syndrome (NS), its specific role in podocyte injury is not known. We hypothesized that MK-2, a downstream substrate of p38 MAPK, mediates the adverse effects of this pathway and that inhibition of MK-2 would protect podocytes from NS-related injury. Using cultured podocytes, we analyzed 1) the roles of MK-2 and p38 MAPK in puromycin aminonucleoside (PAN)-induced podocyte injury; 2) the ability of specific MK-2 and p38 MAPK inhibitors to protect podocytes against injury; 3) the role of serum albumin, known to induce podocyte injury, in activating p38 MAPK/MK-2 signaling; and 4) the role of p38 MAPK/MK-2 signaling in the expression of Cox-2, an enzyme associated with podocyte injury. Treatment with protein kinase inhibitors specific for both MK-2 (C23, a pyrrolopyridine-type compound) or p38 MAPK (SB203580) reduced PAN-induced podocyte injury and actin cytoskeletal disruption. Both inhibitors reduced baseline podocyte p38 MAPK/MK-2 signaling, as measured by the degree of phosphorylation of HSPB1, a downstream substrate of MK-2, but exhibited disparate effects on upstream signaling. Serum albumin activated p38 MAPK/MK-2 signaling and induced Cox-2 expression, and these responses were blocked by both inhibitors. Given the critical importance of podocyte injury to both NS and other progressive glomerular diseases, these data suggest an important role for p38 MAPK/MK-2 signaling in podocyte injury and identify MK-2 inhibition as a promising potential therapeutic strategy to protect podocytes in various glomerular diseases.  相似文献   

20.
Tumor malignancy is associated with several features such as proliferation ability and frequency of metastasis. Osteopontin (OPN), which abundantly expressed in bone matrix, is involved in cell adhesion, migration, invasion and proliferation via interaction with its receptor, that is, αvβ3 integrin. However, the effect of OPN on migration activity in human chondrosarcoma cells is mostly unknown. Here we found that OPN increased the migration and expression of matrix metalloproteinase (MMP)‐9 in human chondrosarcoma cells (JJ012 cells). RGD peptide, αvβ3 monoclonal antibody and MAPK kinase (MEK) inhibitors (PD98059 and U0126) but not RAD peptide inhibited the OPN‐induced increase of the migration and MMP‐9 up‐regulation of chondrosarcoma cells. OPN stimulation increased the phosphorylation of focal adhesion kinase (FAK), MEK and extracellular signal‐regulated kinase (ERK). In addition, treatment of JJ012 cells with NF‐κB inhibitor (PDTC) or IκB protease inhibitor (TPCK) inhibited OPN‐induced cell migration and MMP‐9 up‐regulation. Stimulation of JJ012 cells with OPN also induced IκB kinase α/β (IKK α/β) phosphorylation, IκBα phosphorylation, p65 Ser536 phosphorylation, and κB‐luciferase activity. The OPN‐mediated increases in MMP‐9 and κB‐luciferase activities were inhibited by RGD peptide, PD98059 or FAK and ERK2 mutant. Taken together, our results indicated that OPN enhances the migration of chondrosarcoma cells by increasing MMP‐9 expression through the αvβ3 integrin, FAK, MEK, ERK and NF‐κB signal transduction pathway. J. Cell. Physiol. 221: 98–108, 2009. © 2009 Wiley‐Liss, Inc  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号