首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The regenerative potential of cardiosphere‐derived cells (CDCs) for ischaemic heart disease has been demonstrated in mice, rats, pigs and a recently completed clinical trial. The regenerative potential of CDCs from dog hearts has yet to be tested. Here, we show that canine CDCs can be produced from adult dog hearts. These cells display similar phenotypes in comparison to previously studied CDCs derived from rodents and human beings. Canine CDCs can differentiate into cardiomyocytes, smooth muscle cells and endothelial cells in vitro. In addition, conditioned media from canine CDCs promote angiogenesis but inhibit cardiomyocyte death. In a doxorubicin‐induced mouse model of dilated cardiomyopathy (DCM), intravenous infusion of canine CDCs improves cardiac function and decreases cardiac fibrosis. Histology revealed that injected canine CDCs engraft in the mouse heart and increase capillary density. Out study demonstrates the regenerative potential of canine CDCs in a mouse model of DCM.  相似文献   

2.
Cholesterol‐dependent cytolysins (CDCs) are bacterial pore‐forming toxins secreted mainly by pathogenic Gram‐positive bacteria. CDCs generally recognize and bind to membrane cholesterol to create pores and lyse target cells. However, in contrast to typical CDCs such as streptolysin O, several atypical CDCs have been reported. The first of these was intermedilysin, which is secreted by Streptococcus intermedius and has human cell‐specificity, human CD59 (huCD59) being its receptor. In the study reported here, the diversity of receptor recognition among CDCs was investigated and multi‐receptor recognition characteristics were identified within this toxin family. Streptococcus mitis‐derived human platelet aggregation factor (Sm‐hPAF) secreted by S. mitis strain Nm‐65 isolated from a patient with Kawasaki disease was previously shown to hemolyze erythrocytes in a species‐dependent manner, its maximum activity being in human cells. In the present study, it was found that Sm‐hPAF recognizes both membrane cholesterol and huCD59 as receptors for triggering pore‐formation. Moreover, vaginolysin (VLY) of Gardnerella vaginalis showed similar characteristics to Sm‐hPAF regarding receptor recognition. On the basis of the results presented here, the mode of receptor recognition of CDCs can be categorized into the following three groups: (i) Group I, comprising typical CDCs with high affinity to cholesterol and no or very little affinity to huCD59; (ii) Group II, including atypical CDCs such as ILY, with no or very little affinity to cholesterol and high affinity to huCD59; and (iii) Group III, which contains atypical CDCs such as Sm‐hPAF and VLY with affinity to both cholesterol and huCD59.  相似文献   

3.
The cholesterol-dependent cytolysins (CDCs) constitute a family of pore-forming toxins that contribute to the pathogenesis of a large number of Gram-positive bacterial pathogens.The most highly conserved region in the primary structure of the CDCs is the signature undecapeptide sequence (ECTGLAWEWWR). The CDC pore forming mechanism is highly sensitive to changes in its structure, yet its contribution to the molecular mechanism of the CDCs has remained enigmatic. Using a combination of fluorescence spectroscopic methods we provide evidence that shows the undecapeptide motif of the archetype CDC, perfringolysin O (PFO), is a key structural element in the allosteric coupling of the cholesterol-mediated membrane binding in domain 4 (D4) to distal structural changes in domain 3 (D3) that are required for the formation of the oligomeric pore complex. Loss of the undecapeptide function prevents all measurable D3 structural transitions, the intermolecular interaction of membrane bound monomers and the assembly of the oligomeric pore complex. We further show that this pathway does not exist in intermedilysin (ILY), a CDC that exhibits a divergent undecapeptide and that has evolved to use human CD59 rather than cholesterol as its receptor. These studies show for the first time that the undecapeptide of the cholesterol-binding CDCs forms a critical element of the allosteric pathway that controls the assembly of the pore complex.  相似文献   

4.
Summary Ovulation and egg-laying behavior in the pond snailLymnaea stagnalis are controlled by the neuroendocrine caudodorsal cells (CDCs), constituting two clusters — one in each cerebral ganglion — totaling about 100 cells. In vitro studies have shown that the CDCs release their products, including the ovulation hormone, during a burst of spiking activity lasting for about 30 min (CDC discharge). This burst can be initiated by repeated intracellular stimulation with depolarizing current pulses, in which case the firing pattern is termed afterdischarge.Using cuff electrodes we recorded extracellularly from the intercerebral commissure, (the neurohaemal area of the CDCs) to study the activity of these cells during spontaneous egg-laying of freely behaving snails.The cuff-implanted snails showed long-lasting spiking activity prior to every bout of egg-laying. These spontaneous long-lasting discharges had several features in common with the intracellularly recorded activity of the CDCs in vitro: the time courses of spike broadening and of firing rates in the cuff-implanted animals were very similar to the characteristic patterns found in the isolated brain. Firing rates were higher and durations were longer in the cuff-implanted animals, however. In vitro, the duration of the discharge could be prolonged appreciably by recording in blood instead of normal saline, indicating that the bathing fluid normally used causes shortening of the CDC discharge. The way in which CDC discharges are triggered is discussed as a possible explanation for the differences in firing rates.The pattern of locomotion during spontaneous egg-laying was largely similar in cuff-implanted and unoperated animals. The level of locomotion was lower in the experimental animals. In addition, the rate of locomotion only partially returned to pre-oviposition levels. This is ascribed to the effect of the operation.It is concluded that the afterdischarge is the natural firing pattern of the caudodorsal cells ofLymnaea, and that this firing pattern constitutes the central event in the egg-laying behavior of this animal.Abbreviations CDC caudodorsal cells - CDCH caudodorsal cell hormone - CDCA caudodorsal cell autotransmitter  相似文献   

5.
A supernumerary chromosome called a conditionally dispensable chromosome (CDC) is essential for pathogenicity of Nectria haematococca on pea. Among several CDCs discovered in N. haematococca, the PDA1 CDC that harbors the pisatin demethylation gene PDA1 is one of the best-studied CDCs and serves as a model for plant-pathogenic fungi. Although the presence of multiple copies is usual for supernumerary chromosomes in other eukaryotes, this possibility has not been examined well for any CDCs in N. haematococca. In this study, we produced strains with multiple copies of the PDA1 CDC by protoplast fusion and analyzed dosage effects of this chromosome. Using multiple methods, including cytological chromosome counting and fluorescence in situ hybridization, the fusion products between two transformants derived from the same strain that bears a single PDA1 CDC were shown to contain two PDA1 CDCs from both transformants and estimated to be haploid resulting from the deletion of an extra set or sets of A chromosomes in the fused nuclei. In phenotype assays, dosage effects of PDA1 CDC in the fusion products were evident as increased virulence and homoserine-utilizing ability compared with the parents. In a separate fusion experiment, PDA1 CDC accumulated up to four copies in a haploid genome.  相似文献   

6.
Objective: Cardiosphere-derived cells (CDCs) improve cardiac function and attenuate remodeling in ischemic and non-ischemic cardiomyopathy, and are currently obtained through myocardial biopsy. However, there is not any study on whether functional CDCs may be obtained through cadaveric autopsy with similar benefits in non-ischemic cardiomyopathy. Methods: Cardiac tissues from human or mouse cadavers were harvested, plated at 4°C, and removed at varying time points to culture human CDCs (CLH-EDCs) and mouse CDCs (CM-CDCs). The differentiation and paracrine effects of CDCs were also assessed. Furthermore, intramyocardial injection of cadaveric CM-CDCs was performed in an induced dilated cardiomyopathy (DCM) model. Results: With the extension of post mortem hours, the number of CLH-EDCs and CM-CDCs harvested from autopsy specimens decreased. The expressions of von Willebrand factor (VWF) and smooth muscle actin (SMA) on CDCs were gradually reduced, however, cardiac troponin I (TNI) expression increased in the 24 h group compared to the 0 h group. CLH-EDCs were also found to have similar paracrine function in the 24 h group compared to 0 h group. 8 weeks after CM-CDCs transplantion to the injured heart, mean left ventricular ejection fraction increased in both 0 h (64.99 ± 3.4%) and 24 h (62.99 ± 2.8%) CM-CDCs-treated groups as compared to the PBS treated group (53.64 ± 5.6 cm), with a decrease in left ventricular internal diastolic diameter (0.29 ± 0.08 cm and 0.32 ± 0.04 cm in 0 h and 24 h groups, vs. 0.41 ± 0.05 cm in PBS group). Conclusion: CDCs from cadaveric autopsy are highly proliferative and differentiative, and may be used as a source for allograft transplantation, in order to decrease myocardial fibrosis, attenuate left ventricular remodeling, and improve heart function in doxorubicin-induced non-ischemic cardiomyopathy.  相似文献   

7.
  • 1.1. The neuroendocrine caudodorsal cells (CDCs) of Lymnaea stagnalis are a network of about 100 electrotonically coupled neurones. The CDCs release multiple peptides, including an ovulation hormone, during a period of electrical activity, the CDC-discharge.
  • 2.2. In isolated brains, a similar period of electrical activity (the afterdischarge) can be induced in all CDCs by a period of intracellular repetitive suprathreshold stimulation of one CDC.
  • 3.3. In order to study the regulation of this electrical behaviour in the absence of electrical interactions and in a controlled environment, experiments were performed on CDCs in dissociated cell culture.
  • 4.4. Methods for isolation and cell culture are described. Cell cultures had long-term viability and outgrowth of neurities occurred under serum-free conditions.
  • 5.5. CDCs in cell culture maintained their capability of producing afterdischarges upon electrical stimulation. Cells in culture appeared more excitable than cells in the intact isolated brain.
  • 6.6. The characteristic responses of CDCs in intact isolated brains to acetylcholine and FMRFamide were preserved in cultured CDCs. Both agents induced a transient hyperpolarization of the membrane, inexcitability and inhibition of an ongoing discharge.
  • 7.7. In experiments where isolated CDCs were closely apposed, but physically separate, it was found that an afterdischarge in one CDC could induce a discharge in the other CDC.
  • 8.8. These results confirm previous results which showed that an excitatory factor is released from the brain during the afterdischarge (Ter Maat et al., 1988, Brain Res., 43, 77–82), and demonstrate that this excitatory factor is released from the CDCs themselves.
  相似文献   

8.
Listeriolysin O (LLO) is an essential determinant of Listeria monocytogenes pathogenesis that mediates the escape of L. monocytogenes from host cell vacuoles, thereby allowing replication in the cytosol without causing appreciable cell death. As a member of the cholesterol‐dependent cytolysin (CDC) family of pore‐forming toxins, LLO is unique in that it is secreted by a facultative intracellular pathogen, whereas all other CDCs are produced by pathogens that are largely extracellular. Replacement of LLO with other CDCs results in strains that are extremely cytotoxic and 10,000‐fold less virulent in mice. LLO has structural and regulatory features that allow it to function intracellularly without causing cell death, most of which map to a unique N‐terminal region of LLO referred to as the proline, glutamic acid, serine, threonine (PEST)‐like sequence. Yet, while LLO has unique properties required for its intracellular site of action, extracellular LLO, like other CDCs, affects cells in a myriad of ways. Because all CDCs form pores in cholesterol‐containing membranes that lead to rapid Ca2+ influx and K+ efflux, they consequently trigger a wide range of host cell responses, including mitogen‐activated protein kinase activation, histone modification, and caspase‐1 activation. There is no debate that extracellular LLO, like all other CDCs, can stimulate multiple cellular activities, but the primary question we wish to address in this perspective is whether these activities contribute to L. monocytogenes pathogenesis.  相似文献   

9.
Cholesterol is believed to serve as the common receptor for the cholesterol-dependent cytolysins (CDCs). One member of this toxin family, Streptococcus intermedius intermedilysin (ILY), exhibits a narrow spectrum of cellular specificity that is seemingly inconsistent with this premise. We show here that ILY, via its domain 4 structure, binds to the glycosyl-phosphatidylinositol-linked membrane protein human CD59 (huCD59). CD59 is an inhibitor of the membrane attack complex of human complement. ILY specifically binds to huCD59 via residues that are the binding site for the C8alpha and C9 complement proteins. These studies provide a new model for the mechanism of cellular recognition by a CDC.  相似文献   

10.
The pond snail Lymnaea stagnalis has a maximum life span of about 22 months. At the age of about 250 days animals start to decrease egg laying activity and at about 500 days most animals ceased egg laying activity. At the age of cessation of egg laying the neurosecretory caudodorsal cells (CDCs) which control egg laying in Lymnaea exhibit reduced branching patterns. At this stage the cells still exhibit their physiological properties. CDCs still contain biologically active peptides and in the isolated CNS they still exhibit an afterdischarge upon electrical stimulation. Probably in the intact animal cessation of egg laying occurs because the CDCs are not activated anymore by natural egg laying inducing stimuli. In very old animals CDCs exhibit signs of degeneration indicating that cell death occur. After an extended period of no egg laying of Lymnaea physiological changes occur in the CDCs. CDCs from animals after an extended period of no egg laying failed to exhibit an afterdischarge. In such CDCs chemical and electrical coupling among the CDCs are reduced. Morphologically reduced CDCs predominantly fail to exhibit an afterdischarge. However, there are minimally branched CDCs that still could give an afterdischarge. Probably morphological reduction is not the only factor that defines afterdischarge failure. At present we suggest the following sequence of changes. 1. Morphological reduction of CDC branching patterns. 2. Cessation of egg laying. 3. Physiological changes in the CDCs resulting in afterdischarge failure. 4. Further morphological and physiological deterioration of CDCs.  相似文献   

11.
Evaluation of the immunogenicity of human mesenchymal stem cells (MSCs) in an allogeneic setting during therapy has been hampered by lack of suitable models due to technical and ethical limitations. Here, we show that allogeneic human umbilical cord blood derived-MSCs (hUCB-MSCs) maintained low immunogenicity even after immune challenge in vitro. To confirm these properties in vivo, a humanized mouse model was established by injecting isolated hUCB-derived CD34+ cells intravenously into immunocompromised NOD/SCID IL2γnull (NSG) mice. After repeated intravenous injection of human peripheral blood mononuclear cells (hPBMCs) or MRC5 cells into these mice, immunological alterations including T cell proliferation and increased IFN-γ, TNF-α, and human IgG levels, were observed. In contrast, hUCB-MSC injection did not elicit these responses. While lymphocyte infiltration in the lung and small intestine and reduced survival rates were observed after hPBMC or MRC5 transplantation, no adverse events were observed following hUCB-MSC introduction. In conclusion, our data suggest that allogeneic hUCB-MSCs have low immunogenicity in vitro and in vivo, and are therefore “immunologically safe” for use in allogeneic clinical applications.  相似文献   

12.
Streptococcus pneumoniae produces the pore-forming toxin pneumolysin (PLY), which is a member of the cholesterol-dependent cytolysin (CDC) family of toxins. The CDCs recognize and bind the 3β-hydroxyl group of cholesterol at the cell surface, which initiates membrane pore formation. The cholesterol transport lipoproteins, which carry cholesterol in their outer monolayer, are potential off-pathway binding targets for the CDCs and are present at significant levels in the serum and the interstitial spaces of cells. Herein we show that cholesterol carried specifically by the ApoB-100-containing lipoprotein particles (CH-ApoB-100) in the mouse, but not that carried by human or guinea pig particles, is a potent inhibitor of the PLY pore-forming mechanism. Cholesterol present in the outer monolayer of mouse ApoB-100 particles is recognized and bound by PLY, which stimulates premature assembly of the PLY oligomeric complex thereby inactivating PLY. These studies further suggest that the vast difference in the inhibitory capacity of mouse CH-ApoB-100 and that of the human and the guinea pig is due to differences in the presentation of cholesterol in the outer monolayer of their ApoB-100 particles. Therefore mouse CH-ApoB-100 represents a significant innate CDC inhibitor that is absent in humans, which may underestimate the contribution of CDCs to human disease when utilizing mouse models of disease.  相似文献   

13.
Gene therapy trials for heart failure have demonstrated the key role of efficient gene transfer in achieving therapeutic efficacy. An attractive approach to improve adenoviral gene transfer is to use alternative virus serotypes with modified tropism. We performed a detailed analysis of cardiac expression of receptors for several adenovirus serotypes with a focus on differential expression of CAR and CD46, as adenoviruses targeting these receptors have been used in various applications. Explanted hearts from patients with DCM and healthy donors were analyzed using Q-RT-PCR, western blot and immunohistochemistry. Q-RT-PCR and Western analyses revealed robust expression of all receptors except CD80 in normal hearts with lower expression levels in DCM. Immunohistochemical analyses demonstrated that CD46 expression was somewhat higher than CAR both in normal and DCM hearts with highest levels of expression in intramyocardial coronary vessels. Total CAR expression was upregulated in DCM. Triple staining on these vessels demonstrated that both CAR and CD46 were confined to the subendothelial layer in normal hearts. The situation was clearly different in DCM, where both CAR and CD46 were expressed by endothelial cells. The induction of expression of CAR and CD46 by endothelial cells in DCM suggests that viruses targeting these receptors could more easily gain entry to heart cells after intravascular administration. This finding thus has potential implications for the development of targeted gene therapy for heart failure.  相似文献   

14.
Ovulation in the pond snail Lymnaea stagnalis is controlled by the neuroendocrine caudo-dorsal cells (CDCs) in the cerebral ganglia, which release an ovulation hormone during a period of impulse activity. Firing of the single RN in the right cerebral ganglion hyperpolarizes the CDCs. This hyperpolarization is caused by the opening of potassium channels in the axons that connect both the CDC clusters. By this action, that presumably is mediated by axonal branches of the RN in the intercerebral commissure closely associated with these CDC axons, the RN decouples both the CDC clusters. Although the RN has negative feedback on the CDC, it does not control afterdischarge characteristics. The authors suggest that the RN, next to the egg-laying behavior, is involved in another behavior, not compatible with ovulation. Male reproductive activity is presented as a possible candidate for such behavior.  相似文献   

15.

Background

At least four laboratories have shown that endogenous cardiac progenitor cells (CPCs) can be grown directly from adult heart tissue in primary culture, as cardiospheres or their progeny (cardiosphere-derived cells, CDCs). Indeed, CDCs are already being tested in a clinical trial for cardiac regeneration. Nevertheless, the validity of the cardiosphere strategy to generate CPCs has been called into question by reports based on variant methods. In those reports, cardiospheres are argued to be cardiomyogenic only because of retained cardiomyocytes, and stem cell activity has been proposed to reflect hematological contamination. We use a variety of approaches (including genetic lineage tracing) to show that neither artifact is applicable to cardiospheres and CDCs grown using established methods, and we further document the stem cell characteristics (namely, clonogenicity and multilineage potential) of CDCs.

Methodology/Principal Findings

CPCs were expanded from human endomyocardial biopsies (n = 160), adult bi-transgenic MerCreMer-Z/EG mice (n = 6), adult C57BL/6 mice (n = 18), adult GFP+ C57BL/6 transgenic mice (n = 3), Yucatan mini pigs (n = 67), adult SCID beige mice (n = 8), and adult Wistar-Kyoto rats (n = 80). Cellular yield was enhanced by collagenase digestion and process standardization; yield was reduced in altered media and in specific animal strains. Heparinization/retrograde organ perfusion did not alter the ability to generate outgrowth from myocardial sample. The initial outgrowth from myocardial samples was enriched for sub-populations of CPCs (c-Kit+), endothelial cells (CD31+, CD34+), and mesenchymal cells (CD90+). Lineage tracing using MerCreMer-Z/EG transgenic mice revealed that the presence of cardiomyocytes in the cellular outgrowth is not required for the generation of CPCs. Rat CDCs are shown to be clonogenic, and cloned CDCs exhibit spontaneous multineage potential.

Conclusions/Significance

This study demonstrates that direct culture and expansion of CPCs from myocardial tissue is simple, straightforward, and reproducible when appropriate techniques are used.  相似文献   

16.
Based on the previous observation that RANTES mediates the cytotoxic activity of human HIV-specific CD8+ T cells via the chemokine receptor CCR3, we studied the effect of this chemokine on different effector CD8+ cytolytic cells requiring Fas/Fas ligand (FasL) or perforin-dependent pathway. In CTLs derived from PBMCs of HIV-infected patients, both the spontaneous and the RANTES-induced cytotoxicity were inhibited by anti-FasL neutralizing Abs. In contrast, allogeneic CTLs or NK cells killing through perforin were not affected by RANTES and anti-FasL Ab. Accordingly, RANTES enhanced the expression of FasL in a concentration- and time-dependent manner in HIV-specific CTLs, whereas anti-RANTES Ab decreased markedly FasL expression. Finally, cell surface expression of FasL protein in HIV-specific CTLs was also up-regulated by eotaxin, a selective ligand for CCR3. Our observations show that the action of RANTES via CCR3 is necessary to regulate FasL expression on HIV-specific CD8+ T cells that kill through the Fas/FasL pathway.  相似文献   

17.
Reducing the graft-vs-host disease (GVHD)-promoting capacity of allogeneic T cells while maintaining alloengraftment and graft-vs-leukemia effects remains an important but elusive goal in clinical bone marrow transplantation (BMT). We have recently demonstrated that a short course of high dose IL-2 administered at the time of BMT has a powerful protective effect against GVHD mortality in mice. This short course of IL-2 is able to protect mice from both acute and chronic GVHD without sacrificing alloengraftment or graft-vs-leukemia effects of allogeneic T cells. Because the early administration of IL-2 seems to be crucial for this effect, we have studied the early lymphoid repopulation events after lethal irradiation and allogeneic BMT. These studies show that there are consistent delays in splenic repopulation by allogeneic cells after BMT in IL-2-treated animals compared with their untreated cohorts. Even greater percent reductions were seen in donor splenic T cell populations in the first few days after BMT in IL-2-treated animals. Splenic cells with the CD3+CD4-CD8- phenotype were increased in IL-2 treated animals at days 3 and 4 after BMT. This phenotype resembles that of bone marrow-derived cells which have been previously shown to inhibit GVHD, suggesting a possible mechanism for the protective effect of IL-2.  相似文献   

18.
Background aimsTo successfully treat myocardial infarction (MI), blood must be resupplied to the ischemic myocardium by inducing angiogenesis. Many studies report enhanced angiogenesis using stem cells; however, the therapeutic efficacy of cell transplant remains low because transplanted cells may not survive, be retained at the site of transplant, or develop into vascular tissue. In this study, we assessed the therapeutic potential of three-dimensional cell masses (3DCM) composed of human adipose-derived stem cells (hASC) in a rat MI model.MethodsFor formation of 3DCM, hASC were cultured on a substrate with immobilized fibroblast growth factor 2. The morphology and phenotypes of 3DCM were analyzed 1 day after culture. The cells (hASC and 3DCM, 5 × 105 cells) were injected into ischemic regions after ligation of the left coronary artery (n = 6 in each group). Cell retention ratio, therapeutic efficacy and vascularization were evaluated 4 weeks after transplant.ResultsA spheroid-type 3DCM, which included vascular cells (CD34+/CD31+/KDR+/α-SMA+) with high production of human vascular endothelial growth factor, was obtained. Infarct size and cardiomyocyte apoptosis were reduced in the 3DCM-injected group compared with the hASC-injected group. The retention ratio of hASC was 14-fold higher in the 3DCM-injected group. Many transplanted cells differentiated into endothelial and smooth muscle cells and formed vascular networks incorporated into host vessels.ConclusionsTransplant of 3DCM may be useful for angiogenic cell therapy to treat MI.  相似文献   

19.
We previously showed that a small proportion of the CD4+ human lymphocytes express the C3bi receptor (CD11). In the present investigation these cells were found to have the homogeneous morphology of granular lymphocytes. Between 70 and 80% of the cells reacted with antibody Leu-7, but they did not express Fc receptors and had no spontaneous cytotoxic activity against the NK-sensitive cell line K562. The CD11+/CD4+ cells uniformly expressed CD3 and could be induced to express IL 2 receptors by activation with PHA or anti-CD3 antibody. Compared with unfractionated T cells, however, CD11+/CD4+ granular lymphocytes had a reduced ability to produce IL 2 after stimulation with PHA or anti-CD3 antibody. Nevertheless, the CD11+/CD4+ subset generated specific allocytotoxicity after stimulation with allogeneic cells and culture in IL 2. Furthermore, the CD11+/CD4+ cells also proliferated after stimulation with tetanus toxoid and PPD. Thus some cells of the CD11+/CD4+ subset are capable of antigen-specific responses. These results indicate that certain CD11+ cells with granular morphology are mature T lymphocytes.  相似文献   

20.
Cardiosphere-derived cells (CDCs) and bone marrow mesenchymal stem cells (MSCs) are popularly used in stem cell therapy for myocardial regeneration. The cell type that survives and maintains stem cell characteristics in the adverse microenvironment following ischemia–reperfusion injury is presumed to be ideal for transplantation. The study was therefore aimed at identifying the cell type with relatively greater resistance to ischemia–reperfusion injury. CDCs were isolated from the right atrial appendage and MSCs from bone marrow of patients who underwent coronary artery bypass graft surgery. Ischemia–reperfusion injury was simulated in vitro by subjecting the cells to hypoxia (0.5% O2) followed by reintroduction of oxygen (HR injury). Greater resistance of CDCs to HR injury was apparent from the decreased expression of senescence markers and lower proportion of apoptotic cells (one-sixth of that in MSCs). HR injury retarded cell cycle progression in MSCs. Consequent to HR injury, cell migration and secretion of stromal-derived growth factor were stimulated, significantly in CDCs. The differentiation to myocyte lineage and angiogenesis assessed by tube formation ability was better for CDCs. Release of vascular endothelial growth factor was relatively more in CDCs and was further stimulated by HR injury. Differentiation to osteogenic and angiogenic lineage was stimulated by HR injury in MSCs. Compared to MSCs, CDCs appear to be the cell of choice for promoting myocardial regeneration by virtue of its survival capacity in the event of ischemic insult along with higher proliferation rate, migration efficiency, release of growth factors with paracrine effects and differentiation to cardiac lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号