首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ERCC1 (excision repair cross complementing‐group 1) is a mammalian endonuclease that incises the damaged strand of DNA during nucleotide excision repair and interstrand cross‐link repair. Ercc1?/Δ mice, carrying one null and one hypomorphic Ercc1 allele, have been widely used to study aging due to accelerated aging phenotypes in numerous organs and their shortened lifespan. Ercc1?/Δ mice display combined features of human progeroid and cancer‐prone syndromes. Although several studies report cellular senescence and apoptosis associated with the premature aging of Ercc1?/Δ mice, the link between these two processes and their physiological relevance in the phenotypes of Ercc1?/Δ mice are incompletely understood. Here, we show that ERCC1 depletion, both in cultured human fibroblasts and the skin of Ercc1?/Δ mice, initially induces cellular senescence and, importantly, increased expression of several SASP (senescence‐associated secretory phenotype) factors. Cellular senescence induced by ERCC1 deficiency was dependent on activity of the p53 tumor‐suppressor protein. In turn, TNFα secreted by senescent cells induced apoptosis, not only in neighboring ERCC1‐deficient nonsenescent cells, but also cell autonomously in the senescent cells themselves. In addition, expression of the stem cell markers p63 and Lgr6 was significantly decreased in Ercc1?/Δ mouse skin, where the apoptotic cells are localized, compared to age‐matched wild‐type skin, possibly due to the apoptosis of stem cells. These data suggest that ERCC1‐depleted cells become susceptible to apoptosis via TNFα secreted from neighboring senescent cells. We speculate that parts of the premature aging phenotypes and shortened health‐ or lifespan may be due to stem cell depletion through apoptosis promoted by senescent cells.  相似文献   

2.
Excision Repair Cross-Complementing Group 1 (ERCC1) is an important DNA repair gene, playing critical role in nucleotide excision repair pathway and having a significant influence on genomic instability. Some studies support that ERCC1 might be a potential predictive and prognostic marker in non-small cell lung cancer (NSCLC). ERCC1 has also been shown to be a promising biomarker in NSCLC treated with a cisplatin-based regimen. Therefore, the determination of ERCC1 expression at DNA, mRNA and protein level in different stages of NSCLC is still an important topic in the cancer. Ninety-one formalin-fixed paraffin-embedded tumor samples histopathologically diagnosed as NSCLC were examined in this study. ERCC1 expression at protein level were scored by immunohistochemistry. The gene amplification and mRNA expression levels for ERCC1 were determined by real-time quantitative PCR. There was complete concordance among the three methods in 39 tumor samples (42.9%). A strong correlation was found between DNA amplification and mRNA expression (r = 0.662) while there was no correlation between mRNA and protein assessment for ERCC1 expression (r = −0.013). ERCC1 expression at mRNA and DNA level (63.1 and 84.2%, respectively) in tumors at stage III was higher than at the other stages. In contrast, the protein expression at stage II and III (56.6 and 52.6%, respectively) of NSCLC was lower than that of tumors with stage I NSCLC. These results show that the mechanism by which ERCC1 expression might play a role in tumor behavior. This study was also confirmed that the appropriate validation and qualification in methods used for ERCC1 status were needed before its clinical application and implementation.  相似文献   

3.
Senescent cells accumulate with age in vertebrates and promote aging largely through their senescence‐associated secretory phenotype (SASP). Many types of stress induce senescence, including genotoxic stress. ERCC1‐XPF is a DNA repair endonuclease required for multiple DNA repair mechanisms that protect the nuclear genome. Humans or mice with reduced expression of this enzyme age rapidly due to increased levels of spontaneous, genotoxic stress. Here, we asked whether this corresponds to an increased level of senescent cells. p16Ink4a and p21Cip1 mRNA were increased ~15‐fold in peripheral lymphocytes from 4‐ to 5‐month‐old Ercc1?/? and 2.5‐year‐old wild‐type (WT) mice, suggesting that these animals exhibit a similar biological age. p16Ink4a and p21Cip1 mRNA were elevated in 10 of 13 tissues analyzed from 4‐ to 5‐month‐old Ercc1?/? mice, indicating where endogenous DNA damage drives senescence in vivo. Aged WT mice had similar increases of p16Ink4a and p21Cip1 mRNA in the same 10 tissues as the mutant mice. Senescence‐associated β–galactosidase activity and p21Cip1 protein also were increased in tissues of the progeroid and aged mice, while Lamin B1 mRNA and protein levels were diminished. In Ercc1?/Δ mice with a p16Ink4a luciferase reporter, bioluminescence rose steadily with age, particularly in lung, thymus, and pancreas. These data illustrate where senescence occurs with natural and accelerated aging in mice and the relative extent of senescence among tissues. Interestingly, senescence was greater in male mice until the end of life. The similarities between Ercc1?/? and aged WT mice support the conclusion that the DNA repair‐deficient mice accurately model the age‐related accumulation of senescent cells, albeit six‐times faster.  相似文献   

4.
5.
6.
7.
8.
Bladder cancer risk is highly influenced by environmental and/or predisposing genetic factors. In the last decades growing evidence of the major role played by DNA repair systems in the developing of bladder cancer has been provided. To better investigate the involvement of DNA repair genes previously reported to be significantly associated with bladder cancer risk, we examined in a case–control study (456 cases and 376 hospital controls) 36 single nucleotide polymorphisms (SNPs) in 10 DNA repair genes, through a better gene coverage and a deep investigation of the haplotype role. A single SNP analysis showed a significantly increased risk given by XRCC1-rs915927 G allele (OR = 1.55, CI 95% 1.02–2.37 for dominant model) and a protective effect of the rare alleles of 3 ERCC1 SNPs: rs967591 (OR = 0.66, CI 95% 0.46–0.95), rs735482 (OR = 0.62, CI 95% 0.42–0.90) and rs2336219 (OR = 0.63, CI 95% 0.43–0.93). Haplotype analysis revealed that cases had a statistically significant excess of XRCC3-TAGT and ERCC1-GAT haplotypes, whereas ERCC1-AAC, MGMT-TA, XRCC1-TGCC and ERCC2-TGAA haplotypes were significantly underrepresented. Together with other published data on large case–control studies, our findings provide epidemiological evidence supporting a link between DNA repair gene variants and bladder cancer development, and suggest that the effects of high-order interactions should be taken into account as modulating factors affecting bladder cancer risk. A detailed characterization of DNA repair genetic variation is warranted and might ultimately help to identify multiple susceptibility variants that could be responsible for joint effects on the risk.  相似文献   

9.
10.
11.
12.
In this study, our aim was to exploring the influences of DNA methylation of PON1 on cell proliferation, migration and apoptosis of renal cancer cells. The genome‐wide methylation array of renal cell carcinoma samples and adjacent tissues were obtained from the cancer genome atlas (TCGA) database. By analysing the DNA methylation and conducting the CpG islands array, methylation status expressed in renal tumour samples and normal renal tissue samples were detected. Methylation‐specific PCR (MS‐PCR) and qRT‐PCR were employed to detect the methylation level and mRNA expression of PON1. Wound‐healing assay, transwell assay and MTT assay were utilized to detecting the migration, invasion and proliferation abilities, respectively. The cell apoptosis was testified by Tunnel assay. In addition, the effect of PON1 on renal cancer cells was verified by experiments in vivo. The methylation status of different genes in renal cell carcinoma samples was obtained by CpG islands arrays and hypermethylated PON1 was selected for further study. PON1 was down‐regulated in renal cell carcinoma tissues detected by qRT‐PCR and Western blot. Both in vitro and vivo experiments indicated that the sunitinib‐resistant in renal cancer cells could be suppressed by treat with 5‐Aza‐dC or TSA, and the effect came out more obvious after 5‐Aza‐dC and TSA co‐treatment. In detail, the demethylation of PON1 inhibited the migration, invasion and proliferation of renal cancer cells and also arrested more cells in G0/G1 phase. The vivo experiment indicated that demethylated PON1 suppressed the growth of tumour. Hypermethylated PON1 promoted migration, invasion and proliferation of sunitinib‐resistance renal cancer cells and arrested more cells in G0/G1 phase.  相似文献   

13.
14.
To counteract damage to our genomes, numerous endo‐ and exonucleases incise the DNA backbone to remove damaged and aberrant DNA structures. It is imperative that such incisions be very tightly controlled, as unwanted DNA breaks are a key source of genome instability. Two new papers in The EMBO Journal shed light on how the activity of one such nuclease—ERCC1‐XPF, an enzyme involved in various DNA repair pathways—is regulated to perform incision in the vicinity of DNA interstrand crosslinks.  相似文献   

15.
WD‐repeat protein 79 (WDR79), a member of the WD‐repeat protein family, acts as a scaffold protein, participating in telomerase assembly, Cajal body formation and DNA double‐strand break repair. Here, we first report that WDR79 is frequently overexpressed in cell lines and tissues derived from non‐small cell lung cancer (NSCLC). Knockdown of WDR79 significantly inhibited the proliferation of NSCLC cells in vitro and in vivo by inducing cell cycle arrest and apoptosis. WD‐repeat protein 79 ‐induced cell cycle arrest at the G0/G1 phase was associated with the expression of G0/G1‐related cyclins and cyclin‐dependent kinase complexes. We also provide evidence that WDR79 knockdown induces apoptosis via a mitochondrial pathway. Collectively, these results suggest that WDR79 is involved in the tumorigenesis of NSCLC and is a potential novel diagnostic marker and therapeutic target for NSCLC.  相似文献   

16.
Homologous recombination deficiency conferred by alterations in BRCA1 or BRCA2 are common in breast tumors and can drive sensitivity to platinum chemotherapy and PARP inhibitors. Alterations in nucleotide excision repair (NER) activity can also impact sensitivity to DNA damaging agents, but NER activity in breast cancer has been poorly characterized. Here, we apply a novel immunofluorescence-based cellular NER assay to screen a large panel of breast epithelial and cancer cell lines. Although the majority of breast cancer models are NER proficient, we identify an example of a breast cancer cell line with profound NER deficiency. We show that NER deficiency in this model is driven by epigenetic silencing of the ERCC4 gene, leading to lack of expression of the NER nuclease XPF, and that ERCC4 methylation is also strongly correlated with ERCC4 mRNA and XPF protein expression in primary breast tumors. Re-expression of XPF in the ERCC4-deficient breast cancer rescues NER deficiency and cisplatin sensitivity, but does not impact PARP inhibitor sensitivity. These findings demonstrate the potential to use functional assays to identify novel mechanisms of DNA repair deficiency and nominate NER deficiency as a platinum sensitivity biomarker in breast cancer.  相似文献   

17.
Chromosome region 3p12‐14 is an important tumour suppressor gene (TSG) locus for multiple cancers. ADAMTS9, a member of the metalloprotease large family, has been identified as a candidate 3p14.2 TSG inactivated by aberrant promoter CpG methylation in several carcinomas, but little known about its expression and function in breast cancer. In this report, ADAMTS9 expression and methylation was analysed in breast cancer cell lines and tissue samples. ADAMTS9 RNA was significantly down‐regulated in breast cancer cell lines (6/8). After treating the cells with demethylation agent Aza and TSA, ADAMTS9 expression was dramatically increased. Bisulphite genomic sequencing and methylation‐specific PCR detected promoter methylation, which was associated with decreased ADAMTS9 expression. Hypermethylation was also detected in 130/219 (59.4%) of primary tumours but only in 4.5% (2/44) of paired surgical margin tissues. Ectopic expression of ADAMTS9 in tumor cells induced significant growth suppression, cell cycle arrest at the G0/G1 phase, enhanced apoptosis and reduced cell migration and invasion. Conditioned culture medium from ADAMTS9‐transfected BT549 cells markedly disrupted tube formation ability of human umbilical vein endothelial cell (HUVEC) in Matrigel. Furthermore, ADAMTS9 inhibited AKT signaling and its downstream targets (MDM2, p53, p21, p27, E‐cadherin, VIM, SNAIL, VEGFA, NFκB‐p65 and MMP2). In addition, we demonstrated, for the first time, that ADAMTS9 inhibits AKT signaling, through suppressing its upstream activators EGFR and TGFβ1/TβR(I/II) in breast cancer cells. Our results suggest that ADAMTS9 is a TSG epigenetically inactivated in breast cancer, which functions through blocking EGFR‐ and TGFβ1/TβR(I/II)‐activated AKT signaling.  相似文献   

18.
J. Cheng  S. Leng  Y. Dai  C. Huang  Z. Pan  Y. Niu 《Biomarkers》2013,18(1):76-86
The associations between several genetic polymorphisms of nucleotide excision repair genes (NER) and chromosome damage level were studied among 140 coke-oven workers exposed to a high level of polyaromatic hydrocarbons (PAHs) and 66 non-exposed workers. Seven polymorphisms with functional potential in five NER genes (ERCC1, ERCC2, ERCC4, ERCC5 and ERCC6) were genotyped in the 206 study subjects. Multivariate analysis of covariance revealed that coke-oven workers with the ERCC1 19007 CC genotype had significantly higher cytokinesis-block micronucleus frequency (CBMN) (10.5±6.8‰) than those with CT (8.1±6.6‰, p=0.01) or TT (6.6±3.7‰, p=0.05) or CT+TT genotypes (7.5±6.3‰, p=0.004). The ERCC6 A3368G polymorphism was also associated with CBMN frequency among coke-oven workers. Subjects with the AA genotype have a significantly higher CBMN frequency (10.0±6.9‰) than those with AG (6.7±4.2‰, p=0.05) or AG+GG genotypes (6.6±4.1‰, p=0.02). Stratification analysis revealed the significant associations between ERCC1 C19007T and ERCC6 A3368G, and the CBMN frequencies were only found among older workers. In addition, a significant association between ERCC2 G23591A polymorphism and CBMN frequencies was also found among older coke-oven workers. The results suggest that polymorphisms of ERCC1 C19007T, ERCC6 A3368G and ERCC2 G23591A are associated with the CBMN frequencies among coke-oven workers  相似文献   

19.
XPF‐ERCC1 is a structure‐specific endonuclease pivotal for several DNA repair pathways and, when mutated, can cause multiple diseases. Although the disease‐specific mutations are thought to affect different DNA repair pathways, the molecular basis for this is unknown. Here we examine the function of XPF‐ERCC1 in DNA interstrand crosslink (ICL) repair. We used Xenopus egg extracts to measure both ICL and nucleotide excision repair, and we identified mutations that are specifically defective in ICL repair. One of these separation‐of‐function mutations resides in the helicase‐like domain of XPF and disrupts binding to SLX4 and recruitment to the ICL. A small deletion in the same domain supports recruitment of XPF to the ICL, but inhibited the unhooking incisions most likely by disrupting a second, transient interaction with SLX4. Finally, mutation of residues in the nuclease domain did not affect localization of XPF‐ERCC1 to the ICL but did prevent incisions on the ICL substrate. Our data support a model in which the ICL repair‐specific function of XPF‐ERCC1 is dependent on recruitment, positioning and substrate recognition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号