首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Left ventricular (LV) remodelling after myocardial infarction (MI) is a crucial determinant of the clinical course of heart failure. Matrix metalloproteinase (MMP) activation is strongly associated with LV remodelling after MI. Elucidation of plasma membrane receptors related to the activation of specific MMPs is fundamental for treating adverse cardiac remodelling after MI. The aim of current investigation was to explore the potential association between the low‐density lipoprotein receptor‐related protein 1 (LRP1) and MMP‐9 and MMP‐2 spatiotemporal expression after MI. Real‐time PCR and Western blot analyses showed that LRP1 mRNA and protein expression levels, respectively, were significantly increased in peri‐infarct and infarct zones at 10 and 21 days after MI. Confocal microscopy demonstrated high colocalization between LRP1 and the fibroblast marker vimentin, indicating that LRP1 is mostly expressed by cardiac fibroblasts in peri‐infarct and infarct areas. LRP1 also colocalized with proline‐rich tyrosine kinase 2 (pPyk2) and MMP‐9 in cardiac fibroblasts in ischaemic areas at 10 and 21 days after MI. Cell culture experiments revealed that hypoxia increases LRP1, pPyk2 protein levels and MMP‐9 activity in fibroblasts, without significant changes in MMP‐2 activity. MMP‐9 activation by hypoxia requires LRP1 and Pyk2 phosphorylation in fibroblasts. Collectively, our in vivo and in vitro data support a major role of cardiac fibroblast LRP1 levels on MMP‐9 up‐regulation associated with ventricular remodelling after MI.  相似文献   

2.
Metastatic melanoma remains the deadliest of all skin cancers with a survival rate at five years of less than 15%. MT1‐MMP is a membrane‐associated matrix metalloproteinase that controls pericellular proteolysis and is an important, invasion‐promoting, pro‐tumorigenic MMP in cancer. We show that deregulation of MT1‐MMP expression happens as early as the transition from nevus to primary melanoma and continues to increase during melanoma progression. Furthermore, MT1‐MMP expression is associated with poor melanoma patient outcome, underscoring a pivotal role of MT1‐MMP in melanoma pathogenesis. We demonstrate that MT1‐MMP is directly required for melanoma cells to metastasize, as cells deprived of MT1‐MMP fail to form distant metastasis in an orthotopic mouse melanoma model. We show that MT1‐MMP affects cell invasion by activating its target MMP2. Importantly, we demonstrate, for the first time, that activation of MMP2 by MT1‐MMP is required to sustain RAC1 activity and promote MT1‐MMP‐dependent cell motility. These data highlight a novel MT1‐MMP/MMP2/RAC1 signaling axis in melanoma that may represent an intriguing molecular target for the treatment of invasive melanoma.  相似文献   

3.
Recent evidence suggests that breast cancer is one of the most common forms of malignancy in females, and metastasis from the primary cancer site is the main cause of death. Aromatic (ar)‐turmerone is present in Curcuma longa and is a common remedy and food. In the present study, we investigated the inhibitory effects of ar‐turmerone on expression and enzymatic activity levels of 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA)‐induced matrix metalloproteinase (MMP)‐9 and cyclooxygenaase‐2 (COX‐2) in breast cancer cells. Our data indicated that ar‐turmerone treatment significantly inhibited enzymatic activity and expression of MMP‐9 and COX‐2 at non‐cytotoxic concentrations. However, the expression of tissue inhibitor of metalloproteinase (TIMP)‐1, TIMP‐2, MMP‐2, and COX‐1 did not change upon ar‐turmerone treatment. We found that ar‐turmerone inhibited the activation of NF‐κB, whereas it did not affect AP‐1 activation. Moreover, The ChIP assay revealed that in vivo binding activities of NF‐κB to the MMP‐9 and COX‐2 promoter were significantly inhibited by ar‐turmerone. Our data showed that ar‐turmerone reduced the phosphorylation of PI3K/Akt and ERK1/2 signaling, whereas it did not affect phosphorylation of JNK or p38 MAPK. Thus, transfection of breast cancer cells with PI3K/Akt and ERK1/2 siRNAs significantly decreased TPA‐induced MMP‐9 and COX‐2 expression. These results suggest that ar‐turmerone suppressed the TPA‐induced up‐regulation of MMP‐9 and COX‐2 expression by blocking NF‐κB, PI3K/Akt, and ERK1/2 signaling in human breast cancer cells. Furthermore, ar‐turmerone significantly inhibited TPA‐induced invasion, migration, and colony formation in human breast cancer cells. J. Cell. Biochem. 113: 3653–3662, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
5.
Fibrillar amyloid plaques are largely composed of amyloid‐beta (Aβ) peptides that are metabolized into products, including Aβ1‐16, by proteases including matrix metalloproteinase 9 (MMP‐9). The balance between production and degradation of Aβ proteins is critical to amyloid accumulation and resulting disease. Regulation of MMP‐9 and its endogenous inhibitor tissue inhibitor of metalloproteinase (TIMP)‐1 by nitric oxide (NO) has been shown. We hypothesize that nitric oxide synthase (NOS2) protects against Alzheimer's disease pathology by increasing amyloid clearance through NO regulation of MMP‐9/TIMP‐1 balance. We show NO‐mediated increased MMP‐9/TIMP‐1 ratios enhanced the degradation of fibrillar Aβ in vitro, which was abolished when silenced for MMP‐9 protein translation. The in vivo relationship between MMP‐9, NO and Aβ degradation was examined by comparing an Alzheimer's disease mouse model that expresses NOS2 with a model lacking NOS2. To quantitate MMP‐9 mediated changes, we generated an antibody recognizing the Aβ1‐16 fragment, and used mass spectrometry multi‐reaction monitoring assay for detection of immunoprecipitated Aβ1‐16 peptides. Aβ1‐16 levels decreased in brain lysates lacking NOS2 when compared with strains that express human amyloid precursor protein on the NOS2 background. TIMP‐1 increased in the APPSwDI/NOS2?/? mice with decreased MMP activity and increased amyloid burden, thereby supporting roles for NO in the regulation of MMP/TIMP balance and plaque clearance.  相似文献   

6.
Proteolytic degradation of extracellular matrix is one of the principal features of cutaneous wound healing but little is known about the activities of gelatinases; matrix metalloproteinase‐2 (MMP‐2) and matrix metalloproteinase‐9 (MMP‐9) on abnormal scar formation. The aim of this study is to determine collagen levels and the gelatinase activities in tissue from hypertrophic scars, atrophic scars, keloids and donor skin in 36 patients and 14 donors. Gelatinase levels (proenzyme + active enzyme) were determined by ELISA and their activities by gelatin zymography. MMP‐9 activity was undetectable in gelatin zymography analysis. Pro‐MMP‐2 levels (median) were highest in normal skin group 53.58 (36.40–75.11) OD µg?1 protein, while active MMP‐2 levels were highest in keloid group 52.53 (42.47–61.51) OD µg?1 protein. The active/pro ratio was the highest in keloid group 0.97 followed by hypertrophic scar, normal skin and atrophic scar groups 0.69 > 0.54 > 0.48, respectively. According to results of our study, the two‐phase theory of the duration of hypertrophic scar and keloid formation can be supported by the data of tissue collagen and gelatinase analysis. This study is the first to relate scar formation relationship in regard to gelatinase activation ratio in a keloid, hypertrophic and atrophic scar patient group which is chosen appropriate in age and sex. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Vasculogenic mimicry (VM) constitutes a novel approach for tumour blood supply and contributes to tumour metastasis and poor prognosis in patients with melanoma. Myoferlin (MYOF), a type II membrane protein involved in membrane regeneration and repair, is elevated in several malignant tumours, especially in advanced melanomas. This study aims to investigate the role and mechanism of MYOF in the regulation of VM. VM structures were found in 14 of 52 tested melanoma samples, and high MYOF expression correlated with VM structures. According to Kaplan–Meier survival curves, VM channels and elevated MYOF expression both correlated with poor prognosis in melanoma patients. Down‐regulation of MYOF by siRNA severely impaired the capability of A375 cells to form VM structures in vitro. Further studies demonstrated MYOF knockdown inhibited cell migration and invasion, which is required for VM formation, via decreasing MMP‐2 expression as evidenced by Western blotting, RT‐RCP and ELISA results. SB‐3CT, a specific inhibitor of MMP‐2, showed similar inhibiting effects with siMYOF, further supporting that MYOF down‐regulation inhibits MMP‐2 expression to affect VM formation. Moreover, MYOF knockdown suppress VM formation by A375 cells by inducing mesenchymal‐to‐epithelial transition (MET). After down‐regulating MYOF, focal adhesions were enlarged and A375 cells developed into a clear epithelial morphology. Such cells acquired the expression of E‐cadherin at adherens junctions along with a loss of mesenchymal markers, such as Vimentin and Twist1. In conclusion, MYOF plays an important role in VM and knockdown of MYOF suppresses VM formation via decreasing MMP‐2 and inducing MET in A375 melanoma cells.  相似文献   

8.
Although accumulating evidence had revealed that NFAT1 has oncogenic characteristics, the role of this molecule in melanoma cells remains unclear. Previous studies proved that CD147 plays a crucial function in melanoma cell metastasis and invasion through matrix metalloproteinase 9 (MMP‐9) expression; however, the details of how CD147 regulates MMP‐9 expression remain elusive. In this study, we demonstrated that CD147 and NFAT1 are overexpressed in the tissues of patients with primary and metastatic melanoma, which has shown a positive correlation. Further, we observed that CD147 regulates NFAT1 activation through the [Ca2+]i‐calcineurin pathway. Knockdown of NFAT1 significantly suppresses melanoma metastasis, and we demonstrated that CD147 affects melanoma metastasis in an NFAT1‐dependent manner. Moreover, we verified that NFAT1 directly binds to MMP‐9 promoter. Inhibition of CD147 expression significantly abrogates MMP‐9 promoter luciferase gene reporter activity as well as NFAT1 association with MMP‐9 promoter. Taken together, this study demonstrated that CD147 affects MMP‐9 expression through regulating NFAT1 activity and provided a novel mechanism by which NFAT1 contributes to melanoma metastasis through the regulation of MMP‐9.  相似文献   

9.
Since Unna's Abtropfung hypothesis, the process of migration of nevus cells in the dermis remains unknown. To investigate its mechanisms, we studied the role of gelatinases in dermal nevus cells obtained from congenital pigmented nevi, which are major actors in the remodeling of basement membrane proteins. Our previous studies have shown that dermal nevus cells express pro‐matrix metalloproteinase (MMP)‐2 exclusively and cannot return to the dermis when seeded together with keratinocytes on top of the dermis in a skin reconstruction model. To examine why MMP‐2 was not in its active form, we used Western blot to study the expression of members of the MMP‐2 activation pathway (membrane type 1‐MMP and tissue inhibitor of metalloproteinase‐2), which proved to be normally expressed. To induce the dermal passage of nevus cells artificially, we also tried to activate gelatinases with phorbol‐12‐myristate‐13‐acetate and epidermal growth factor, using epidermis reconstructed with nevus cells. No migration in the dermis could be triggered. We conclude that the absence of active MMP‐2 is due to a functional blockade of its activation pathway and may prevent dermal nevus cells from reaching the dermal compartment in skin reconstructs. Furthermore, our findings reinforce the concept that dermal nevus cells originating from congenital nevi are in a quiescent status.  相似文献   

10.
11.
12.
Two dimensional (2D) co‐cultures of human bone marrow stromal cells (HBMSCs) and human umbilical vein endothelial cells (HUVECs) stimulate osteoblastic differentiation of HBMSCs, induce the formation of self‐assembled network and cell interactions between the two cell types involving many vascular molecules. Because of their strong activities on angiogenesis and tissue remodeling, urokinase plasminogen activator (uPA), plasminogen activator inhibitor‐1 (PAI‐1), matrix metalloproteinase‐2 (MMP‐2) as well tissue inhibitors of matrix metalloproteinase‐2 (TIMP‐2) were investigated in this 2D co‐culture model. We found that the expression of uPA, MMP‐2 in the co‐cultured cells was significantly higher than those in mono‐cultured cells. In opposite, PAI‐1, expressed only by HUVECs is not regulated in the co‐culture. Inhibition assays confirm that uPA played a critical role in the formation of self‐assembled network as neutralization of uPA disturbed this network. In the same context, inhibition of MMP‐2 prevented the formation of self‐assembled network, while the inhibition of uPA abolished the over expression and the activity of MMP‐2. This upregulation could initiate the uPA expression and proteolysis processes through the MMP‐2 activity, and may contribute to endothelial cell migration and the formation of this self‐assembled network observed in these 2D co‐cultured cells. J. Cell. Biochem. 114: 650–657, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
14.
The present study assessed protein and gene expression levels of tissue inhibitor of metalloproteinase‐2 (TIMP‐2), matrix metalloproteinase‐2 (MMP‐2), and MMP‐9 in urine and blood samples of 50 patients with bladder carcinoma. The expression of TIMP‐2, MMP‐2, and MMP‐9 levels with tumor stage and grade was also assessed. Results showed that the expression levels of MMP‐2 and MMP‐9 in both blood and urine were significantly elevated in group 1 when compared with groups 2 and 3 healthy subjects. The discriminatory ability in the diagnosis of bladder carcinoma of MMP‐2 and MMP‐9 expression was confirmed by receiver operating characteristic curve analysis that revealed a sensitivity and specificity of 100%. MMP‐2 and MMP‐9 levels were not correlated with grade or stage of the tumor. With respect to TIMP‐2 blood and urine levels, results showed a significant decrease in gene expression levels in bladder carcinoma group, whereas, TIMP‐2 protein showed a significant increase in bladder carcinoma.  相似文献   

15.
Hypoxic injury of cardiovascular system is one of the most frequent complications following ischaemia. Heart injury arises from increased degradation of contractile proteins, such as myosin light chains (MLCs) and troponin I by matrix metalloproteinase 2 (MMP‐2). The aim of the current research was to study the effects of 5‐phenyloxyphenyl‐5‐aminoalkyl nitrate barbiturate (MMP‐2‐inhibitor‐NO‐donor hybrid) on hearts subjected to ischaemia/reperfusion (I/R) injury. Primary human cardiac myocytes and Wistar rat hearts perfused using Langendorff method have been used. Human cardiomyocytes or rat hearts were subjected to I/R in the presence or absence of tested hybrid. Haemodynamic parameters of heart function, markers of I/R injury, gene and protein expression of MMP‐2, MMP‐9, inducible form of NOS (iNOS), asymmetric dimethylarginine (ADMA), as well as MMP‐2 activity were measured. Mechanical heart function, coronary flow (CF) and heart rate (HR) were decreased in hearts subjected to I/R Treatment of hearts with the hybrid (1‐10 µmol/L) resulted in a concentration‐dependent recovery of mechanical function, improved CF and HR. This improvement was associated with decreased tissue injury and reduction of synthesis and activity of MMP‐2. Decreased activity of intracellular MMP‐2 led to reduced degradation of MLC and improved myocyte contractility in a concentration‐dependent manner. An infusion of a MMP‐2‐inhibitor‐NO‐donor hybrid into I/R hearts decreased the expression of iNOS and reduced the levels of ADMA. Thus, 5‐phenyloxyphenyl‐5‐aminoalkyl nitrate barbiturate protects heart from I/R injury.  相似文献   

16.
Ovarian cancer is one of the most common gynecologic malignancy with poor prognosis. Recently, long noncoding RNAs (lncRNAs) have been identified as key regulators in cancer development. The current study investigated the role of lncRNA P73 antisense RNA 1T (TP73‐AS1) in ovarian cancer. Quantitative real‐time polymerase chain reaction determined the expression levels of TP‐73AS1, matrix metallopeptidases (MMPs) messenger RNA. Cell proliferative ability, cell invasion, and migration were CCK‐8 and colony formation, and transwell invasion and migration assays, respectively. The protein levels of matrix metallopeptidase 2 (MMP2) and MMP9 were measured by Western blot. TP73‐AS1 was upregulated in the ovarian cancer tissues and ovarian cancer cells, and upregulation of TP73‐AS1 was associated with poor prognosis. Knockdown of TP73‐AS1 significantly suppressed cell proliferation, invasion, and migration of SKOV3 cells, and overexpression of TP73‐AS1 promoted cell proliferation, invasion, and migration of OVCA429 cells. In addition, knockdown of TP73‐AS1 suppressed the in vivo tumor growth. Tumor metastasis RT2 profiler polymerase chain reaction array showed that MMP2 and MMP9 was significantly upregulated by TP73‐AS1 overexpression in ovarian cancer cells. TP73‐AS1 overexpression enhanced the expression of MMP2 and MMP9 in ovarian cancer cells. Knockdown of MMP2 and MMP9 attenuated the effects of TP73‐AS1 overexpression on cell invasion and migration. The clinical data showed that MMP2 and MMP9 were upregulated and positively correlated with TP73‐AS1 expression in ovarian cancer tissues. Collectively, our results demonstrated the oncogenic role of TP73‐AS1 in ovarian cancer, and targeting TP73‐AS1 may represent a novel approach in battling against ovarian cancer.  相似文献   

17.
It is well known that rheumatoid arthritis (RA) is an autoimmune joint disease in which fibroblast‐like synoviocytes (FLSs) play a pivotal role. In this study, we investigated the anti‐arthritic properties of acacetin in FLSs. The expression of matrix metalloproteinase (MMP)‐1, MMP‐3 and MMP‐13 were investigated by quantitative RT‐PCR and western blot at gene and protein levels. At the same time, the phosphorylation of mitogen‐activated protein kinases (MAPK) was investigated. The DNA‐binding activity of NF‐κB was investigated by electrophoretic mobility shift assay. We found that acacetin inhibits p38 and JNK phosphorylation and reduces MMP‐1, MMP‐3 and MMP‐13 expression in interleukin‐1β‐induced FLSs. Our results suggest that acacetin has antiarthritic effects in FLSs. Thus, acacetin should be further studied for the treatment of arthritis.  相似文献   

18.
Vasculogenic mimicry (VM)‐positive melanomas are usually associated with poor prognosis. Rictor, the key component of the rapamycin‐insensitive complex of mTOR (mTORC2), is up‐regulated in several cancers, especially in melanomas with poor prognosis. The aim of this study was to investigate the role of Rictor in the regulation of VM and the mechanism underlying this possible regulation. VM channels were found in 35 of 81 tested melanoma samples and high Rictor expression correlated with VM structures. Moreover, Kaplan–Meier survival curves indicated that VM structures and high Rictor expression correlated with shorter survival in patients with melanoma. In vitro, Rictor knockdown by short hairpin RNA (shRNA) significantly inhibited the ability of A375 and MUM‐2B melanoma cells to form VM structures, as evidenced by most tubes remaining open. Cell cycle analysis revealed that Rictor knockdown blocked cell growth and resulted in the accumulation of cells in G2/M phase, and cell migration and invasion were greatly affected after Rictor down‐regulation. Western blotting assays indicated that down‐regulating Rictor significantly inhibited the phosphorylation of AKT at Ser473 and Thr308, which subsequently inhibited the expression and activity of downstream MMP‐2/9, as confirmed by real‐time PCR and gelatin Zymography. MK‐2206, a small‐molecule inhibitor of AKT, similarly inhibited the activity of AKT and secretion of MMP‐2/9, further supporting that Rictor down‐regulation inhibits the phosphorylation of AKT and activity of downstream MMP‐2/9 to affect VM formation. In conclusion, Rictor plays an important role in melanoma VM via the Rictor—AKT—MMP‐2/9 signalling pathway.  相似文献   

19.

Background

The present study aimed to examine the role of matrix metalloproteinase (MMP)‐3 [(–1171) 5A/6A; Lys45Glu (A/G)], MMP‐7 [(–181) A/G] and MMP‐12 [(–82) A/G; Asn357Ser (A/G)] variants in the development and severity of chronic obstructive pulmonary disease (COPD) in Tunisians.

Methods

Plethysmography was performed in all participants to measure forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC parameters. Genotyping of MMP‐3, MMP‐7 and MMP‐12 polymorphisms was carried out in 138 patients with COPD and 216 healthy controls using a polymerase chain reaction–restriction fragment length polymorphism. Serum levels of MMPs and cytokines (interleukin‐6, tumor necrosis factor‐α) were determined by an enzyme‐linked immunosorbent assay.

Results

No significant correlations were observed between genetic variations in MMP‐3, MMP‐7 and MMP‐12 and the risk of development of COPD. Additionally, no impact of MMP‐7 (–181) A/G and MMP‐12 [(–82) A/G; Asn357Ser (A/G)] polymorphisms was observed on the respective protein levels and clinical parameters of the disease. Interestingly, both MMP‐3 (–1171) 5A/6A and Lys45Glu (A/G) variants were associated with respiratory function, as well as with serum levels of MMP‐3 in COPD patients. A relationship was found between the (–1171) 6A and 45Glu (G) alleles of the MMP‐3 gene and enhanced airflow limitation among COPD patients. Additionally, carriers of the 6A6A and 45 GG genotypes present higher MMP‐3 levels than noncarriers.

Conclusions

MMP‐3 (–1171) 5A/6A and Lys45Glu (A/G) polymorphisms were associated with the decline of lung function among COPD patients. These results could be linked to the upregulation of MMP‐3 in serum from COPD patients carrying the (–1171) 6A and 45 G homozygous genotypes.  相似文献   

20.
The proteolytic activities of a disintegrin and metalloproteinase (ADAM); a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), and matrix metalloproteinase (MMP) families play important roles in normal and multiple pathological conditions. These metalloproteases have potential roles in the degradation of the ECM and in the processing of bioactive molecules. In the present study, RNA was isolated from multiple normal fibroblast and metastatic melanoma cell lines, as well as the isogenic normal tissue and tumor samples, and the gene expression levels of six ADAMs, eight MMPs, and four ADAMTSs were analyzed by real-time PCR. This approach allowed for detected changes in mRNA expression of the individual metalloproteinase genes to be compared between normal and metastatic states and also between tissue and cultured cells. Increased gene expression of several ADAM and MMP family members (MMP1, MMP8, MMP15, and ADAM15) occurred in melanoma tissue and was replicated in tissue cultures. In general, the level of ADAM and MMP mRNA expression was several-fold higher in cultured cells compared with the isogenic tissue from which they were derived. Passage-dependent expression patterns were observed for MMP8 and MMP9 in in-house-derived metastatic melanoma cell lines. This reiterates earlier suggestions that experiments using cells that have been maintained in culture should be interpreted with great care.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号