首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
MicroRNAs have recently emerged as key regulators of cancers. This study was therefore conducted to investigate the role of miR-330 in biological behaviors of human glioblastoma U87 and U251 cell lines and its molecular mechanism. SH3GL2 gene was identified as the target of miR-330. MiR-330 overexpression was established by transfecting miR-330 precursor into U87 and U251 cells, and its effects on proliferation, migration, invasion, cell cycle and apoptosis were studied. Overexpression of miR-330 can enhance cellular proliferation, promote migration and invasion, activate cell cycle and also inhibit apoptosis in U87 and U251 cells. Collectively, these above-mentioned results suggest that miRNA-330 plays an oncogenic role in human glioblastoma by regulating SH3GL2 gene and might be a new therapeutic target of human glioblastoma.  相似文献   

3.
SHIP-1 是一个含有SH2结构域的肌醇5磷酸酶,在造血过程中起负调节作用。为了调查SHIP-1对癌细胞的迁移能力和MMP2分泌是否有影响,我们制作了鼠SHIP-1的3种突变体,△SH2-SHIP-1, △Ptase-SHIP-1, △Cter-SHIP-1,并与其野生型全长cDNA 一起分别插入到真核表达载体pcDNA3中,分别转染 src 转化的 3Y1 细胞系(SR3Y1),Western blot筛选稳定转染并表达SHIP-1的克隆。对这些克隆的MMP2、MMP9和细胞侵润能力的测定结果显示,野生型全长SHIP-1转染3Y1和SR3Y1不影响其MMP2的分泌,但能诱导MMP9分泌。但其3种突变体 SHIP-1转染却都能显著地抑制SR3Y1细胞的MMP2和MMP9分泌,并抑制其侵润能力。野生型全长SHIP-1也能抑制SR3Y1的侵润能力。研究结果肯定了SHIP-1对转化细胞的迁移和侵润是一个负调节因子,并且它的3个结构域都参与了这种负调节作用。  相似文献   

4.
The pathogenesis of lung cancer, the most common cancer, is complex and unclear, leading to limited treatment options and poor prognosis. To provide molecular insights into lung cancer development, we investigated the function and underlying mechanism of SH2B3 in the regulation of lung cancer. We indicated SH2B3 was diminished while TGF-β1 was elevated in lung cancer tissues and cells. Low SH2B3 level was correlated with poor prognosis of lung cancer patients. SH2B3 overexpression suppressed cancer cell anoikis resistance, proliferation, migration, invasion, and EMT, while TGF-β1 promoted those processes via reducing SH2B3. SH2B3 bound to JAK2 and SHP2 to repress JAK2/STAT3 and SHP2/Grb2/PI3K/AKT signaling pathways, respectively, resulting in reduced cancer cell anoikis resistance, proliferation, migration, invasion, and EMT. Overexpression of SH2B3 suppressed lung cancer growth and metastasis in vivo. In conclusion, SH2B3 restrained the development of anoikis resistance and EMT of lung cancer cells via suppressing JAK2/STAT3 and SHP2/Grb2/PI3K/AKT signaling cascades, leading to decreased cancer cell proliferation, migration, and invasion. Subject terms: Cell migration, Lung cancer  相似文献   

5.
The prognosis of hepatocellular carcinoma (HCC) is poor because of high incidence of recurrence and metastasis. JAK/STAT signalling pathway regulates cell proliferation, apoptosis, differentiation and migration and epithelial‐mesenchymal transition (EMT) is also considered to contribute to invasion and metastasis of epithelial malignant tumours. Scutellarin is an active component found in many traditional Chinese herbs and has been regularly used in anti‐inflammatory and antitumour medicine. This study aimed to identify the effect of scutellarin and its possible mechanism of action in HCC cells. Proliferation, colony‐forming, apoptosis and cell migration assays were used to examine the effect of scutellarin on HCC cells. Quantitative real‐time PCR and Western blotting were performed to study the molecular mechanisms of action of scutellarin. Light and electron microscopy and immunofluorescence analysis were performed to study the effect of scutellarin on cellular mechanics. We show that scutellarin potentially suppresses invasiveness of HepG2 and MHCC97‐H cells in vitro by remodelling their cytoskeleton. The molecular mechanism behind it might be the inhibition of the EMT process, which could be attributed to the down‐regulation of the JAK2/STAT3 pathway. These findings may provide new clinical ideas for the treatment of liver cancer.  相似文献   

6.
7.
8.
9.
10.
大量证据表明microRNA(miRNA)通过靶向调控靶基因的表达从而在肿瘤侵袭与转移中发挥重要作用。然而关于microRNA-216b-5p (miR-216b-5p )通过靶向嗜乳脂蛋白第3亚家族膜蛋白A2(butyrophilin subfamily 3 member A2,BTN3A2)促进胶质瘤侵袭与转移的机制尚不明确。本研究通过GSE15824与GSE4290差异表达分析筛选出同时在2个芯片中表达上调的BTN3A2(P<0.05)。生存曲线结果显示,高表达BTN3A2病人总生存期明显下降(P<0.001)。表达量分析结果显示,BTN3A2表达随WHO分级升高而升高(P<0.05),同时1p/19q未联合缺失与IDH突变型病人BTN3A2表达升高(P<0.001)。基因集富集分析(gene set enrichment analysis,GSEA)结果显示,BTN3A2与众多癌症相关通路有关(P<0.05);Western印迹结果显示,BTN3A2在7例胶质瘤组织和胶质瘤细胞系U87、U251和LN-229中表达上调,过表达miR-216b-5p (miR-216b-5p mimics)后BTN3A2蛋白表达水平降低;Transwell结果显示,转染BTN3A2干扰质粒(si-BTN3A2)和miR-216b-5p mimics后可以抑制LN 229细胞体外迁移与侵袭能力(P<0.05);在线预测网站证实,miR-216b-5p 为BTN3A2潜在靶基因;生存曲线结果显示,与低表达miR-216b-5p 病人相比,高表达病人生存率明显上调(P=0.025);荧光定量RT PCR结果显示,miR-216b-5p 在胶质瘤U87、U251和LN-229细胞中表达下降(P<0.05);双荧光素酶结果显示,BTN3A2存在与miR-216b-5p 的结合靶点(P<005);综上所述,BTN3A2可能通过结合miR-216b-5p 促进胶质瘤细胞LN 229的迁移以及侵袭。  相似文献   

11.
Overexpression of leucine aminopeptidase 3 (LAP3) is involved in proliferation, migration, and invasion of several tumor cells and plays a crucial role in tumor metastasis. However, the related mechanism remains unknown. In this study, we used MDA-MB-231 and MCF7 breast cancer cell lines to explore the role of LAP3 in the regulation of cancer cell migration and invasion by employing the natural LAP3 inhibitor bestatin and a lentivirus vector that overexpresses or knocks down LAP3. Bestatin inhibited tumor cell migration and invasion in a dose-dependent manner. Western blot assay showed that bestatin and knockdown of LAP3 upregulated phosphorylation of Hsp27 and downregulated expression of fascin. Phosphorylation of Akt and expression of matrix metalloproteinase-2/9 can also be downregulated. LAP3 overexpression showed the opposite results. Immunohistochemistry analysis was conducted to detect expression levels of LAP3 in breast cancer tissues. High LAP3 expression was correlated with the grade of malignancy. Findings of this study uncovered the molecular mechanism of LAP3 on breast cancer metastasis and indicated that LAP3 may act as a potential antimetastasis therapeutic target.  相似文献   

12.
13.
Mediator complex subunit 19 (Med19), a RNA polymerase II‐embedded coactivator, is reported to be involved in bladder cancer (BCa) progression, but its functional contribution to this process is poorly understood. Here, we investigate the effects of Med19 on malignant behaviours of BCa, as well as to elucidate the possible mechanisms. Med19 expression in 15 BCa tissues was significantly higher than adjacent paired normal tissues using real‐time PCR and Western blot analysis. Immunohistochemical staining of 167 paraffin‐embedded BCa tissues was performed, and the results showed that high Med19 protein level was positively correlated with clinical stages and histopathological grade. Med19 was knocked down in BCa cells using short‐hairpin RNA. Functional assays showed that knocking‐down of Med19 can suppress cell proliferation and migration in T24, UM‐UC3 cells and 5637 in vitro, and inhibited BCa tumour growth in vivo. TOP/FOPflash reporter assay revealed that Med19 knockdown decreased the activity of Wnt/β‐catenin pathway, and the target genes of Wnt/β‐catenin pathway were down‐regulated, including Wnt2, β‐catenin, Cyclin‐D1 and MMP‐9. However, protein levels of Gsk3β and E‐cadherin were elevated. Our data suggest that Med19 expression correlates with aggressive characteristics of BCa and Med19 knockdown suppresses the proliferation and migration of BCa cells through down‐regulating the Wnt/β‐catenin pathway, thereby highlighting Med19 as a potential therapeutic target for BCa treatment.  相似文献   

14.
The formulation of quercetin nanoliposomes (QUE-NLs) has been shown to enhance QUE antitumor activity in C6 glioma cells. At high concentrations, QUE-NLs induce necrotic cell death. In this study, we probed the molecular mechanisms of QUE-NL-induced C6 glioma cell death and examined whether QUE-NL-induced programmed cell death involved Bcl-2 family and mitochondrial pathway through STAT3 signal transduction pathway. Downregulation of Bcl-2 and the overexpression of Bax by QUE-NL supported the involvement of Bcl-2 family proteins upstream of C6 glioma cell death. In addition, the activation of JAK2 and STAT3 were altered following exposure to QUE-NLs in C6 glioma cells, suggesting that QUE-NLs downregulated Bcl-2 mRNAs expression and enhanced the expression of mitochondrial mRNAs through STAT3-mediated signaling pathways either via direct or indirect mechanisms. There are several components such as ROS, mitochondrial, and Bcl-2 family shared by the necrotic and apoptotic pathways. Our studies indicate that the signaling cross point of the mitochondrial pathway and the JAK2/STAT3 signaling pathway in C6 glioma cell death is modulated by QUE-NLs. In conclusion, regulation of JAK2/STAT3 and ROS-mediated mitochondrial pathway agonists alone or in combination with treatment by QUE-NLs could be a more effective method of treating chemical-resistant glioma.  相似文献   

15.
16.
MicroRNAs are currently considered as an active and rapidly evolving area for the treatment of tumors. In this study, we elucidated the biological significance of miR-330 in glioblastoma stem cells (GSCs) as well as the possible molecular mechanisms. SH3GL2 is mainly distributed in the central nervous system and considered to be a tumor suppressor in many tumors. In the present study, we identified miR-330 as a potential regulator of SH3GL2 and we found that it was to be inversely correlated with SH3GL2 expression in GSCs which were isolated from U87 cell lines. The expression of miR-330 enhanced cellular proliferation, promoted cell migration and invasion, and dampened cell apoptosis. When the GSCs were co-transfected with the plasmid containing short hairpin RNA directed against human SH3GL2 gene and miR-330 mimic, we found that miR-330 promoted the malignant behavior of GSCs by down-regulating the expression of SH3GL2. Meanwhile, the ERK and PI3K/AKT signaling pathways were significantly activated, leading to the decreased expression of apoptotic protein and increased expression of anti-apoptotic protein. Furthermore, in orthotopic mouse xenografts, the mice given stable over-expressed SH3GL2 cells co-transfected with miR-330 knockdown plasmid had the smallest tumor sizes and longest survival. In conclusion, these results suggested that miR-330 negatively regulated the expression of SH3GL2 in GSCs, which promoted the oncogenic progression of GSCs through activating ERK and PI3K/AKT signaling pathways. The elucidation of these mechanisms will provide potential therapeutic approaches for human glioblastoma.  相似文献   

17.
c‐Cbl, a multifunctional adaptor and an E3 ubiquitin ligase, plays a role in such cytoskeleton‐mediated events as cell adhesion and migration. Invasiveness of human glioma is dependent on cell adhesion, migration, and degradation of extracellular matrix (ECM). However, the function of c‐Cbl in glioma invasion has never been investigated. We report here, for the first time, that c‐Cbl plays a positive role in the invasion of ECM by SNB19 glioma cells. RNAi‐mediated depletion of c‐Cbl decreases SNB19 cell invasion and expression of matrix metalloproteinase 2 (MMP2). Consistent with these findings, SNB19 cells expressing wild‐type, but not mutant c‐Cbl show increased invasion and MMP2 expression. We demonstrate that the observed role of c‐Cbl in invasion of SNB19 cells is not mediated by the previously shown effects of c‐Cbl on cell adhesion and migration or on EGFR signaling. Together, our results suggest that c‐Cbl promotes glioma invasion through up‐regulation of MMP2. J. Cell. Biochem. 111: 1169–1178, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Tumour necrosis factor‐α‐induced protein 8‐like 2 (TIPE2) is a tumour suppressor in many types of cancer. However, the mechanism of action of TIPE2 on the growth of rectal adenocarcinoma is unknown. Our results showed that the expression levels of TIPE2 in human rectal adenocarcinoma tissues were higher than those in adjacent non‐tumour tissues. Overexpression of TIPE2 reduced the proliferation, migration, and invasion of human rectal adenocarcinoma cells and down‐regulation of TIPE2 showed reverse effects. TIPE2 overexpression increased apoptosis through down‐regulating the expression levels of Wnt3a, phospho (p)‐β‐Catenin, and p‐glycogen synthase kinase‐3β in rectal adenocarcinoma cells, however, TIPE2 knockdown exhibited reverse trends. TIPE2 overexpression decreased autophagy by reducing the expression levels of p‐Smad2, p‐Smad3, and transforming growth factor‐beta (TGF‐β) in rectal adenocarcinoma cells, however, TIPE2 knockdown showed opposite effects. Furthermore, TIPE2 overexpression reduced the growth of xenografted human rectal adenocarcinoma, whereas TIPE2 knockdown promoted the growth of rectal adenocarcinoma tumours by modulating angiogenesis. In conclusion, TIPE2 could regulate the proliferation, migration, and invasion of human rectal adenocarcinoma cells through Wnt/β‐Catenin and TGF‐β/Smad2/3 signalling pathways. TIPE2 is a potential therapeutic target for the treatment of rectal adenocarcinoma.  相似文献   

19.
The enhancer of zeste homolog 2 (EZH2), known as a member of the polycomb group (PcG) proteins, is an oncogene overexpressed in a variety of human cancers. Here, we found that EZH2 correlated with poor survival of oral squamous cell carcinoma (OSCC) patients using immunohistochemistry staining. EZH2 overexpression led to a significant induction in tumour glycolysis, Epithelial‐mesenchymal transition (EMT), migration and invasion of OSCC cells. Conversely, silencing of EZH2 inhibited tumour glycolysis, EMT, migration and invasion in OSCC cells. Ectopic overexpression of EZH2 increased phosphorylation of STAT3 at pY705 and decreased FoxO1 expression, and FoxO1 expression was enhanced when inhibiting STAT3. In addition, EZH2 overexpression led to a significant decrease in FoxO1 mRNA levels in nude mice xenograft. These results indicated that regulation of EZH2 might have the potential to be targeted for OSCC treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号