首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
2.
The excessive proliferation and migration of vascular smooth muscle cells (VSMCs) are mainly responsible for vascular occlusion diseases, such as pulmonary arterial hypertension and restenosis. Our previous study demonstrated thymoquinone (TQ) attenuated monocrotaline‐induced pulmonary arterial hypertension. The aim of the present study is to systematically examine inhibitory effects of TQ on platelet‐derived growth factor‐BB (PDGF‐BB)–induced proliferation and migration of VSMCs in vitro and neointimal formation in vivo and elucidate the potential mechanisms. Vascular smooth muscle cells were isolated from the aorta in rats. Cell viability and proliferation were measured in VSMCs using the MTT assay. Cell migration was detected by wound healing assay and Transwell assay. Alpha‐smooth muscle actin (α‐SMA) and Ki‐67‐positive cells were examined by immunofluorescence staining. Reactive oxygen species (ROS) generation and apoptosis were measured by flow cytometry and terminal deoxyribonucleotide transferase–mediated dUTP nick end labelling (TUNEL) staining, respectively. Molecules including the mitochondria‐dependent apoptosis factors, matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9), PTEN/AKT and mitogen‐activated protein kinases (MAPKs) were determined by Western blot. Neointimal formation was induced by ligation in male Sprague Dawley rats and evaluated by HE staining. Thymoquinone inhibited PDGF‐BB–induced VSMC proliferation and the increase in α‐SMA and Ki‐67‐positive cells. Thymoquinone also induced apoptosis via mitochondria‐dependent apoptosis pathway and p38MAPK. Thymoquinone blocked VSMC migration by inhibiting MMP2. Finally, TQ reversed neointimal formation induced by ligation in rats. Thus, TQ is a potential candidate for the prevention and treatment of occlusive vascular diseases.  相似文献   

3.
Chronic hypoxia (CH) increases pulmonary endothelial nitric oxide synthase (eNOS) protein levels in adult rats but decreases eNOS protein levels in neonatal pigs. We hypothesized that this differing response to CH is due to developmental rather than species differences. Adult and neonatal rats were placed in either hypobaric hypoxia or normoxia for 2 wk. At that time, body weight, hematocrit, plasma nitrite/nitrate (NOx(-)), and right ventricular and total ventricular heart weights were measured. Percent pulmonary arterial wall area of 20-50 and 51-100 microm arteries were also determined. Total lung protein extracts were assayed for eNOS levels by using immunoblot analysis. Compared with their respective normoxic controls, both adult and neonatal hypoxic groups demonstrated significantly decreased body weight, elevated hematocrit, and elevated right ventricular-to-total ventricular weight ratios. Both adult and neonatal hypoxic groups also demonstrated significantly larger percent pulmonary arterial wall area compared with their respective normoxic controls. Hypoxic adult pulmonary eNOS protein and plasma NOx(-) were significantly greater than levels found in normoxic adults. In contrast, hypoxic neonatal pulmonary eNOS protein and plasma NOx(-) were significantly less compared with normoxic neonates. We conclude that there is a developmental difference in eNOS expression and nitric oxide production in response to CH.  相似文献   

4.
Salvianolic acid (SA) is known for improving blood circulation, scavenging hydroxyl radicals, and preventing platelet aggregation. The research explored whether SA can protect against cardiovascular disease induced by high glucose conditions. Our results indicate that SA significantly increases cells viability and nitric oxide levels while decreasing reactive oxygen species generation. SA upregulated the expression levels of Bcl‐2 and decreased the levels of Bax, cleaved caspase‐3, and cleaved caspase‐9. Furthermore, the expression levels of Sirtuin 1 (Sirt1) and p‐endothelial nitric oxide synthase (eNOS) were markedly increased in response to SA treatment. Moreover, exposure of human umbilical vein endothelial cells to Ex527 resulted in reducing expression of p‐eNOS. However, the beneficial effects of SA were abolished partially when Ex527 was added. These findings suggest that SA can be used as a potential therapeutic to protect against high glucose‐induced endothelial injury by modulating Sirt1‐eNOS pathway.  相似文献   

5.
Biliary cirrhosis in the rat triggers intrapulmonary vasodilatation and gas-exchange abnormalities that characterize the hepatopulmonary syndrome. This vasodilatation correlates with increased levels of pulmonary microcirculatory endothelial NO synthase (eNOS) and hepatic and plasma endothelin-1 (ET-1). Importantly, during cirrhosis, the pulmonary vascular responses to acute hypoxia are blunted. The purpose of this work was to examine the pulmonary vascular responses and adaptations to the combination of liver cirrhosis and chronic hypoxia (CH). In addition to hemodynamic measurements, we investigated whether pulmonary expression changes of eNOS, ET-1 and its receptors (endothelin A and B), or heme oxygenase 1 in experimental cirrhosis affect the development of hypoxic pulmonary hypertension. We induced cirrhosis in male Sprague-Dawley rats using common bile duct ligation (CBDL) and exposed them to CH (inspired PO2 approximately 76 Torr) or maintained them in Denver (Den, inspired PO2 approximately 122 Torr) for 3 wk. Our data show 1) CBDL-CH rats had a persistent blunted hypoxic pulmonary vasoconstriction similar to CBDL-Den; 2) the development of hypoxic pulmonary hypertension was completely prevented in the CBDL-CH rats, as indicated by normal pulmonary arterial pressure and lack of right ventricular hypertrophy and pulmonary arteriole remodeling; and 3) selective increases in expression of ET-1, pulmonary endothelin B receptor, eNOS, and heme oxygenase 1 are potential mechanisms of protection against hypoxic pulmonary hypertension in the CBDL-CH rats. These data demonstrate that unique and undefined hepatic-pulmonary interactions occur during liver cirrhosis and chronic hypoxia. Understanding these interactions may provide important information for the prevention and treatment of pulmonary hypertension.  相似文献   

6.
Chronic alveolar hypoxia induces vascular remodeling processes in the lung resulting in pulmonary hypertension (PH). However, the mechanisms underlying pulmonary remodeling processes are not fully resolved yet. To investigate functional changes occurring during hypoxia exposure we applied 2DE to compare protein expression in lungs from mice subjected to 3 h of alveolar hypoxia and those kept under normoxic conditions. Already after this short‐time period several proteins were significantly regulated. Subsequent analysis by MALDI‐MS identified cofilin as one of the most prominently upregulated proteins. The regulation was confirmed by western blotting and its cellular localization was determined by immunohisto‐ and immunocytochemistry. Interestingly, enhanced cofilin serine 3 phosphorylation was observed after short‐term and after chronic hypoxia‐induced PH in mice, in pulmonary arterial smooth muscle cells (PASMC) from monocrotaline‐induced PH in rats, in lungs of idiopathic pulmonary arterial hypertension patients and in hypoxic or platelet‐derived growth factor BB‐treated human PASMC. Furthermore, elevated cofilin phosphorylation was attenuated by curative treatment of monocrotaline‐induced PH in rats and hypoxia‐induced PH in mice with the PDGF‐BB receptor antagonist imatinib. In conclusion, short‐term hypoxic exposure induced prominent changes in lung protein regulation. These very early changes allowed us to identify potential triggers of PH. Thus, respective 2DE analysis can lead to the identification of new target proteins for the possible treatment of PH.  相似文献   

7.
In the pulmonary artery isolated from 1-week hypoxia-induced pulmonary hypertensive rats, endothelial NO production stimulated by carbachol was decreased significantly in in situ visualization using diaminofluorescein-2 diacetate and also in cGMP content. This change was followed by the decrease in carbachol-induced endothelium-dependent relaxation. Protein expression of endothelial NO synthase (eNOS) and its regulatory proteins, caveolin-1 and heat shock protein 90, did not change in the hypoxic pulmonary artery, indicating that chronic hypoxia impairs eNOS activity at posttranslational level. In the hypoxic pulmonary artery, the increase in intracellular Ca(2+) level stimulated by carbachol but not by ionomycin was reduced. We next focused on changes in Ca(2+) sensitivity of the eNOS activation system. A morphological study revealed atrophy of endothelial cells and a peripheral condensation of eNOS in hypoxic endothelial cells preserving co-localization between eNOS and Golgi or plasma membranes. However, eNOS was tightly coupled with caveolin-1, and was dissociated from heat shock protein 90 or calmodulin in the hypoxic pulmonary artery in either the presence or absence of carbachol. Furthermore, eNOS Ser(1177) phosphorylation in both conditions significantly decreased without affecting Akt phosphorylation in the hypoxic artery. In conclusion, chronic hypoxia impairs endothelial Ca(2+) metabolism and normal coupling between eNOS and caveolin-1 resulted in eNOS inactivity.  相似文献   

8.
9.
Hypoxia is a condition in which the whole body or a region of the body is deprived of oxygen supply. The brain is very sensitive to the lack of oxygen and cerebral hypoxia can rapidly cause severe brain damage. Astrocytes are essential for the survival and function of neurons. Therefore, protecting astrocytes against cell death is one of the main therapeutic strategies for treating hypoxia. Hence, the mechanism of hypoxia‐induced astrocytic cell death should be fully elucidated. In this study, astrocytes were exposed to hypoxic conditions using a hypoxia work station or the hypoxia mimetic agent cobalt chloride (CoCl2). Both the hypoxic gas mixture (1% O2) and chemical hypoxia‐induced apoptotic cell death in T98G glioblastoma cells and mouse primary astrocytes. Reactive oxygen species were generated in response to the hypoxia‐mediated activation of caspase‐1. Active caspase‐1 induced the classical caspase‐dependent apoptosis of astrocytes. In addition, the microRNA processing enzyme Dicer was cleaved by caspase‐3 during hypoxia. Knockdown of Dicer using antisense oligonucleotides induced apoptosis of T98G cells. Taken together, these results suggest that astrocytic cell death during hypoxia is mediated by the reactive oxygen species/caspase‐1/classical caspase‐dependent apoptotic pathway. In addition, the decrease in Dicer levels by active caspase‐3 amplifies this apoptotic pathway via a positive feedback loop. These findings may provide a new target for therapeutic interventions in cerebral hypoxia.  相似文献   

10.
Hypoxia in the fetus and/or newborn is associated with an increased risk of pulmonary hypertension. The present study tested the hypothesis that long-term high-altitude hypoxemia differentially regulates contractility of fetal pulmonary arteries (PA) and veins (PV) mediated by differences in endothelial NO synthase (eNOS). PA and PV were isolated from near-term fetuses of pregnant ewes maintained at sea level (300 m) or high altitude of 3,801 m for 110 days (arterial Po(2) of 60 Torr). Hypoxia had no effect on the medial wall thickness of pulmonary vessels and did not alter KCl-induced contractions. In PA, hypoxia significantly increased norepinephrine (NE)-induced contractions, which were not affected by eNOS inhibitor N(G)-nitro-l-arginine (l-NNA). In PV, hypoxia had no effect on NE-induced contractions in the absence of l-NNA. l-NNA significantly increased NE-induced contractions in both control and hypoxic PV. In the presence of l-NNA, NE-induced contractions of PV were significantly decreased in hypoxic lambs compared with normoxic animals. Acetylcholine caused relaxations of PV but not PA, and hypoxia significantly decreased both pD(2) and the maximal response of acetylcholine-induced relaxation in PV. Additionally, hypoxia significantly decreased the maximal response of sodium nitroprusside-induced relaxations of both PA and PV. eNOS was detected in the endothelium of both PA and PV, and eNOS protein levels were significantly higher in PV than in PA in normoxic lambs. Hypoxia had no significant effect on eNOS levels in either PA or PV. The results demonstrate heterogeneity of fetal pulmonary arteries and veins in response to long-term high-altitude hypoxia and suggest a likely common mechanism downstream of NO in fetal pulmonary vessel response to chronic hypoxia in utero.  相似文献   

11.
15‐Hydroxyeicosatetraenoic acid (15‐HETE), a product of arachidonic acid (AA) catalyzed by 15‐lipoxygenase (15‐LO), plays an essential role in hypoxic pulmonary arterial hypertension. We have previously shown that 15‐HETE inhibits apoptosis in pulmonary artery smooth muscle cells (PASMCs). To test the hypothesis that such an effect is attributable to the hypoxia‐induced pulmonary vascular remodeling (PVR), we performed these studies. We found subtle thickening of proximal media/adventitia of the pulmonary arteries (PA) in rats that had been exposed to hypoxia. This was associated with an up‐regulation of the anti‐apoptotic Bcl‐2 expression and down‐regulation of pro‐apoptotic caspase‐3 and Bax expression in PA homogenates. Nordihydroguaiaretic acid (NDGA), which inhibits the generation of endogenous 15‐HETE, reversed all the alterations following hypoxia. In situ hybridization histochemistry and immunocytochemistry showed that the 15‐LO‐1 mRNA and protein were localized in pulmonary artery endothelial cells (PAECs), while the 15‐LO‐2 mRNA and protein were localized in both PAECs and PASMCs. Furthermore, the Rho‐kinase (ROCK) pathway was activated by both endogenous and exogenous 15‐HETE, alleviating the serum deprivation (SD)‐induced PASMC apoptosis. Thus, these findings indicate that 15‐HETE protects PASMC from apoptosis, contributing to pulmonary vascular medial thickening, and the effect is, at least in part, mediated via the ROCK pathway. J. Cell. Physiol. 222:82–94, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Despite intensive research studies, theories have yet to focus on the contribution of hypoxia to patency differences observed clinically between arterial vs. venous grafts. This study investigates the differential hypoxic response of smooth muscle cells (SMC) to hypoxia-derived endothelial cell (EC) growth factors. Initiation of SMC proliferation under hypoxia (<5% O(2)) occurred only after incubation with hypoxic endothelial cell-conditioned media (H-ECM). After the investigation of several possible growth factors in the H-ECM that may be responsible for SMC proliferation, the greatest difference was observed in vascular endothelial growth factor (VEGF-A) and platelet-derived growth factor homodimer B (PDGF-BB) expression. VEGF-A increased (2-fold) significantly (P < 0.05) in arterial-derived smooth muscle cells (ASMC) under hypoxia compared with venous-derived smooth muscle cells (VSMC), which showed no significant change. VSMC showed significant (P < 0.05) increase in VEGFR-2 expression under hypoxia compared with ASMC. Incubation with VEGFR-2-neutralizing antibody/PDGFR antagonist in VSMC before addition of H-ECM resulted in decreased proliferation. ASMC proliferation under hypoxia did not decrease during incubation with VEGFR-2-neutralizing antibody but did decrease upon PDGFR antagonist incubation. Current therapies focusing on treating intimal hyperplasia have negated the fact that combinational therapy might be required to combat induction of SMC proliferation. Clinically, therapy with PDGFR antagonists plus anti-VEGFR-2 may prove to be efficacious in managing SMC proliferation in venous-derived grafts.  相似文献   

13.
Apatinib (YN968D1) is a small‐molecule tyrosine kinase inhibitor(TKI)which can inhibit the activity of vascular endothelial growth factor receptor‐2 (VEGFR‐2). It has been reported that apatinib has anti‐tumour effect of inhibiting proliferation and inducing apoptosis of a variety of solid tumour cells, whereas its effect on vascular smooth muscle cells (VSMC) remains unclear. This study investigated the effect of apatinib on phenotypic switching of arterial smooth muscle cells in vascular remodelling. Compared to the vehicle groups, mice that were performed carotid artery ligation injury and treated with apatinib produced a reduction in abnormal neointimal area. For in vitro experiment, apatinib administration inhibited VSMC proliferation, migration and reversed VSMC dedifferentiation with the stimulation of platelet‐derived growth factor type BB (PDGF‐BB).In terms of mechanism, with the preincubation of apatinib, the activations of PDGF receptor‐β (PDGFR‐β) and phosphoinositide‐specific phospholipase C‐γ1 (PLC‐γ1) induced by PDGF‐BB were inhibited in VSMCs. With the preincubation of apatinib, the phosphorylation of PDGFR‐β, extracellular signal‐related kinases (ERK1/2) and Jun amino‐terminal kinases (JNK) induced by PDGF‐BB were also inhibited in rat vascular smooth muscle cell line A7r5. Herein, we found that apatinib attenuates phenotypic switching of arterial smooth muscle cells induced by PDGF‐BB in vitro and vascular remodelling in vivo. Therefore, apatinib is a potential candidate to treat vascular proliferative diseases.  相似文献   

14.
15.
16.
Vessel wall remodeling is a complex phenomenon in which the loss of differentiation of vascular smooth muscle cells (VSMCs) occurs. We investigated the role of rat macrophage chemoattractant protein (MCP)-1 on rat VSMC proliferation and migration to identify the mechanism(s) involved in this kind of activity. Exposure to very low concentrations (1-100 pg/ml) of rat MCP-1 induced a significant proliferation of cultured rat VSMCs assessed as cell duplication by the counting of total cells after exposure to test substances. MCP-1 stimulated VSMC proliferation and migration in a two-dimensional lateral sheet migration of adherent cells in culture. Endogenous vascular endothelial growth factor-A (VEGF-A) was responsible for the mitogenic activity of MCP-1, because neutralizing anti-VEGF-A antibody inhibited cell proliferation in response to MCP-1. On the contrary, neutralizing anti-fibroblast growth factor-2 and anti-platelet-derived growth factor-bb antibodies did not affect VSMC proliferation induced by MCP-1. RT-PCR and Western blot analyses showed an increased expression of either mRNA or VEGF-A protein after MCP-1 activation (10-100 pg/ml), whereas no fms-like tyrosine kinase (Flt)-1 receptor upregulation was observed. Because we have previously demonstrated that hypoxia (3% O2) can enhance VSMC proliferation induced by VEGF-A through Flt-1 receptor upregulation, the effects of hypoxia on the response of VSMCs to MCP-1 were investigated. Severe hypoxia (3% O2) potentiated the growth-promoting effect of MCP-1, which was able to significantly induce cell proliferation even at a concentration as low as 0.1 pg/ml. These findings demonstrate that low concentrations of rat MCP-1 can directly promote rat VSMC proliferation and migration through the autocrine production of VEGF-A.  相似文献   

17.
18.
Pulmonary hypertension is characterized by structural and morphological changes to the lung vasculature. To determine the potential role of nitric oxide in the vascular remodeling induced by hypoxia, we exposed wild-type [WT(+/+)] and endothelial nitric oxide synthase (eNOS)-deficient [(-/-)] mice to normoxia or hypoxia (10% O(2)) for 2, 4, and 6 days or for 3 wk. Smooth muscle alpha-actin and von Willebrand factor immunohistochemistry revealed significantly less muscularization of small vessels in hypoxic eNOS(-/-) mouse lungs than in WT(+/+) mouse lungs at early time points, a finding that correlated with decreases in proliferating vascular cells (5-bromo-2'-deoxyuridine positive) at 4 and 6 days of hypoxia in the eNOS(-/-) mice. After 3 wk of hypoxia, both mouse types exhibited similar percentages of muscularized small vessels; however, only the WT(+/+) mice exhibited an increase in the percentage of fully muscularized vessels and increased vessel wall thickness. eNOS protein expression was increased in hypoxic WT(+/+) mouse lung homogenates at all time points examined, with significantly increased percentages of small vessels expressing eNOS protein after 3 wk. These results indicate that eNOS deficiency causes decreased muscularization of small pulmonary vessels in hypoxia, likely attributable to the decrease in vascular cell proliferation observed in these mice.  相似文献   

19.
观察了吸入0.004%的一氧化氮(NO)对急、慢性缺氧大鼠血流动力学、缺氧性肺血管收缩反应(HPV)、血气及高铁血红蛋白(MetHb)的影响。结果表明:(1)常氧吸入NO时能明显降低慢性缺氧大鼠肺动脉平均压(Ppa)和肺血管阻力(PVR),但对正常大鼠的Ppa和PVR无明显影响;(2)慢性缺氧大鼠急性缺氧时HPV较正常大鼠弱,吸入NO不但降低两者的急性缺氧肺动脉高压,且完全逆转两者的HPV;(3)吸入NO对急、慢性缺氧大鼠体循环血流动力学、血气及MetHb含量无明显影响。提示吸入NO能选择性降低急、慢性缺氧性肺动脉高压,且逆转HPV。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号