首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
We announce the Residue-based Diagram Editor (RbDe) web service that allows online construction of residue-based diagrams and the creation of stored diagram libraries. The service has been tuned for the construction of snake-like diagrams (for transmembrane proteins) but can be used to render any protein for which defined secondary structure data or hypotheses are available. RbDe is freely available through the Internet from our web site: http://transport.physbio. mssm.edu/rbde/RbDe.html. Licenses for intranet uses can be obtained upon request.  相似文献   

2.
The residue-based diagram editor (RbDe) is web-based software that greatly simplifies the construction of schematic diagrams of proteins. Residue-based diagrams display the sequence of a given protein in the context of its secondary and tertiary structure. Such diagrams are frequently used to summarize mutations or sequence features, in the context of the overall topology of a protein. The initial version of RbDe was designed for transmembrane proteins and has enabled many users to create diagrams of large systems such as G protein-coupled receptors or transporters. We present an extended diagram editor that supports other families of proteins. Users can now import custom-diagram layouts, use them to render members of any protein family and generate high-quality output for publication purposes. RbDe is available free over the web, at http://icb.mssm.edu/crt/RbDe  相似文献   

3.
4.
5.
MOTIVATION: In this paper a new algorithmic approach is presented, which automatically generates structure diagrams of molecular complexes. A complex diagram contains the ligand, the amino acids of the protein interacting with the ligand and the hydrophilic interactions schematized as dashed lines between the corresponding atoms. The algorithm is based on a combinatorial optimization strategy which solves parts of the layout problem non-heuristically. The depicted molecules are represented as structure diagrams according to the chemical nomenclature. Due to the frequent usage of complex diagrams in the scientific literature as well as in text books dealing with structural biology, biochemistry and medicinal chemistry, the new algorithm is a key element for computer applications in these areas. RESULTS: The method was implemented in the new software tool PoseView. It was tested on a representative dataset containing 305 protein-ligand complexes in total from the Brookhaven Protein Data Bank. PoseView was able to find collision-free layouts for more than three quarters of all complexes. In the following the layout generation algorithm is presented and, additional to the statistical results, representative test cases demonstrating the challenges of the layout generation will be discussed. AVAILABILITY: The method is available as a webservice at http://www.zbh.uni-hamburg.de/poseview.  相似文献   

6.
7.
8.
Threads of contractile proteins were formed via extrusion and their isometric tensions and isotonic contraction velocities were measured. We obtained reproducible data by using a new and sensitive tensiometer. The force-velocity curves of actomyosin threads were similar to those of muscle, with isometric tensions of the order of 10g/cm2 and maximum contraction velocites of the order of 10(-2) lengths/s. The data could be fitted by Hill's equation. Addition of tropomyosin and troponin to the threads increased isometric tension and maximum contraction velocity. Threads which contained troponin and tropomyosin required Ca++ for contraction and the dependence of their isometric tension on the level of free Ca++ was like that of muscle. The dependence of tension or of contraction velocity upon temperature or upon ionic strength is similar for actomyosin threads and muscle fibers. In contrast, the dependence of most parameters which are characteristic of the actomyosin interaction in solution (or suspension) upon these variables is not similar to the dependence of the muscle fiber parameters. The conclusion we have drawn from these results is that the mechanism of tension generation in the threads is similar to the mechanism that exists in muscle. Because the protein composition of the thread system can be manipulated readily and because the tensions and velocities of the threads can be related directly to the physiological parameters of muscle fibers, the threads provide a powerful method for studying contractile proteins.  相似文献   

9.
MOTIVATION: Experimental evidence suggests that certain short protein segments have stronger amyloidogenic propensities than others. Identification of the fibril-forming segments of proteins is crucial for understanding diseases associated with protein misfolding and for finding favorable targets for therapeutic strategies. RESULT: In this study, we used the microcrystal structure of the NNQQNY peptide from yeast prion protein and residue-based statistical potentials to establish an algorithm to identify the amyloid fibril-forming segment of proteins. Using the same sets of sequences, a comparable prediction performance was obtained from this study to that from 3D profile method based on the physical atomic-level potential ROSETTADESIGN. The predicted results are consistent with experiments for several representative proteins associated with amyloidosis, and also agree with the idea that peptides that can form fibrils may have strong sequence signatures. Application of the residue-based statistical potentials is computationally more efficient than using atomic-level potentials and can be applied in whole proteome analysis to investigate the evolutionary pressure effect or forecast other latent diseases related to amyloid deposits. AVAILABILITY: The fibril prediction program is available at ftp://mdl.ipc.pku.edu.cn/pub/software/pre-amyl/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

10.
The program EXTRACT has been developed to extract accurate three-dimensional coordinates from published stereo α-carbon diagrams of protein structures. The approach is based on the display of scanned images of the left and right eye views of the diagram on a stereo-equipped workstation, allowing construction of a molecular model using the diagram as a guide. A number of structural checks assess the building, including probability maps derived for α-carbon geometry in protein structures. The procedure has also been extended to produce less accurate models from mono images.  相似文献   

11.
Force generation in several types of cell motility is driven by rapidly elongating cytoskeletal filaments that are persistently tethered at their polymerizing ends to propelled objects. These properties are not easily explained by force-generation models that require free (i.e., untethered) filament ends to fluctuate away from the surface for addition of new monomers. In contrast, filament end-tracking proteins that processively advance on filament ends can facilitate rapid elongation and substantial force generation by persistently tethered filaments. Such processive end-tracking proteins, termed here filament end-tracking motors, maintain possession of filament ends and, like other biomolecular motors, advance by means of 5'-nucleoside triphosphate (NTP) hydrolysis-driven affinity-modulated interactions. On-filament NTP hydrolysis/phosphate release yields substantially more energy than that required for driving steady-state assembly/disassembly of free filament ends (i.e., filament treadmilling), as revealed by an energy inventory on the treadmilling cycle. The kinetic and thermodynamic properties of two simple end-tracking mechanisms (an end-tracking stepping motor and a direct-transfer end-tracking motor) are analyzed to illustrate the advantages of an end-tracking motor over free filament-end elongation, and over passive end-trackers that operate without the benefit of NTP hydrolysis, in terms of generating force, facilitating rapid monomer addition, and maintaining tight possession of the filament ends. We describe an additional cofactor-assisted end-tracking motor to account for suggested roles of cofactors in the affinity-modulated interactions, such as profilin in actin-filament end-tracking motors and EB1 in microtubule end-tracking motors.  相似文献   

12.
13.
We show that structural protein arrays consisting largely of collagen, myosin, and tubulin, and their associated proteins can be imaged in three dimensions with high contrast and resolution by laser-scanning second harmonic generation (SHG) microscopy. SHG is a nonlinear optical scheme and this form of microscopy shares several common advantages with multiphoton excited fluorescence, namely, intrinsic three-dimensionality and reduced out-of-plane photobleaching and phototoxicity. SHG does not arise from absorption and in-plane photodamage considerations are therefore also greatly reduced. In particular, structural protein arrays that are highly ordered and birefringent produce large SHG signals without the need for any exogenous labels. We demonstrate that thick tissues including muscle and bone can be imaged and sectioned through several hundred micrometers of depth. Combining SHG with two-photon excited green fluorescent protein (GFP) imaging allows inference of the molecular origin of the SHG contrast in Caenorhabditis elegans sarcomeres. Symmetry and organization of microtubule structures in dividing C. elegans embryos are similarly studied by comparing the endogenous tubulin contrast with that of GFP::tubulin fluorescence. It is found that SHG provides molecular level data on radial and lateral symmetries that GFP constructs cannot. The physical basis of SHG is discussed and compared with that of two-photon excitation as well as that of polarization microscopy. Due to the intrinsic sectioning, lack of photobleaching, and availability of molecular level data, SHG is a powerful tool for in vivo imaging.  相似文献   

14.
15.
Globular proteins in the native state are assumed to behave as continuous elastic spheres in the low frequency breathing motions. Reasonable values of Young's modulus E = 10(11) dyne/cm2 and the radius of the sphere ro = 20 A, yield a wave number of 26 cm-1 for the fundamental vibration of the sphere. The peak at around 30 cm-1 in the laser Raman spectra of native alpha-chymotrypsin and pepsin observed by Brown et al. might be assigned to the breathing motion which the native proteins undergo as continuous elastic bodies.  相似文献   

16.
17.
18.
Gur M  Erman B 《Physical biology》2010,7(4):046006
Mode coupling and anharmonicity in a native fluctuating protein are investigated in modal space by projecting the motion along the eigenvectors of the fluctuation correlation matrix. The probability distribution of mode fluctuations is expressed in terms of tensorial Hermite polynomials. Molecular dynamics trajectories of Crambin are generated and used to evaluate the terms of the polynomials and to obtain the modal energies. The energies of a few modes exhibit large deviations from the harmonic energy of kT/2 per mode, resulting from coupling to the surroundings, or to another specific mode or to several other modes. Slowest modes have energies that are below that of the harmonic, and a few fast modes have energies significantly larger than the harmonic. Detailed analysis of the coupling of these modes to others is presented in terms of the lowest order two-mode coupling terms. Finally, the effects of mode coupling on conformational properties of the protein are investigated.  相似文献   

19.
20.
Temporal generation of multiple antifungal proteins in primed seeds   总被引:1,自引:0,他引:1  
A drastic increase of antifungal activity was demonstrated during plant seed germination and in seed protein extract in vitro. Multiple antifungal proteins with a wide spectrum of activity were generated and identified. Chromatographic and electrophoretic analysis demonstrated that during seed germination, more fractions with potent antifungal activity were generated, and the antifungal activity shifted from small molecules to high molecular proteins. This germination-related increase of antifungal activity were observed in all three plants tested, i.e., cheeseweed, cigar tree and wheat. This rapid increase of antifungal activity was also observed with incubation of seed proteins in vitro, suggesting that at least part of the antifungal protein generation is independent of gene expression. Seven antifungal proteins with activities against five different plant pathogens were isolated from the active fractions. However, random digestion of purified seed protein with multiple proteinases failed to generate any antifungal proteins. It is suggested that during plant seed germination, a regulated biochemical process takes place that results in the generation of multiple peptides or proteins with antifungal activities. This onset of antifungal proteins is transitional in nature, but could play an important role in the protection of plants in early stage of development when the more sophisticated defense system has yet to develop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号