首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The classical outwelling hypothesis states that small coastal embayments (e.g. estuaries, wetlands) export their excess production to inshore marine waters. In line with this notion, the present study tested whether the Swartkops estuary acts as source or sink for carbon. To this end, concentrations of dissolved inorganic carbon (DIC), dissolved organic carbon (DOC) and particulate organic carbon (POC) were determined hourly during the first monthly spring and neap tides over one year in the tidal waters entering and leaving the estuary. Each sampling session spanned a full tidal cycle, yielding a total of 936 concentration estimates. Carbon fluxes were calculated by integrating concentrations with water flow rates derived from a hydrodynamic model calibrated for each sampling datum. Over the year, exports to marine waters markedly exceeded imports to the estuary for all carbon species: on the basis of total spring tidal drainage area, 1083 g m–2 of DIC, 103 g m–2 of DOC, and 123 g m–2 of POC left the estuary annually. Total carbon export from the estuary to the ocean amounted to 4755 tonnes, of which 83% was in the inorganic form (DIC). Thus, the bulk of carbon moving in the water column is inorganic - yet, DIC seems to be measured only rarely in most flux studies of this nature. Salt marshes cover extensive areas in this estuary and produce some carbon, particularly DOC, but productivity of the local Spartina species is low (P:B=1.1). Consequently, the bulk of carbon exported from the estuary appears to originate from the highly productive macroinvertebrate and the phytoplankton component and not from the salt marsh plants.  相似文献   

2.
Variations in dissolved organic carbon (DOC) concentrations of surface waters and subsurface interstitial groundwater of riparian and wetland soils to 1.2 m depth were evaluated in a riverine wetland ecosystem over one year. DOC was monitored at seven sites within the wetland pond, two sites on the inflow stream, and one site on the outflow stream. Surface concentrations in the inflow stream ranged from 0.74 to 11.6 mg C L–1 and those of the outflow from 2.1 to 8.0 mg C L–1 Average DOC from stream floodplain hydrosoils (3.1 to 32.1 mg C L–1 was greater than DOC from the sediments below the stream channel (1.6 to 6.8 mg C L–1 Surface DOC within the wetland varied seasonally, with greatest fluctuations in concentrations through the summer and autumn (range 4.8 to 32.6 mg C L–1 ) during intensive macrophyte growth and bacterial production. DOC was less variable during the winter months (1.7 to 3.3 mg C L–1 Within the wetland pond, average DOC concentrations (7.1 to 48.2 mg C L–1) in the subsurface waters were significantly greater (p < 0.05) than average surface concentrations. The microbial availability of surface and subsurface DOC to bacteria was evaluated from losses of DOC by wetland bacteria grown on the DOC. Bacterial growth efficiencies ranged from 5 to 20% and were negatively correlated to the percentage of DOC removed by bacteria (r2=0.93). Throughout the ecosystem, DOC concentrations were greatest in the subsurface waters, but at most depths this DOC was a less suitable substrate than surface DOC for utilization by bacteria.  相似文献   

3.
Seasonally, dissolved and particulate metal concentrations in the Scheldt estuary were assessed over a period of 4 years (1995–1998). High quality data were obtained following stringent analytical protocols for each step: sampling, sample treatment, sample storage and analysis. Of the 5 trace metals, Ni showed the most conservative behaviour, while Cd and Cu were clearly transferred from the particulate to the dissolved phase in the middle estuary. A substantial part of the particulate metals entering the estuarine system are lost through sedimentation. General seasonal patterns are the following: lower concentrations in spring and higher ones in winter (sometimes late fall/early winter) for dissolved metals, while in summer a pronounced rise of the longitudinal concentration profile is observed for the particulate metals. A comparison of the trace metal concentrations (dissolved and particulate) at the mouth of the estuary in 1995–1998 with those from 1981 to 1983, reveal reductions between 30 and 58%. Reductions based on direct emission measurements for almost the same period suggest reductions (dissolved + particulate) between 42 and 64%. Biomagnification (BMF) is the accumulation of a compound through the food-chain. It is in our case expressed as the ratio of the metal concentration in the organism (g g–1, d.w.)/the metal concentration in total suspended matter (g g–1, d.w.). Almost all BMF-values of Periwinkle, Nereis diversicolor and Macoma balthica (3 bottom organisms in the Scheldt estuary) are negative meaning that these organisms contain less heavy metals than the particulate suspended matter. For all organisms log BMFs for Pb, respectively Ni, are around –1.8, respectively –0.7. For Cd, Periwinkle shows slight enrichment (0.05) and for Cu even more (0.45), while negative values were observed for Nereis diversicolour and Macoma balthica. The latter organisms are more enriched in Zn (–0.09) than Periwinkle (–0.43).  相似文献   

4.
We investigated the effect of dissolved organic carbon (DOC) on hypolimnetic metabolism (accumulation of dissolved inorganic carbon (DIC) and methane (CH4)) in 21 lakes across a gradient of DOC concentrations (308 to 1540 mol C L–1). The highly colored nature of the DOC in these lakes suggests it is mostly of terrestrial origin. Hypolimnetic methane accumulation was positively correlated with epilimnetic DOC concentration (Spearman rank correlation = 0.67; p < 0.01), an indicator of allochthonous DOC inputs, but not with photic zone chlorophyll a concentration (Spearman rank correlation = 0.30; p = 0.22). Hypolimnetic DOC concentrations declined in 19 of 21 lakes during the stratified period at rates that ranged from 0.06 to 53.9 mmol m–2 d–1. The hypolimnetic accumulation of DIC + CH4 was positively correlated with, and, in most cases of comparable magnitude to, this DOC decline suggesting that DOC was an important substrate for hypolimnetic metabolism. The percentage of surface irradiance reaching the thermocline was lower in high DOC lakes (0.3%) than in low DOC lakes (6%), reducing hypolimnetic photosynthesis (as measured by the depth and magnitude of the deep dissolved oxygen maxima) in the high DOC lakes. In June, the hypolimnia of lakes with < 400 mol L–1 DOC had high concentrations of dissolved oxygen and no CH4, while the hypolimnia of lakes with DOC > 800 mol L–1 were completely anoxic and often had high CH4 concentrations. Thus, DOC affects hypolimnetic metabolism via multiple pathways: DOC was significant in supporting hypolimnetic metabolism; and at high concentrations depressed photosynthesis (and therefore oxygen production and DIC consumption) in the hypolimnion.  相似文献   

5.
Carbon and nitrogen cycling in intertidal mud flat sediments in the Scheldt Estuary was studied using measurements of carbon dioxide, methane and nitrous oxide emission rates and pore-water profiles of CO2, ammonium and nitrate. A comparison between chamber measured carbon dioxide fluxes and those based on CO2 pore-water gradients using Fick's First law indicates that apparent diffusion coefficients are 2 to 28 times higher than bulk sediment diffusion coefficients based on molecular diffusion. Seasonal changes in gaseous carbon fluxes or CO2 pore water concentrations cannot be used directly, or in a simple way, to determine seasonal rates of mineralization, because of marked seasonal changes in pore-water storage and exchange parameters.The annual amount of carbon delivered to the sediment is 42 mol m–2, of which about 42% becomes buried, the remaining being emitted as methane (7%) or carbon dioxide (50%). Each year about 2.6 mol N m–2 of particulate nitrogen reaches the sediment; 1.1 mol m–2 is buried and 1.6 mol m–2 is mineralized to ammonium. Only 0.42 mol m–2 yr–1 of the ammonium produced escapes from the sediments, the remaining being first nitrified (1.2 mol m–2 yr–1) and then denitrified (1.7 mol m–2 yr–1). Simple calculations indicate that intertidal sediments may account for about 14% and 30% of the total estuarine retention of nitrogen and carbon, respectively.  相似文献   

6.
The temporal dynamics and spatial distribution of microphytobenthic chlorophyll-a in the layer 0–1 cm were determined in the Western Scheldt estuary over the period 1991–1992. Connections between the annually averaged benthic chlorophyll-a and station elevation and sediment composition (as a measure of the hydrodynamic energy caused by currents and waves) were also examined.Microphytobenthic chlorophyll-a showed one main peak in early summer and a smaller peak in autumn. The mean chlorophyll-a concentration of 113 mg Chl-a m–2 in the upper centimeter is of the same order of magnitude as in other estuarine areas. The average annual primary production of the microphytobenthos has been estimated at 136 g C m–2 y–1 The primary production of sediment inhabiting microalgae is at least 17% of the total primary production in the estuary.Considerable differences in annually averaged chlorophyll-a emerges between the stations. These differences are related mainly to the interaction between station elevation and clay content of the sediment.  相似文献   

7.
Sources and sinks of dissolved organic carbon in a forested swamp catchment   总被引:14,自引:6,他引:8  
Concentrations of dissolved organic carbon (DOC) were measured in precipitation, throughfall, stemflow, and soil, peat and stream water in a 50 ha catchment with a central 5 ha swamp at Mont St. Hilaire, Quebec. DOC concentrations in precipitation were low (2.0 mg L–1), but increased in passage through the tree canopies as throughfall (9.1–14.6 mg L–1) and stemflow (23.1–30.1 mg L–1). For the period July 1–November 15, 1987, 0.5 g DOC m–2 was imported as precipitation, and forest canopies contributed a further 1.4–1.7 g m–2 2 to the soil surface. DOC concentrations were higher (46.0 and 67.6 mg L–1) in upland soil organic horizons, but decreased with depth because subsoil mineral horizons acted as a major sink of DOC. A laboratory experiment using leaf leachate revealed that subsoil horizons were able to adsorb DOC, with equilibrium DOC concentrations ranging from 3 to 19 mg L–1. Soil organic carbon appeared to be an important determinant of equilibrium DOC concentrations. The swamp was a major source of DOC, with an overall average DOC concentration of 58.6 mg L–1 and showed strong spatial and temporal variations related to hydrologic and thermal regimes. During base flow periods, stream DOC concentrations were small (< 3 mg L–1), dominated by water fed from springs draining upland soils. During high flows, stream DOC concentrations increased through the contribution of DOC-rich water originating in the swamp. Sources, sinks and transport of DOC are thus a function of a complex set of inter-related biotic and abiotic process.  相似文献   

8.
Wilson  James G.  Brennan  Mary  Murray  Anne 《Hydrobiologia》2002,(1):195-204
There are substantial riverine and sewage particulate inputs into Dublin Bay. The main river, the R. Liffey, accounts for almost 85% of the riverine input, which amounts to 37.1 t d–1 of SPM. The sewage input, which is discharged into the estuary, is slightly less at 35.3 t d–1. The combined inputs deliver 17.4 t d–1, 2.9 t d–1and 1.2 t d–1of particulate C, N and P, respectively, to the Bay as a whole. Although the particulate N load accounts for just 20% of the total N input, the retention of particulates within the system, and the subsequent remobilisation of N from the sediments is heavily implicated in the macroalgal blooms. A particulate mass balance of SPM, and of C, N and P for the South Lagoon showed no consistent pattern of import/export except that the fluxes of the individual elements reflected SPM load and varied with quantity rather than quality. The molar C:N ratio was around 6:1 although on occasion values approaching 3:1 were obtained, indicating very high quality and potentially labile SPM. The controlling factors in the budget appeared to be the water velocities and to a lesser extent, the SPM load, which surprisingly was no greater on a spring tide than on a neap. In this shallow, and primarily intertidal, system, wind- or wave-driven resuspension may exert more influence than predictable factors such as tidal range.  相似文献   

9.
In the present paper we report partial pressureof CO2 (pCO2) data obtained off theBelgian coast during 24 cruises. The temporaland spatial resolution of this data set allowsus to discuss satisfactorily seasonal andinter-annual variability of pCO2 in thestudy area. The dynamics of pCO2 aredescribed using two approaches: fixed referencestations and area survey cruises. The air-waterfluxes of CO2 in the Scheldt estuarineplume and in the outer-plume region areestimated quantitatively, showing that theseareas correspond respectively to a net annualsource and sink of atmospheric CO2. Theannually integrated air-water fluxes for theScheldt estuarine plume range between +1.1 and+1.9 mol m–2 year–1 as a function ofthe formulation of the exchange coefficient ofCO2. The annual net emission of CO2from the estuarine plume to the atmosphere isestimated to be between +2.3 to +4.0 Gmolyear–1 which represents 17 to 29% of theestimate reported in the literature for the Scheldtinner estuary.  相似文献   

10.
UVirradiation of dissolved organic carbon (DOC) in the laboratory can producesmall, labile organic compounds utilizable by microbes, but few studies haveattempted to document this process in situ. 13Cnuclear magnetic resonance (NMR) was used to examine the bulk chemicalcomposition of natural and laboratory-irradiated high-molecular-weight DOC(HMW-DOC) from shaded (150 mol m–2s–1 average light in surface water) and open (1500mol m–2 s–1) field sitesoverone and a half years. 13C NMR revealed only small differences incarbon functional groups between laboratory irradiated and non-irradiatedHMW-DOC. However, bacterial protein productivity per cell (BPP) was enhanced innaturally irradiated samples of HMW-DOC in a field mesocosm experiment (p <0.05), suggesting that bacterial growth was enhanced by photochemicalproductionof labile DOC substrates. Absorbance characteristics such as spectral slope,absorbance at 350 nm, and the absorbance ratio 250nm/365 nm revealed that HMW-DOC was photoreactive,yetno differences in these values were found between samples irradiated with andwithout UV-B. In experiments conducted with simulated solar radiation in thelaboratory and with natural light in the field mesocosm experiment, UV-A(320–400 nm) and photosynthetically active radiation (PAR;400–700 nm) were more effective than UV-B (280–320nm) in HMW-DOC photolysis.  相似文献   

11.
Despite growing attention concerning therole of dissolved organic matter (DOM) inelement cycling of forest ecosystems, thecontrols of concentrations and fluxes of bothdissolved organic carbon (DOC) and nitrogen(DON) under field conditions in forest soilsremain only poorly understood. The goal ofthis project is to measure the concentrations and fluxes of DON, NH4 +, NO3 and DOC in bulkprecipitation, throughfall, forest floorleachates and soil solutions of a deciduousstand in the Steigerwald region (northernBavaria, Germany). The DOC and DONconcentrations and fluxes were highest inleachates originating from the Oa layer of theforest floor (73 mg C L–1, 2.3 mg NL–1 and about 200–350 kg C, 8–10 kg Nha–1 yr–1). They were observed to behighly variable over time and decreased in themineral topsoil (17 mg C L–1, 0.6 mg NL–1 and about 50–90 kg C, 2.0 to 2.4 kg Nha–1 yr–1). The annual variability ofDOC and DON concentrations and subsequentialDOC/DON ratios was substantial in allsolutions. The DOC and DON concentrations inthroughfall were positively correlated withtemperature. The DOC and DON concentrationsdid not show seasonality in the forest floorand mineral soil. Concentrations were notrelated to litterfall dynamics but didcorrespond in part to the input of DOC and DONfrom throughfall. The throughfall contributionto the overall element fluxes was higher forDON than for DOC. Concentrations and fluxes ofDON were significantly correlated to DOC inthroughfall and the Oi layer. However, thecorrelation was weak in Oa leachates. Inaddition, seasonal and annual variation ofDOC/DON ratios indicated different mechanismsand release rates from the forest floor forboth components. The concentrations of DOC andDON in forest floor leachates were in mostcases dependent neither on the pH value orionic strength of the solution, nor on thewater flux or temperature changes. As aconsequence, the DOC and DON fluxes from theforest floor into the mineral soil werelargely dependent on the water flux if annualand biweekly time scales are considered.  相似文献   

12.
The present distribution of the invasive brown alga Sargassum muticum in the southwest Netherlands is updated. Populations of the alga were found to remain at their 1985 level in Lake Grevelingen, with a small eastward expansion into the Eastern Scheldt estuary. A new population for the brackish, non-tidal Lake Veere is reported. Within Lake Grevelingen S. muticum forms a persistent, extensive canopy of 100% cover (4,442.5 ± 525.6 g fresh wt m–2, 640.3 ± 75.8 g dry wt m–2) that has a marked effect upon the penetration of photosynthetically active radiation (PAR) (reduced by 97% at 0.1 m). Surface sea water temperatures can be elevated by 2.7 °C above water not associated with a Sargassum canopy; furthermore, the dense canopy shades and hence reduces water temperatures below 0.1 m depth. Productivity studies indicate that assimilation occurs in the upper levels of the canopy (57.09 µg C mg dry wt–1 m–2 at a mean PAR rate of 106.7 J cm–2 h–1). Self-shading and a resultant decrease in the rate of assimilation was evident below the canopy.  相似文献   

13.
Dissolved organic carbon (DOC) dynamics were examined over five years (1989–1993) in Sycamore Creek, a Sonoran Desert stream, specifically focusing on DOC concentration in surface and hyporheic waters, and rates of export. In 1989 and 1990, the years of lowest stream discharge (0.08 and 0.04 m3 s–1 annual mean of daily discharge, respectively), DOC was high, averaging 7.37 and 6.22 mgC l–1 (weighted annual means). In contrast, from 1991 through 1993, a period of increased flow (1.1, 1.2 and 4.3 m3 s–1), concentration was significantly lower (P<0.001) with annual mean concentrations of 3.54, 3.49 and 3.39 mgC l–1. Concentration exhibited little spatial variation between two sampling stations located 6 km apart along the mainstem or between surface and hyporheic waters. Annual export of DOC from Sycamore Creek varied 100-fold over the five-year period from a mean rate of only 24 kgC d–1 in 1990 to 2100 kgC d–1 in 1993. Ninety percent of DOC was exported by flows greater than 2.8 m3 s–1, and 50% during flows greater than 27 m3 s–1; flows of 2.8 and 24 m3 s–1 occurred only 9 and 1% of the time. The export of organic matter in Sycamore Creek appears to be coupled to El Niño-Southern Oscillation phenomena. The years of highest export, 1991–1993, had El Niño conditions while 1989 and 1990 had medial conditions.  相似文献   

14.
Vidal-Abarca  M. R.  Suárez  M. L.  Guerrero  C.  Velasco  J.  Moreno  J. L.  Millán  A.  Perán  A. 《Hydrobiologia》2001,455(1-3):71-78
Annual variations in the concentration of dissolved (DOC) and particulate organic carbon (CPOC = Coarse; FPOC = Fine; UPOC = Ultrafine) were studied in a 100 m-reach of the Chicamo stream, an intermittent saline stream in southeast Spain. DOC represented the most important fraction of organic carbon flowing in the Chicamo stream (>98%), with concentrations of about 1.7 mgC l–1 during most of the year, reaching 2.5 mgC l–1 in summer. One high flow episode during a rain storm in winter was characterized by a considerably increased concentration of DOC (9.4 mgC l–1). CPOC was the dominant POC fraction. Positive and significant correlations were found for DOC and discharge, which support the idea of allochthonous inputs due to floods. There was no significant correlation between POC and discharge. No significant correlations were found for DOC or POC with the physico-chemical parameters measured, while a negative significant correlation was found between DOC and temperature. The export of total organic carbon from the drainage basin of the Chicamo stream was low (6.2 × 10–4 gC m–2 yr–1) and typical of streams in arid and semi-arid regions. The results of a Principal Component Analysis defined three different phases. The first consisted of short periods, during which floods provide pulses of allochthonous organic carbon and nutrients, the second a dry phase (summer), defined by biotic interactions, during which the stream could acts as a `sink' of organic matter, and the third and final phase which is characterised by hydrological stability.  相似文献   

15.
Seasonal variability of dissolved organic carbon ina Mediterranean stream   总被引:1,自引:0,他引:1  
The seasonal variability of dissolved organic carbon(DOC) flux in a Mediterranean stream subjected todischarges of wide range of intensities and variabledry period was studied as a function of the hydrologicconditions, and the relationship between surface andsubsurface (hyporheic and groundwater) DOCconcentration. DOC concentration in stream water(2.6 mg l–1 ±1.5 SD) was higher thangroundwater (1.3 mg l–1 ± 1.2 SD) and lower thanhyporheic water (3.8 mg l–1 ±1.7 SD),suggesting that, at baseflow, stream DOC concentrationincreases when groundwater discharges through thehyporheic zone. Storms contributed to 39% of annualwater export and to 52% of the total annual DOCexport (220 kg km–2). A positive relationship wasobserved between Discharge (Q) and stream DOCconcentration. Discharge explained only 40% of theannual variance in stream DOC, but explained up to93% of the variance within floods. The rate of streamDOC changes with discharge change during storms (dDOC/dQ), ranged between 0 and 0.0045 C mgl–1 s l–1, with minimum values during Springand Summer, and maxima values in Fall and Winter.These dynamics suggest that storm inputs ofterrigenous DOC vary between seasons. During floods inthe dormant season, DOC recession curves were alwayssteeper than discharge decline, suggesting shortflushing of DOC from the leaching of fresh detritusstored in the riparian zone.  相似文献   

16.
In this study, we estimated whether changes in hydrological pathwaysduring storms could explain the large temporal variations of dissolvedorganic carbon (DOC) and nitrogen (DON) in the runoff of threecatchments: a forest and a grassland sub-catchment of 1600m2 delineated by trenches, and a headwater catchment of 0.7km2.The average annual DOC export from the sub-catchments was 185 kg DOCha–1 y–1 for the forest, 108 kg DOCha–1 y–1 for the grassland and 84 kgDOC ha–1 y–1 for the headwatercatchment. DON was the major form of the dissolved N in soil and streamwater. DON export from all catchments was approximately 6 kg Nha–1 y–1, which corresponded to 60% ofthe total N export and to 50% of the ambient wet N deposition. DOC andDON concentrations in weekly samples of stream water were positivelycorrelated with discharge. During individual storms, concentrations andproperties of DOC and DON changed drastically. In all catchments, DOCconcentrations increased by 6 to 7 mg DOC l–1 comparedto base flow, with the largest relative increment in the headwatercatchment (+350%). Concentrations of DON, hydrolysable amino acids, andphenolics showed comparable increases, whereas the proportion ofcarbohydrates in DOC decreased at peak flow. Prediction of DOC and DONconcentrations by an end-member mixing analysis (EMMA) on the base ofinorganic water chemistry showed that changes in water flow pathslargely explained these temporal variability. According to the EMMA, thecontribution of throughfall to the runoff peaked in the initial phase ofthe storm, while water from the subsoil dominated during base flow only.EMMA indicated that the contribution of the DOC and DON-rich topsoil washighest in the later stages of the storm, which explained the highestDOC and DON concentrations as the hydrograph receded. Discrepanciesbetween observed and predicted concentrations were largest for thereactive DOC compounds such as carbohydrates and phenolics. Theyoccurred at base flow and in the initial phase of storms. This suggeststhat other mechanisms such as in-stream processes or a time-variantrelease of DOC also played an important role.  相似文献   

17.
Dissolved organic carbon (DOC) and NO3 are important forms of C and N in stream water. Hypotheses concerning relationships between DOC and NO3 concentrations have been proposed, but there are no reports demonstrating a relationship between them in stream water. We observed 35 natural streams in the Lake Biwa watershed, central Japan, and found an inverse relationship between DOC and NO3 concentrations. This relationship was also found in observations of their seasonal variations in the Lake Biwa watershed. Moreover, this relationship was also found to apply to watersheds in other regions in Japan. These results suggest that forest biogeochemical processes which control DOC and NO3 concentrations in Japanese streams are closely related. Excess N availability together with a C (energy) deficit in a soil environment may explain this relationship. DOC and NO3 concentrations in streams will thus be a useful index indicating C and N availability in catchments.  相似文献   

18.
Phosphorus and nitrogen retention in five Precambrian shield wetlands   总被引:11,自引:7,他引:4  
Phosphorus and nitrogen mass balances of five wetlands (two beaver ponds, two conifer-Sphagnum swamps and one sedge fen) situated in three catchments in central Ontario, Canada, were measured. Monthly and annual input-output budgets of total phosphorus (TP), total nitrogen (TN), total organic nitrogen (TON), total inorganic nitrogen (TIN), ammonium ion (NH4 + -N), nitrate (NO 3 -N) and dissolved organic carbon (DOC) were estimated for the five wetlands during the 1982–83 and 1983–84 water years. Except for the deepest beaver pond (3.2 m) which had annual TP retention of –44% (–0.030 ± 0.015 g m–2 yr–1), the wetlands retained < 0.001 to 0.015 g M–2 yr–1 ; however, this wasless than 20% of the inputs and the estimated budget uncertainties were equal to or greater than the retention rates. Annual TN retentions ranged from –0.44 to 0.56 g m–2 yr–1 (–12 to 4%) but were not significantly different from zero. The wetlands transformed nitrogen by retaining TIN (16 to 80% RT) and exporting an equivalent amount as TON (–7 to 102% RT). The beaver ponds, however, retained NO 3 while NH 4 + was passed through or the outputs exceeded the inputs. In contrast, the conifer swamps retained both NH 4 + and NO 3 . DOC fluxes into and out of the beaver ponds were equal (–18 and 4% RT) but output from the conifer swamps exceeded input by > 90%. Marked seasonal trends in nutrient retention were observed. Nutrient retention coincided with low stream flow, increased evapotranspiration and biotic uptake during the summer. Net nutrient export occurred during the winter and spring when stream flows were highest and biotic uptake was low.  相似文献   

19.
The Scheldt river drains a densely populated and industrialized area in northern France, western Belgium and the south-west Netherlands. Mineralization of the high organic load carried by the river leads to oxygen depletion in the water column and high concentrations of dissolved nitrogen and phosphorus compounds. Upon estuarine mixing, dissolved oxygen concentrations are gradually restored due to reaeration and dilution with sea water. The longitudinal redox gradient present in the Scheldt estuary strongly affects the geochemistry of nutrients. Dissolved nutrients in the water column and dissolved nitrogen species in sediment porewaters were determined for a typical summer and winter situation. Water column concentration-salinity plots showed conservative behaviour of dissolved Si during winter. During summer (and spring) dissolved Si may be completely removed from solution due to uptake by diatoms. The geochemistry of phosphorus was governed by inorganic and biological processes. The behaviour of nitrogen was controlled by denitrification in the anoxic fluvial estuary, followed by nitrification in the upper estuary (prior to oxygen regeneration). In addition, nitrogen was taken up during phytoplankton blooms in the lower estuary. Dissolved inorganic nitrogen species in porewaters from the upper 20 cm of sediments were obtained from a subtidal site in the middle of the lower estuary. Dissolved nutrient concentrations were low in the upper 10–15 cm of the sandy and organic poor (<1% POC) sediments mainly as a result of strong sediment mixing. The porewater profiles of ammonium and nitrate were evaluated quantitatively, using a one-dimensional steady-state diagenetic model. This coupled ammonium-nitrate model showed ammonification of organic matter to be restricted to the upper 4 to 7 cm of the sediments. Total nitrification ranged from 3.7–18.1 mmol m?2 d?1, converting all ammonium produced by ammonification. The net balance between nitrification and denitrification depended on the season. Nitrate was released from the sediments during winter but is taken up from the water column during summer. These results are in good agreement with data obtained from the independently calibrated water column model for the Scheldt Estuary (VAN GILSet al., 1993).  相似文献   

20.
Solute, nutrient and bacterial inputs to the River Rhône from the interstitial habitat of a gravel bar and the floodplain aquifer were investigated during an artificial drought. Eight springs were investigated: four groundwater-fed springs in the floodplain, located at the bottom of the bank; and four interstitial-fed springs located at the downstream end of a gravel bar. During this period, the inflows of groundwater to the river represented an average input of 0.77 mg l–1 of nitrogen (of which 93.3% were nitrates), 0.0187 mg l–1 of total phosphorus (of which 42.2% was orthophosphate), 3.56 mg l–1 of silica, 2.315 ± 0.703 mg l–1 of dissolved organic carbon (DOC, of which 47% was biodegradable) and 7.3 × 104 ± 3.7 × 104 bacteria per ml (of which 8.8% were active). Silica, DOC, biodegradable DOC, and bacteria concentrations displayed temporal variations during the study, which seem to be linked to the biological activity of the groundwater biofilm. There was a strong heterogeneity between the two types of groundwater that flow to the river: concentrations of calcium and alkalinity were higher in bank springs than in gravel bars springs. In these latters, sulfate, sodium, nitrogen, phosphorus were significantly higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号