首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Synopsis The latitudinal, regional, and annual variation in number of vertebrae and number of gill rakers present in sockeye salmon, Oncorhynchus nerka, stocks in North America was examined. Stocks in more northern areas had higher numbers of vertebrae and gill rakers than did those in more southern ones. Significant annual variability in the frequencies of these meristic characters within stocks was observed. When stocks were grouped into three regions (southern, central, and northern), heterogeneity in vertebral and gill raker frequencies was greater among regions than among stocks within the regions. Similarly, heterogeneity was greater among stocks than among sampling years within stocks. Differences in vertebral and gill raker frequencies are only useful for stock identification of sockeye salmon on a broad regional basis.  相似文献   

2.
Sockeye salmon and kokanee, the anadromous and non-anadromous morphs of Oncorhynchus nerka, spawn in close physical proximity in tributaries to Takla Lake, British Columbia but are reproductively isolated and genetically distinct. Using genetic markers, we were able to investigate, for the first time, ecological interactions between the morphs as juveniles sharing the same nursery lake. Trawl and hydroacoustic surveys conducted in August of 1988 and 1991 revealed that juvenile O. nerka were distributed fairly evenly throughout Takla Lake with average densities ranging from 351–558 fish ha-1 in the north arm to 585–769 fish ha-1 in the west arm. Sockeye salmon were predominant (71–75%) in the west arm whereas kokanee were predominant (82%) in the north arm, a difference attributed to the distribution of spawners in the brood years studied. Within arms, the morphs were intermixed with no detectable difference in relative abundance by depth or among trawl catches. Both morphs were highly selective in their diet, especially in the north arm where fish densities and grazing pressure were lower. As age 0 juveniles, sockeye salmon were significantly larger than kokanee (53 vs. 39 mm on average) but their food habits were virtually identical. Thus we found no evidence of behaviour that would reduce niche overlap between these incipient species.  相似文献   

3.
Understanding the mechanisms that decrease gene flow between diverging populations is critical to understanding speciation. Anadromous (sockeye) and nonanadromous (kokanee) morphs of the Pacific sockeye salmon Oncorhynchus nerka spawn sympatrically and interbreed, yet allele frequency differences at neutral loci indicate restricted gene flow. Disruptive natural selection associated with strong selective differences between anadromous and nonanadromous life histories is thought to maintain the genetic differentiation of the morphs. Recently, a putative third morph of O. nerka exhibiting green rather than red breeding colour has been found on the spawning grounds sympatric with sockeye and kokanee. We investigated the ancestry of these green fish in a 2‐year controlled breeding study by using previously documented heritable, countergradient variation in red breeding colour to distinguish pure and hybrid morphs. Stabilizing sexual selection for similar red breeding colour in sockeye and kokanee has led to adaptive differences in the efficiency of carotenoid uptake between the morphs given differences in carotenoid availability between marine and lacustrine habitats. On the same diet, offspring parented by the green fish were intermediate in colour and in the concentration of dietary carotenoid pigments in their flesh and skin to those parented by either sockeye or kokanee; they were most similar to those parented by known kokanee × sockeye hybrids. This countergradient variation in carotenoid use results in a genotype‐environment mismatch in nonanadromous hybrids that exposes them by their breeding colour on the spawning grounds. Given that red colour is important in mate choice, sexual selection will almost certainly reduce reproductive opportunities for these hybrids and promote sympatric divergence of these incipient species. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84 , 287–305.  相似文献   

4.
Genetically distinct anadromous (sockeye) and nonanadromous (kokanee) morphs of the Pacific salmon, Oncorhynchus nerka, develop identical, brilliant red color at maturity during sympatric breeding in freshwater streams. The marine and lacustrine environments they occupy prior to maturity, however, appear to differ in the availability of dietary carotenoid pigments necessary to produce red coloration. We tested the hypothesis that kokanee, which occupy carotenoid-poor lakes, are more efficient at using the dietary pigments than are sockeye, which occupy the more productive North Pacific Ocean. In a 2-year controlled breeding study, flesh and skin color of mature and immature crosses fed a low-carotenoid diet were quantified with both a chromameter and by chemical extraction of carotenoid pigments. Results revealed striking countergradient variation in carotenoid use, with kokanee approximately three times more efficient at sequestering the pigments to the flesh musculature than similar age sockeye. This difference translated into virtually nonoverlapping differences between pure crosses in secondary sexual color at maturity, when the pigments are mobilized and transported to the skin. Kokanee crosses turned pinkish red over most of their body, whereas sockeye turned olive green. The olive green was similar to the breeding color of residuals in the wild, the progeny of anadromous sockeye that remain in fresh water and are believed to have given rise to kokanee on numerous independent occasions. Reciprocal hybrids were similar to each other and intermediate to the pure crosses, indicating additive genetic inheritance. Mate choice trials with sockeye males in the wild showed the ancestral morph strongly preferred red over green models. These results suggest a preference for red mates maintained in nonanadromous breeding populations drove the reevolution of the red phenotype in kokanee via more efficient use of dietary carotenoid pigments. This is a novel, yet hidden, mechanism by which sexual selection promotes the genetic differentiation of these sympatric populations.  相似文献   

5.
The interpopulation differentiation of the sockeye salmon Oncorhynchus nerka (Walbaum) from the Olyutorskiy and Karaginskiy districts and from the Kamchatka River basin was examined based on the allelic variation at eight microsatellite loci (Ots107, Oki1a, Oki1b, One104, One109, OtsG68, OtsG85, and Oki6). The genetic diversity of samples from the northern rivers was lower, compared to samples from the Kamchatka River basin. Significant heterogeneity was found in the allele-frequency distribution at microsatellite loci of sockeye salmon from the investigated localities. The degree of genetic similarity of populations corresponded to their geographic closeness. The differences between population groups greatly exceeded the level of interpopulation differentiation. The analyzed samples formed four relatively separate groups: Lake Azabachye, Kamchatka River basin, Karaginskiy area (including the Navyrinvayam River in the south of the Olyutorskiy district), and northern Olyutorskiy area. The identification likelihood estimates of eastern Kamchatkan sockeye salmon in mixed aggregations at the level of population groups were fairly high (67.2–81.8%), greatly exceeding the accuracy of identification of individual populations.  相似文献   

6.
7.
Summary The ultrastructure of the secretory cells of the adenohypophysis of juvenile sockeye salmon was investigated. Pituitary glands were collected from immature fish transferred experimentally to sea water and subsequently returned to fresh water. The rostral pars distalis contained three cell types: ACTH cells, prolactin cells, and non-secretory cells. The prolactin and non-secretory cells were joined together in the form of follicles by desmosomes and they both had cilia and microvilli projecting into the follicle lumen. Various follicular structures such as lumen, multivesicular structures, and peripheral basement membrane are discussed as possible sites of prolactin cell granule release. The columnar ACTH cells were found at the junction of the rostral pars distalis and the neurohypophysis. The cytoplasmic granules in these cells were characteristically separated from their limiting membrane by a clear space. Multivesicular structures were also found in association with this cell type. The caudal pars distalis also contained three cell types: one acidophil (putative somatotrop) and two basophils (putative thyrotrops and gonadotrops), all of which were similar to those described in adult fish. The pars intermedia contained only one cell type. They appeared to be active cells and were characterized by containing membrane-bounded granules similar to those found in the ACTH cells. Changes in ambient salinity had no apparent effect on any cell type described.The work was supported by a grant in aid of research from the National Research Council of Canada. We wish to thank Mr. R. Lindsay, Mr. C. Cooper, and Mr. G. Longworth for their technical assistance. We would also like to thank Mr. S. Killick of the International Pacific Salmon Fisheries Commission for his assistance in the collection of fish and Dr. H. Cook for his helpful discussion of the project. This paper is No. 058 in the University of Guelph Migration Series.  相似文献   

8.
The myxosporean parasite Parvicapsula minibicornis is described from adult sockeye and coho salmon during spawning migrations in tributaries of the Columbia River in Canada and the United States. These observations extend the known distribution of this parasite from the Fraser River drainage basin. The parasite was identified in Columbia River salmonids using polymerase chain reaction (PCR) and by in situ hybridization, but unlike in Fraser River salmon, it was not observed in conventional histological preparations of the kidney. Prevalence of the parasite determined by PCR was higher in spawning sockeye from the Fraser River than in those from the Okanagan River. Our ability to explain the relatively low prevalence and absence of clinical P. minibicornis infections in Columbia River salmon is hampered by our poor understanding of the life cycle of this parasite.  相似文献   

9.
Many ecological circumstances present individuals with a conflict between the inherent benefits of a particular habitat and the costs incurred in acquiring or retaining use of the habitat in the face of competition. For example, the reproductive biology of female Pacific salmon (Oncorhynchus spp.) led us to hypothesize that female nest site choice should reflect a compromise between the benefits of obtaining a high quality nest site and the cost of competing for and defending it. To test this hypothesis we studied female sockeye salmon (O. nerka) spawning on beaches in Iliamna Lake, Alaska using a combination of snorkel surveys, tagging, behavior observations, and models. Females showed spatial preferences in nest site selection (for shallower water, where water circulation was higher), aggressive competition in preferred areas was higher, and there was evidence for costs associated with this increased competition. Over the course of the season, spawning activity shifted from shallower to deeper water, consistent with a tradeoff between benefits for embryo survival associated with shallow sites and the costs of competing for them. However, it was also consistent with date-specific optimal sites related to the probability of embryo mortality for eggs spawned in shallow water late in the season, due to annual cycles in lake level and temperature.  相似文献   

10.
Concurrent natural and sexual selection have been inferred from laboratory and comparative studies in a number of taxa, but are rarely measured in natural populations. Because the interaction of these two general categories of selection may be complex when they occur simultaneously, empirical evidence from natural populations would help us to understand this interaction and probably give us greater insight into each separate episode as well. In male sockeye salmon, sexual selection for larger body size has been indicated in both deep and shallow water habitats. However, in shallow habitats male sockeye are generally smaller and less deep-bodied than in deep habitats, a difference that has been ascribed to natural selection. We measured concurrent natural and sexual selection in two years on breeding male sockeye salmon with respect to body size, body shape, and time of arrival to the breeding grounds. Natural selection was variable in effect and sexual selection was variable in intensity in these two years. The patterns of selection also appear to be interdependent; areas where predation on spawning adults is not intense have yielded different patterns of sexual selection than those measured here. It appears that some of the body shape differences in sockeye salmon associated with different spawning habitats, which were previously attributed to selective mortality, may be a result of different patterns of sexual selection in the different habitats. Total selection resulting from the combination of both natural and sexual selection was less intense than either natural or sexual selection in most cases. Measurement of concurrent selection episodes in nature may help us to understand whether the pattern of differential sexual selection is common, and whether observed patterns of habitat-related differentiation may be due to differences in sexual selection.  相似文献   

11.
In streams tributary to the North Pacific, anadromous sockeye salmon and non-anadromous kokanee, Oncorhynchus nerka (Walbaum), occasionally spawn sympatrically and male kokanee may act as 'sneaks’to spawn with the larger female sockeye. Despite this interbreeding, sockeye and kokanee exhibit persistent biochemical genetic differences at several enzyme loci. Genetic differences between forms may be maintained by selection against‘hybrids’due to the different life histories of sockeye and kokanee; sockeye make extensive smolt, oceanic, and spawning migrations while kokanee reside permanently in fresh water. We tested the sustained swimming abilities of juvenile sockeye, kokanee, and sockeye (female) × kokanee (male) hybrids to see if hybrids were inferior to sockeye in a trait that is probably under stronger selection in an anadromous life history. Sockeye had significantly greater mean critical swimming velocities (Ucrit) than kokanee of the same size raised under identical conditions (8.3 v. 7.3 body lengths s?1 respectively). When tested 1 month later the mean Ucrit of sockeye was only marginally greater than that for sockeye × kokanee hybrids (both c. 6.6 body lengths s?1). Sockeye swimming performance was also less variable than that of either kokanee or hybrids. Sockeye tended to have slimmer bodies and longer caudal regions than kokanee or sockeye × kokanee hybrids of the same size. Sockeye also had significantly more vertebrae than kokanee and hybrids, while hybrids had more vertebrae than kokanee. These morphological differences may have contributed to the differences in swimming performance. We concluded: (i) that juvenile sockeye and kokanee have diverged with respect to sustained swimming performance and that reduced performance by kokanee may be due to relaxed selection for sustained swimming performance associated with their non-anadromous life history, (ii) that sockeye × kokanee hybrids appear to have modestly lower swimming capabilities than pure sockeye, and (iii) if the variability in swimming performance is associated with differences in survival in nature, then such differences may promote divergence between sympatric sockeye and kokanee.  相似文献   

12.
Sockeye salmon, Oncorhynchus nerka, are anadromous, semelparous fish that breed in freshwater—typically in streams, and juveniles in most populations feed in lakes for 1 or 2 years, then migrate to sea to feed for 2 or 3 additional years, before returning to their natal sites to spawn and die. This species undergoes important changes in behavior, habitat, and morphology through these multiple life history stages. However, the sensory systems that mediate these migratory patterns are not fully understood, and few studies have explored changes in sensory function and specialization throughout ontogeny. This study investigates changes in the olfactory rosette of sockeye salmon across four different life stages (fry, parr, smolt, and adult). Development of the olfactory rosette was assessed by comparing total rosette size (RS), lamellae number, and lamellae complexity from scanning electron microscopy images across life stages, as a proxy for olfactory capacity. Olfactory RS increased linearly with lamellae number and body size (p < .001). The complexity of the rosette, including the distribution of sensory and nonsensory epithelia and the appearance of secondary lamellar folding, varied between fry and adult life stages. These differences in epithelial structure may indicate variation in odor-processing capacity between juveniles imprinting on their natal stream and adults using those odor memories in the final stages of homing to natal breeding sites. These findings improve our understanding of the development of the olfactory system throughout life in this species, highlighting that ontogenetic shifts in behavior and habitat may coincide with shifts in nervous system development.  相似文献   

13.
14.
In northern Transbaikalia, independently evolving landlocked populations of Arctic charr are found in mountain lakes. To assess the diversity of charr in this region, speciation modes involved in the evolution of charr forms, and the role of trophic polymorphism in their divergence, we studied the morphology and feeding of dwarf, small, and large forms of Arctic charr from a number of Transbaikalian lakes. Meristic data on charr from five lakes support the earlier conclusion that the three forms do not represent separate lineages but have independently diverged in sympatry in each of the lakes. In 10 lakes, the dwarf form showed varying degrees of differentiation from normal (small and large) charr in meristic characters (up to morphologically distinct and presumably reproductively isolated groupings), which is viewed as various levels of sympatric divergence. Indexes of gill raker length in fish from 20 lakes vary among populations of both dwarf and normal charr, with forms having short and long rakers being sympatric in some of these lakes. However, the index can be used only for comparing charr of different forms up to about 32cm fork length (FL) because it is strongly negatively correlated with size in larger fish. The study of charr diets in 21 lakes indicates that large charr are piscivorous whereas dwarf and small charr feed on a wide range of invertebrates, partitioning these resources in different ways. Planktivores, including very specialized ones, and non-planktivores (benthic feeders, insectivores) can be identified within the small and dwarf forms. The proportion of plankton in the diets of dwarf and small charr is positively correlated with the number and length of gill rakers while the proportion of benthos is negatively correlated. Allopatric planktivorous and non-planktivorous small charr differ in body proportions; parallel emergence of such morphotypes in different parts of the range is a characteristic feature of the Salvelinus alpinus complex.  相似文献   

15.
Marine exit timing of sockeye salmon Oncorhynchus nerka populations on the Haida Gwaii Archipelago, British Columbia, Canada, is described, with specific focus on Copper Creek. Marine exit in Copper Creek occurs > 130 days prior to spawning, one of the longest adult freshwater residence periods recorded for any O. nerka population. Copper Creek presents an easy upstream migration, with mild water temperatures (7 to 14° C), short distance (13·1 km) and low elevation gain (41 m) to the lake where fish hold prior to spawning. An energetic model estimates that <1% of the initial energy reserve is required for upstream migration, compared with 62% for lake holding and 38% for reproductive development. Historical records suggest that it is unlikely that water temperature in any of the O.nerka streams in Haida Gwaii has ever exceeded the presumed temperature threshold (19° C) for early marine exit. Although it is not impossible that the thermal tolerance of Copper Creek O.nerka is very low, the data presented here appear inconsistent with thermal avoidance as an explanation for the early marine exit timing in Copper Creek and in three other populations on the archipelago with early marine exit.  相似文献   

16.
Reproductive success of female animals is often affected by a combination of fecundity and parental care. In female salmonid fishes, acquisition of nest (redd) sites and prevention of their use by other females are critical to reproductive success. These factors are particularly important for stocks that spawn at high densities. Body size is positively correlated with fecundity and egg size, and has been hypothesized to control the outcome of intrasexual competition and longevity. We tested this hypothesis by evaluating the influences of body size, intrasexual aggression and arrival date on duration and success of redd guarding by female sockeye salmon, Oncorhynchus nerka, in a small Alaskan creek. Contrary to the hypothesis, larger females guarded their redds no longer than smaller females, and did not live as long in the stream. Aggression was not related to body size or overall longevity but was positively correlated with residence period on the redd. Females that entered the creek earlier lived longer, spent longer on their redds, and spent more time guarding their redds after spawning than females that entered the creek later. However, despite their longevity, early-arriving fish were more likely to have their redds reused by another female because they died before all the females had selected redd sites. The small average body size in this stock is consistent with weak selection for large size, and with our evidence that size provided little if any advantage in nest guarding.  相似文献   

17.
1. The effects of low pH water on embryogenesis and vitellogenesis in kokanee and sockeye salmon (Oncorhynchus nerka) were investigated. Eggs were exposed to low pH from fertilization to 45 days post-median hatch or to an episodic exposure at pH 4.0. Adult kokanee were also exposed to low pH just prior to ovulation and spawning. 2. The most sensitive stages of development during chronic or episodic exposure to low pH were early embryonic development and newly-hatched alevins. 3. Incubation of eggs at low pH caused a lower median survival, delayed hatching, higher alevin mortality and reduced the efficiency of yolk conversion to tissue of yolk-sac alevins. Those effects were more pronounced when the eggs were fertilized at low pH. 4. Exposure of sexually mature kokanee salmon to acidified water reduced egg and alevin survival, delayed embryo hatching and decreased the percent hatch. Those effects were more pronounced when their eggs were incubated at low pH.  相似文献   

18.
Life history variation and genetic differentiation were analysed in sockeye salmon in Klukshu River, Yukon Canada over 7 years (1994-2000). Sockeye salmon return to the Klukshu River in two distinct runs, with a small 'early run' in June-August, and a larger 'late run' in August-September. A maximum likelihood test for clusters indicated that the return frequency distribution was bimodal in all the years analysed. Life history differences (fork length, sex ratio, age at maturity, fresh- and saltwater residency times) were found between the early and late runs; however, inconsistent patterns suggest that environmental effects outweigh, or strongly interact with, genetic effects for the life history characters evaluated. Analysis of variation at eight microsatellite loci showed that the early and late runs are genetically differentiated in all years examined (exact test). FST estimates between runs within years were significantly greater than zero (range: 0.018-0.041) for all years except one (0.004). The genetic variance explained by early vs. late runs (2.27%) was twice the variance among years (1.16%) based on analysis of molecular variance. Our neighbour-joining tree showed early and late runs generally clustering separately, indicating higher gene flow among the early or late run fish across years relative to between-run gene flow. Two years did not fit the general clustering pattern; although the early and late runs in 1995 and 2000 were genetically differentiated, they clustered separately from the rest of the groups. We cannot offer a definitive explanation for these anomalies; however, an analysis of possible cryptic population structure in early and late runs indicated that at least a few fish strayed between the runs in each year, and the highest rate of mixing was in 1995 and 2000. Our data indicate that the runs are at least partially reproductively isolated as a result of temporal and/or spatial isolating mechanisms. Such reproductive isolation has important implications for conservation and management of the Klukshu sockeye salmon, and make them an evolutionarily interesting group because of parallels with incipient speciation.  相似文献   

19.
Rheoreaction of early juveniles of sockeye salmon Oncorhynchus nerka is experimentally investigated, including different spatial groups (denatant migrants, contranatant migrants, specimens living in bays and at closed river banks, juveniles from the coastal zone of the lake). Investigation is made in water of the river flowing from the lake and in water of the stream flowing into the lake. It is shown that the rheoreaction (the type of rheoreaction) is one of behavioral mechanisms performing feeding migration of early juveniles of sockeye salmon. Contranatant migrants that reached the feeding lake retain the positive type of rheoreaction, which favors the exit of juveniles from the zone of discharge exclusion and prevents the drift of juveniles to the river at night at poorer conditions for orientation. Juveniles placed into the water of the inflowing stream manifest a sharply negative rheoreaction type contributing to their rapid lakeward migration for feeding. In water of two steams (taking its beginning in the lake and flowing into it) such type of rheoreaction is observed which ensures migration of sockeye juveniles to their principal feeding water body-Lake Kurilskoe.  相似文献   

20.
Summary Neurons displaying FMRFamide(Phe-Met-Arg-Phe-NH2)-like immunoreactivity have recently been implicated in neural plasticity in salmon. We now extend these findings by describing the extent of the FMRF-like immunoreactive (FMRF-IR) system in the brain, retina and olfactory system of sockeye salmon parr using the indirect peroxidase anti-peroxidase technique. FMRF-IR perikarya were found in the periventricular hypothalamus, mesencephalic laminar nucleus, nucleus nervi terminalis and retina (presumed amacrine cells), and along the olfactory nerves. FMRF-IR fibers were distributed throughout the brain with highest densities in the ventral area of the telencephalon, in the medial forebrain bundle, and at the borders between layers III/IV and IV/V in the optic tectum. High densities of immunoreactive fibers were also observed in the area around the torus semicircularis, in the medial hypothalamus, median raphe, ventromedial tegmentum, and central gray. In the retina, immunopositive fibers were localized to the inner plexiform layer, but several fiber elements were also found in the outer plexiform layer. The olfactory system displayed FMRF-IR fibers in the epithelium and along the olfactory nerves. These findings differ from those reported in other species as follows: (i) FMRF-IR cells in the retina have not previously been reported in teleosts; (ii) the presence of FMRF-IR fibers in the outer plexiform layer of the retina is a new finding for any species; (iii) the occurrence of immunopositive cells in the mesencephalic laminar nucleus has to our knowledge not been demonstrated previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号