首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
4.
5.
Raff JW 《Current biology : CB》2001,11(5):R159-R161
It has recently been found that the zygotic development of a morphologically normal fly can occur without properly functioning mitotic centrosomes. Does this mean that centrosomes are not required for cell division in animals at all?  相似文献   

6.
7.
In this issue of Molecular Cell, Stevens et al. purify a large particle from yeast extracts that contains all five of the U snRNPs required for pre-mRNA splicing. The existence of this "penta-snRNP" suggests the provocative possibility that spliceosome assembly does not depend upon a pre-mRNA substrate.  相似文献   

8.
Chadwick R 《Bioethics》2011,25(2):62-65
Issues in genetics and genomics have been centre stage in Bioethics for much of its history, and have given rise to both negative and positive imagined futures. Ten years after the completion of the Human Genome Project, it is a good time to assess developments. The promise of whole genome sequencing of individuals requires reflection on personalization, genetic determinism, and privacy.  相似文献   

9.
Abstract

Until now, British Asian popular music culture and leisure spaces have attracted little sociological investigation. This article redresses the lack of attention paid to this area by focusing on an ethnographic study of the ‘desi’ South Asian club scene in London. It explores the relationship between contemporary discourses of Asianness as they are constructed within an East London desi club space and made to matter through embodied social practices. Asian bodies are disciplined in the making of normative ethnic, gendered and sexual subjectivities, which demonstrates how discourses of difference create complex subjectivities and practices that theories of diaspora and cultural studies have not fully explored. It offers a rethinking of diasporic identities as lived and embodied experiences that are ambivalently constructed and performative projects, neither entirely resistant to white, dominant discourses nor wholly complicit with its existing norms.  相似文献   

10.
11.
Several papers have claimed that mitochondria contain nitric oxide synthase (NOS) and make nitric oxide (NO*) in amounts sufficient to affect mitochondrial respiration. However, we found that the addition of L-arginine or the NOS inhibitor L-NMMA to intact rat liver mitochondria did not have any effect on the respiratory rate in both State 3 and State 4. We did not detect mitochondrial NO* production by the oxymyoglobin oxidation assay, or electrochemically using an NO* electrode. An apparent NO* production detected by the Griess assay was identified as an artifact. NO* generated by eNOS added to the mitochondria could easily be detected, although succinate-supplemented mitochondria appeared to consume NO*. Our data show that NO* production by normal rat liver mitochondria cannot be detected in our laboratory, even though the levels of production claimed in the literature should easily have been measured by the techniques used. The implications for the putative mitochondrial NOS are discussed.  相似文献   

12.
13.
14.
15.
BACKGROUND: Although some manufacturers have optimistically described instruments with prices in the 40,000 US dollars range as "personal cytometers", analogy with the personal computer suggests that the target price for a true "personal" cytometer should be under 5,000 US dollars. Since such an apparatus could find a wide range of applications in cytomics in both developing and developed countries, it seemed desirable to consider its technical and economic feasibility. METHODS: Using resolution targets and a variety of fluorescent bead standards immobilized on filters and/or slides, we evaluated high-intensity LEDs as fluorescence excitation sources, relatively inexpensive CCD cameras as detectors, and 35 mm camera lenses and plastic low-power microscope optics for light collection in a simple, inexpensive low-resolution imaging cytometer. RESULTS: The components tested could be combined toproduce an instrument capable of detecting fewer than 10,000 molecules of cell-associated fluorescent label, and thus applicable to a broad range of cytometric tasks. CONCLUSIONS: Given the requirements for light sources, detectors, optics, mechanics, electronics and data analysis hardware and software, and the components presently available, it should be easier to reach the desired 5,000 US dollars price point with an image cytometer than with a flow cytometer.  相似文献   

16.
17.
18.
Indirect assays have claimed to quantify phytate (InsP6) levels in human biofluids, but these have been based on the initial assumption that InsP6 is there, an assumption that our more direct assays disprove. We have shown that InsP6 does not and cannot (because of the presence of an active InsP6 phosphatase in serum) exist in mammalian serum or urine. Therefore, any physiological effects of dietary InsP6 can only be due either to its actions in the gut as a polyvalent cation chelator, or to inositol generated by its dephosphorylation by gut microflora.We are grateful to Dr Vucenik for bringing up a number of interesting points.It is true that we have not quantified the dietary intakes of our human donors any more (but also hardly any less) than has been done by those groups claiming that InsP6 is present in bodily fluids. As a qualitative observation we should point out that in fact all our donors for ref. [1] do have a regular intake of dietary cereals and indeed, one is a strict vegetarian on a high cereal diet. But it is quantification that reveals this to be a specious issue. The limits of detection in our two relevant publications [1,2] for InsP6 in plasma and urine were, respectively, around two and three orders of magnitude lower than the levels claimed to be present by Grases et al. [3] in the fluids of experimentally phytate-deprived human subjects. These numbers make the argument that we could not detect any InsP6 simply because we chose donors on the ‘wrong’ diet untenable.So how have those many claims that InsP6 is present in body fluids come about? For most of them, the simple answer appears to be that the assays used are indirect and are based entirely on the assumption that InsP6 is present in the first place. Thus, for example, Valiente and co-workers [4,5] and Chen and co-workers [6,7] measured organic phosphate remaining after a series of fractionations of urine samples and simply assumed it was due to InsP6, as did March et al. measuring inorganic phosphate after a similar protocol [8]. Grases co-workers [9] have used extensively a less indirect assay, which, after initial ion chromatography and dephosphorylation by a phytase, measures myo-inositol by mass spectrometry, but nevertheless the assay starts with the assumption that InsP6 is there and that this is what they are quantifying. More recently, direct quantification of InsP6 in plasma by mass spectrometry has been claimed [10] on the basis that there are peaks in plasma at m/z 624 running near where InsP6 standards elute in two different HPLC separations [10,11]. But no evidence is presented to show even that these peaks are the same compound, let alone any data to establish firmly that InsP6 is present, e.g. a minimal requirement of m/z quantified to two decimal places with allowance for C13 content or a full disintegration fingerprint (see also [12]). Any quantified misidentification is likely to have a stochastic element to it, and it is noteworthy that Perelló & Grases have stated [11, p. 255]: ‘…we have found some humans and rats having undetectable [InsP6], probably depending on their diet or other unknown factors’. In the light of the preceding discussion, we can offer a simpler explanation: the InsP6 was never there in the first place.In contrast to these claims we have, using two entirely independent specific and sensitive assays with quantified spiking recovery, unambiguously shown that InsP6 is not present in plasma or urine. This is crucial and central to the whole debate about the actions of dietary InsP6, because it means that InsP6 never enters the blood. It is only absorbed after being dephosphorylated, principally to inositol (see [1,2] for further discussion). Ironically, the most direct evidence for this lies in Dr Vucenik''s own data in experiments examining the fate of radioactive InsP6 fed to animals, in which only inositol was detected in the blood [13]. This particular study was, as Dr Vucenik points out in her letter, conducted on mice. However, exactly the same conclusion (i.e. InsP6 does not enter the circulation from the gut) is equally clear in her earlier study [14], which she did not cite and which was indeed on rats; does this omission ‘reflect poorly’ on Dr Vucenik''s own ‘report and the author''s credibility in culling scientific data’?In short, dietary InsP6 can have only two fates: it can stay in the gut, ultimately to be defecated [15], and while it is there it can chelate metal ions to alter their uptake from the gut into the body. This is no ‘straw-man’ and is certainly the most likely explanation for all of the effects of InsP6 on cultured cells, which comprise the majority of the reports cited by Dr Vucenik. Alternatively, InsP6 can be converted to inositol (principally by the gut microflora [15]) and be taken up as such into the circulation; were any InsP6 to get into the blood it would in any case be rapidly dephosphorylated by the phosphatase activity we have shown to be present in human plasma [1].For animal studies, we have raised the possibility [1,2] that it is the inositol so generated (Vitamin Bh, harmless as far as we know) that is the active mediator of any reported beneficial effects of dietary InsP6. We note that most of the websites touting InsP6 as a dietary supplement advocate inositol as an important (essential?) co-supplement; that the only human cancer study highlighted as important by Dr Vucenik that we could examine [16] did not administer InsP6 alone, but only in conjunction with inositol; and that in the few studies where the separate contributions of inositol and InsP6 have been considered, there are data suggesting that it may be the inositol that matters (e.g. fig. 1 of [17]). Moreover, we are not the only ones to suggest this idea. In the Discussion of their paper (on mice) in which InsP6 was shown not to enter the blood from the gut [13], Dr Vucenik and her colleagues state: ‘Inositol may be responsible for the antitumor actions observed in both chemopreventitive and efficacy studies of IP6 … A question remains as to whether the activity of IP6 in animal models can be replicated by administration of inositol alone because only inositol was detected in plasma and tumor after oral gavage’. Precisely.Finally, returning to InsP6 itself, which, incidentally, is officially classified by the FDA as a ‘fake’ cancer cure (http://www.fda.gov/drugs/guidancecomplianceregulatoryinformation/enforcementactivitiesbyfda/ucm171057.htm), our data lead inevitably to the conclusion that while InsP6 might impact on the gut environment and thus indirectly on its microflora [2,12], its only plausible direct action on the body will be to inhibit cation uptake from the diet. Although InsP6 binds trivalent cations with a higher affinity than divalents [18], it is nevertheless comparatively non-specific in this action. Administering chemicals to the diet to manipulate ion uptake is not unknown in modern medicine; for treatment of iron disorders such as haemochromatosis, as an alternative to injection of Desferral, oral administration of the closely related chelator Deferasirox is now sometimes recommended [19]. But Deferasirox is a highly iron-specific chelator, administered under close medical supervision for a directly iron-related pathology. Recommending unmonitored, widespread administration of InsP6 to address a veritable multitude of different pathologies [20] seems to us to be an entirely different matter.In a well-fed human, where the cation to InsP6 ratio in the diet is high, InsP6 may very well do no harm (it is, after all, a natural component of our diet) and there is much evidence to support this idea, as argued by Dr Vucenik. But if InsP6 is not impacting on cation uptake from the diet to do any harm it is difficult to understand how at exactly the same time it can impact on the same uptake to do good. (See reference [21] for the studies Dr Vucenik requested ‘unequivocally demonstrating the toxicity of pure Ca-Mg-InsP6 as it occurs naturally’ in humans with low dietary cation uptake.) In the light of the above discussion and our rigorous data, we stand unreservedly by our original closing statement [1]: ‘…that chronically altering cation absorption from the gut by artificially loading the diet with a non-specific chelator … in the hope that it might impact indirectly on cancer or other pathologies seems highly inadvisable’.  相似文献   

19.
Ascenzi P  Fasano M  Gradoni L 《IUBMB life》2002,53(6):287-288
Nitric oxide (NO) possesses antiparasitic effects on both Protozoa and Metazoa in definitive and intermediate hosts as well as in vectors. Here, we postulate that hemoglobin and hemocyanin may impair Schistosoma killing by NO in the definitive and intermediate hosts. Interestingly, hemoglobin, myoglobin, and neuroglobin may protect Plasmodium and Trypanosoma from the antiparasitic effects of NO.  相似文献   

20.
Previous studies have indicated that the expression of CCN3, a member of the CCN family of proteins, was tightly regulated during central nervous development and was associated with acquisition of cognitive functions in rats (Perbal, Mol Pathol 54(2):57–79, 2001; Su et al. Sheng Li Xue Bao 52(4):290–294, 2000) therefore suggesting that CCN3 might be involved in higher levels of physiological communication in the brain. In spite of the considerable amount of progress made into the understanding of neuronal organization and communication, reducing the knowledge gap between brain cellular biology and behavioral studies remains a huge challenge. Mind-to-mind communication has been the subject of numerous science fiction writings, intense research and emotional debates for many years. Scientists have tried for a long time to achieve transmission of messages between living subjects via non intrusive protocols. Thanks to the great progress made in imagery and neurosciences, another dimension of neuronal function in communication has now been documented. Two recent experimental demonstrations of direct brain to brain communication without physical contact (Grau et al. (2014) Conscious brain-to-brain communication in humans using non-invasive technologies. PLoS One. Aug 19;9(8)- - Rao et al. (2014) A direct brain-to-brain interface in humans. PLoS One. Nov 5;9(11)) pave the road to more sophisticated applications that could profoundly affect communications of humans with other humans, animals and machines. Although the wide use of such applications might seem a long way off, they raise quite a number of ethical, legal and societal issues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号