首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selected parameters of the pulmonary circulation and right ventricular performance were studied in 30 patients with primary arterial hypertension. Four patients belonged to the WHO class I, four to class I/II, 18 to class II and the remaining four to class III. Patients were eligible, if they were in sinus rhythm, without symptoms of left ventricular failure and diseases that night influence pulmonary pressures, and if drugs affecting cardiac performance could be withdrawn safely for 3 days. Ten healthy subjects served as control group. The mean pulmonary capillary wedge pressure and mean pulmonary artery pressure were similar in both groups. In contrast, the systolic pulmonary arterial pressure exceeded 30 mm Hg in 6 patients. Mean pulmonary vascular resistance was higher in examined patients than in the control group. Right ventricular end-diastolic pressure was above 5 mm Hg in as much as 50% of patients. Mean systolic ejection rate showed a tendency to decrease. The results indicate that part of patients with primary arterial hypertension exhibits disorders in the pulmonary circulation and right ventricular performance.  相似文献   

2.
We characterized hemodynamics and systolic and diastolic right ventricular (RV) function in relation to structural changes in the rat model of monocrotaline (MCT)-induced pulmonary hypertension. Rats were treated with MCT at 30 mg/kg body wt (MCT30, n = 15) and 80 mg/kg body wt (MCT80, n = 16) to induce compensated RV hypertrophy and RV failure, respectively. Saline-treated rats served as control (Cont, n = 13). After 4 wk, a pressure-conductance catheter was introduced into the RV to assess pressure-volume relations. Subsequently, rats were killed, hearts and lungs were rapidly dissected, and RV, left ventricle (LV), and interventricular septum (IVS) were weighed and analyzed histochemically. RV-to-(LV + IVS) weight ratio was 0.29 +/- 0.05 in Cont, 0.35 +/- 0.05 in MCT30, and 0.49 +/- 0.10 in MCT80 (P < 0.001 vs. Cont and MCT30) rats, confirming MCT-induced RV hypertrophy. RV ejection fraction was 49 +/- 6% in Cont, 40 +/- 12% in MCT30 (P < 0.05 vs. Cont), and 26 +/- 6% in MCT80 (P < 0.05 vs. Cont and MCT30) rats. In MCT30 rats, cardiac output was maintained, but RV volumes and filling pressures were significantly increased compared with Cont (all P < 0.05), indicating RV remodeling. In MCT80 rats, RV systolic pressure, volumes, and peak wall stress were further increased, and cardiac output was significantly decreased (all P < 0.05). However, RV end-systolic and end-diastolic stiffness were unchanged, consistent with the absence of interstitial fibrosis. MCT-induced pressure overload was associated with a dose-dependent development of RV hypertrophy. The most pronounced response to MCT was an overload-dependent increase of RV end-systolic and end-diastolic volumes, even under nonfailing conditions.  相似文献   

3.
4.
5.

Background

There have been several reports on dasatinib-induced reversible pulmonary hypertension. This is the first reported case in Latvia; the patient did not discontinue the drug after the first adverse effects in the form of pleural effusions, which we speculate led only to partial reversion of the disease.

Case presentation

A 67-year-old white man with chronic myelogenous leukemia was treated with the dual Src and BCR-ABL tyrosine kinase inhibitor dasatinib. After treatment with dasatinib he had multiple pleural effusions which were suspected to be caused by congestive heart failure. Later a transthoracic Doppler echocardiography and right-sided heart catheterization revealed severe pulmonary hypertension with pulmonary vascular resistance of 12 Wood units and mean pulmonary artery pressure of 53 mmHg. Computed tomography ruled out a possible pulmonary embolism; laboratory specific tests for human immunodeficiency virus, rheumatoid factor, and anti-nuclear antibodies were negative, and dasatinib-induced pulmonary arterial hypertension was diagnosed.A follow-up right-sided heart catheterization and 6-minute walk test done a month after the discontinuation of dasatinib showed significant improvement: mean pulmonary artery pressure of 34 mmHg and pulmonary vascular resistance of 4 Wood units.

Conclusions

Patients should always be closely monitored when using dasatinib for a prolonged time. Dasatinib-induced pulmonary hypertension may be fully reversible after the therapy is suspended, but the key factors involved are still unclear and need to be further studied.
  相似文献   

6.

Background

Riociguat is a soluble guanylate cyclase stimulator approved for pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTPEH). The objective of this study was to evaluate right heart size and function assessed by echocardiography during long term treatment with riociguat.

Methods

Patients who started riociguat treatment (1.0–2.5?mg tid) within the trials phase II, PATENT, PATENTplus, EAS, CHEST and continued treatment for 3–12?months were included in this study. Echocardiography was analysed off-line at baseline, after 3, 6 and 12?months by investigators who were blinded to clinical data. Last and baseline observation carried forward method (LOCF, BOCF) were performed as sensitivity analysis.

Results

Seventy-one patients (45% PAH, 55% CTEPH; 53.5% female; 60?±?13?years, mean pulmonary arterial pressure 46?±?10?mmHg, mean PVR 700?±?282dynes·sec·cm-5) were included. After 6?months, RA and RV area, RV thickness tricuspid regurgitation velocity showed a significant reduction. After 12?months, patients receiving riociguat therapy showed a significant reduction in right atrial (??2.6?±?4.4?cm2, 95% CI -3.84, ??1.33; p?<?0.001, n?=?49) and right ventricular (RV) area (??3.5?±?5.2?cm2, 95% CI -5.1, ??1.9; p?<?0.001; n?=?44), RV thickness (??0.76?±?2.2?mm, 95% CI -1.55, 0.03; n?=?32), and a significant increase in TAPSE (2.95?±?4.78?mm, 95% CI 1.52, 4.39; n?=?45) and RV fractional area change (8.12?±?8.87?mm, 95% CI 4.61, 11.62; n?=?27).Both LOCF and BOCF showed similar results but lower effect sizes.

Conclusion

Patients under long-term treatment with riociguat show significantly reduced right heart size and improved RV function in PAH and CTEPH. Further controlled prospective studies are needed to confirm these results.
  相似文献   

7.
Abstract

Aim: This study assessed the utility of SPARC-like protein 1 (SPARCL1) as a biomarker of maladaptive right ventricular (RV) function in patients with pulmonary hypertension (PH).

Methods: In this prospective study, we examined SPARCL1 levels in 105 patients with adaptive (n?=?34) and maladaptive RV (n?=?32) pressure overload caused by PH, dilated cardiomyopathy (DCM, n?=?18) with LVEF < 35% and preserved RV function and controls without LV or RV abnormalities (n?=?21).

Results: The median SPARCL1 concentration in patients with maladaptive RV function was higher than in those with adaptive RV function (p?<?0.01), DCM (p?<?0.001) or controls (p?<?0.001). Patients with adaptive RV function had higher SPARCL1 concentrations than controls (p?<?0.05), whereas there was no difference between adaptive RV and DCM. SPARCL1 showed good predictive power for maladaptive RV (AUC 0.77, p?<?0.001) with an optimal cut-off value of 9.66?ng/ml. The TAPSE/PASP ratio was the only independent predictor of SPARCL1?≥?9.66?ng/ml in multivariable logistic regression analysis.

Conclusion: SPARCL1 shows potential as novel biomarker of RV pathological remodelling and is associated with RV maladaptation and ventriculoarterial uncoupling in PH.  相似文献   

8.
XR Zuo  Q Wang  Q Cao  YZ Yu  H Wang  LQ Bi  WP Xie  H Wang 《PloS one》2012,7(9):e44485

Background

Most of the deaths among patients with severe pulmonary arterial hypertension (PAH) are caused by progressive right ventricular (RV) pathological remodeling, dysfunction, and failure. Nicorandil can inhibit the development of PAH by reducing pulmonary artery pressure and RV hypertrophy. However, whether nicorandil can inhibit apoptosis in RV cardiomyocytes and prevent RV remodeling has been unclear.

Methodology/Principal Findings

RV remodeling was induced in rats by intraperitoneal injection of monocrotaline (MCT). RV systolic pressure (RVSP) was measured at the end of each week after MCT injection. Blood samples were drawn for brain natriuretic peptide (BNP) ELISA analysis. The hearts were excised for histopathological, ultrastructural, immunohistochemical, and Western blotting analyses. The MCT-injected rats exhibited greater mortality and less weight gain and showed significantly increased RVSP and RV hypertrophy during the second week. These worsened during the third week. MCT injection for three weeks caused pathological RV remodeling, characterized by hypertrophy, fibrosis, dysfunction, and RV mitochondrial impairment, as indicated by increased levels of apoptosis. Nicorandil improved survival, weight gain, and RV function, ameliorated RV pressure overload, and prevented maladaptive RV remodeling in PAH rats. Nicorandil also reduced the number of apoptotic cardiomyocytes, with a concomitant increase in Bcl-2/Bax ratio. 5-hydroxydecanoate (5-HD) reversed these beneficial effects of nicorandil in MCT-injected rats.

Conclusions/Significance

Nicorandil inhibits PAH-induced RV remodeling in rats not only by reducing RV pressure overload but also by inhibiting apoptosis in cardiomyocytes through the activation of mitochondrial ATP-sensitive K+ (mitoKATP) channels. The use of a mitoKATP channel opener such as nicorandil for PAH-associated RV remodeling and dysfunction may represent a new therapeutic strategy for the amelioration of RV remodeling during the early stages of PAH.  相似文献   

9.
目的:观察肺纤维化初期肺动脉高压大鼠肺动脉血管反应性的变化。方法:66只雄性SD大鼠,随机分为博莱霉素(BLM)组和手术对照(Sham)组。BLM组为气管内一次性滴注BLM(5 mg/kg);Sham组为气管内滴注等容量的生理盐水(NS)。应用离体血管张力检测技术测定大鼠肺动脉血管反应性变化;用HE显示肺动脉壁病理形态学变化;Masson染色检测肺纤维化程度;右心漂浮导管技术测定大鼠平均肺动脉压。结果:①BLM组大鼠的肺动脉血管(保留内皮和去内皮)对苯肾上腺素(PE)的收缩反应均弱于Sham组(P均〈0.05)。②BLM组大鼠肺动脉血管(保留内皮)对氯化乙酰胆碱(Ach)的舒张反应明显弱于Sham组(P〈0.01)。③Sham组有内皮的肺动脉血管对L-NAME和PE联合作用的收缩反应明显强于PE单独作用(P〈0.01),而BLM组有内皮肺动脉血管对L-NAME和PE联合作用的收缩反应与对PE单独作用比,其差异无统计学意义(P〉0.05)。④BLM组肺动脉内皮细胞脱落。⑤BLM组大鼠肺组织呈现纤维增生初期的病理特征,且大鼠的平均肺动脉压明显高于Sham组(P〈0.05)。结论:肺纤维化形成初期肺动脉高压大鼠肺动脉血管反应性出现异常。  相似文献   

10.
Chronic pulmonary hypertension in infancy and childhood is characterized by a fixed and progressive increase in pulmonary arterial pressure and resistance, pulmonary arterial remodeling, and right ventricular hypertrophy and systolic dysfunction. These abnormalities are replicated in neonatal rats chronically exposed to hypoxia from birth in which increased activity of Rho-kinase (ROCK) is critical to injury, as evidenced by preventive effects of ROCK inhibitors. Our objective in the present study was to examine the reversing effects of a late or rescue approach to treatment with a ROCK inhibitor on the pulmonary and cardiac manifestations of established chronic hypoxic pulmonary hypertension. Rat pups were exposed to air or hypoxia (13% O(2)) from postnatal day 1 and were treated with Y-27632 (15 mg/kg) or saline vehicle by twice daily subcutaneous injection commencing on day 14, for up to 7 days. Treatment with Y-27632 significantly attenuated right ventricular hypertrophy, reversed arterial wall remodeling, and completely normalized right ventricular systolic function in hypoxia-exposed animals. Reversal of arterial wall remodeling was accompanied by increased apoptosis and attenuated content of endothelin (ET)-1 and ET(A) receptors. Treatment of primary cultured juvenile rat pulmonary artery smooth muscle cells with Y-27632 attenuated serum-stimulated ROCK activity and proliferation and increased apoptosis. Smooth muscle apoptosis was also induced by short interfering RNA-mediated knockdown of ROCK-II, but not of ROCK-I. We conclude that sustained rescue treatment with a ROCK inhibitor reversed both the hemodynamic and structural abnormalities of chronic hypoxic pulmonary hypertension in juvenile rats and normalized right ventricular systolic function. Attenuated expression and activity of ET-1 and its A-type receptor on pulmonary arterial smooth muscle was a likely contributor to the stimulatory effects of ROCK inhibition on apoptosis. In addition, our data suggest that ROCK-II may be dominant in enhancing survival of pulmonary arterial smooth muscle.  相似文献   

11.
Right ventricular (RV) afterload is commonly defined as pulmonary vascular resistance, but this does not reflect the afterload to pulsatile flow. The purpose of this study was to quantify RV afterload more completely in patients with and without pulmonary hypertension (PH) using a three-element windkessel model. The model consists of peripheral resistance (R), pulmonary arterial compliance (C), and characteristic impedance (Z). Using pulmonary artery pressure from right-heart catheterization and pulmonary artery flow from MRI velocity quantification, we estimated the windkessel parameters in patients with chronic thromboembolic PH (CTEPH; n = 10) and idiopathic pulmonary arterial hypertension (IPAH; n = 9). Patients suspected of PH but in whom PH was not found served as controls (NONPH; n = 10). R and Z were significantly lower and C significantly higher in the NONPH group than in both the CTEPH and IPAH groups (P < 0.001). R and Z were significantly lower in the CTEPH group than in the IPAH group (P < 0.05). The parameters R and C of all patients obeyed the relationship C = 0.75/R (R(2) = 0.77), equivalent to a similar RC time in all patients. Mean pulmonary artery pressure P and C fitted well to C = 69.7/P (i.e., similar pressure dependence in all patients). Our results show that differences in RV afterload among groups with different forms of PH can be quantified with a windkessel model. Furthermore, the data suggest that the RC time and the elastic properties of the large pulmonary arteries remain unchanged in PH.  相似文献   

12.
Right heart failure and right ventricular (RV) remodeling were the main reason for mortality of pulmonary hypertension (PH) patients. Apolipoprotein AV (ApoA5) is a key regulator of plasma triglyceride and have multifunction in several target organs. We detected decreased ApoA5 in serum of patients with PH and both in serum and RV of monocrotaline‐induced PH model. Exogenously, overexpression ApoA5 by adenovirus showed protective effects on RV failure and RV fibrosis secondary to PH. In addition, in vitro experiments showed ApoA5 attenuated the activation of fibroblast induced by transforming growth factor β1 and synthesis and secretion of extracellular matrix by inhibiting focal adhesion kinase‐c‐Jun N‐terminal kinase‐Smad3 pathway. Finally, we suggest that ApoA5 may potentially be a pivotal target for RV failure and fibrosis secondary of PH.  相似文献   

13.
The aim of this study was to investigate the contribution of direct right-to-left ventricular interaction to left ventricular filling and stroke volume in 46 patients with pulmonary arterial hypertension (PAH) and 18 control subjects. Stroke volume, right and left ventricular volumes, left ventricular filling rate, and interventricular septum curvature were measured by magnetic resonance imaging and left atrial filling by transesophageal echocardiography. Stroke volume, left ventricular end-diastolic volume, and left ventricular peak filling rate were decreased in PAH patients compared with control subjects: 28 +/- 13 vs. 41 +/- 10 ml/m(2) (P < 0.001), 46 +/- 14 vs. 61 +/- 14 ml/m(2) (P < 0.001), and 216 +/- 90 vs. 541 +/- 248 ml/s (P < 0.001), respectively. Among PAH patients, stroke volume did not correlate to right ventricular end-diastolic volume or mean pulmonary arterial pressure but did correlate to left ventricular end-diastolic volume (r = 0.62, P < 0.001). Leftward interventricular septum curvature was correlated to left ventricular filling rate (r = 0.64, P < 0.001) and left ventricular end-diastolic volume (r = 0.65, P < 0.001). In contrast, left atrial filling was normal and not correlated to left ventricular end-diastolic volume. In PAH patients, ventricular interaction mediated by the interventricular septum impairs left ventricular filling, contributing to decreased stroke volume.  相似文献   

14.
Pulmonary hypertension (PH) causes right ventricular (RV) hypertrophy and, according to the extent of pressure overload, eventual heart failure. We tested the hypothesis that the mechanical stress in PH-RV impairs the vasoreactivity of the RV coronary microvessels of different sizes with increased superoxide levels. Five-week-old male Sprague-Dawley rats were injected with monocrotaline (n=126) to induce PH or with saline as controls (n=114). After 3 wk, coronary arterioles (diameter = 30-100 microm) and small arteries (diameter = 100-200 microm) in the RV were visualized using intravital videomicroscopy. We evaluated ACh-induced vasodilation alone, in the presence of N(omega)-nitro-L-arginine methyl ester (L-NAME), in the presence of tetraethylammonium (TEA) or catalase with or without L-NAME, and in the presence of SOD. The degree of suppression in vasodilation by L-NAME and TEA was used as indexes of the contributions of endothelial nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF), respectively. In PH rats, ACh-induced vasodilation was significantly attenuated in both arterioles and small arteries, especially in arterioles. This decreased vasodilation was largely attributable to reduced NO-mediated vasoreactivity, whereas the EDHF-mediated vasodilation was relatively robust. The suppressive effect on arteriolar vasodilation by catalase was similar to TEA in both groups. Superoxide, as measured by lucigenin chemiluminescence, was significantly elevated in the RV tissues in PH. SOD significantly ameliorated the impairment of ACh-induced vasodilation in PH. Robust EDHF function will play a protective role in preserving coronary microvascular homeostasis in the event of NO dysfunction with increased superoxide levels.  相似文献   

15.
The goal of this study was to determine the in vivo pulmonary arterial buffering function (BF) during acute and moderate pulmonary hypertension achieved by phenylephrine-induced smooth muscle activation.Pulmonary pressure (Konigsberg P7) and diameter (sonomicrometry) were measured in nine anesthetized sheep. Transit pulmonary arterial hypertension was induced by mechanical occlusion of the pulmonary artery (HP) and by phenylephrine infusion (5 g/kg/min) (PHE). A viscoelastic Kelvin-Voigt model was used. By increasing the values of the viscous modulus, the pressure-diameter hysteresis area was reduced to a minimum in order to obtain the purely elastic pressure-diameter relationship. The elastic index (E) was calculated as the first derivative of the exponential model of the purely elastic pressure-diameter relationship at the mean pressure point.Systolic, diastolic, mean and pulse pressures were similar during HP and PHE, but significantly higher with regard to control steady state. In HP, E and arterial diameter (both its minimum and maximum values) increased significantly. In contrast, when pulmonary hypertension was induced by VSM activation, E was maintained concomitantly with pulmonary artery vasoconstriction.Pulmonary hypertension produced by occlusion of the pulmonary artery increases elasticity. Smooth muscle activation may offset the deleterious effect of pulmonary hypertension on arterial wall elasticity by reducing E and impeding arterial dilatation and collagen recruitment, maintaining BF during pulmonary hypertension.  相似文献   

16.

Background

Previous meta-analyses of treatments for pulmonary arterial hypertension (PAH) have not shown mortality benefit from any individual class of medication.

Methods

MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials were searched from inception through November 2009 for randomized trials that evaluated any pharmacotherapy in the treatment of PAH. Reference lists from included articles and recent review articles were also searched. Analysis included randomized placebo controlled trials of at least eight weeks duration and studies comparing intravenous medication to an unblinded control group.

Results

1541 unique studies were identified and twenty-four articles with 3758 patients were included in the meta-analysis. Studies were reviewed and data extracted regarding study characteristics and outcomes. Data was pooled for three classes of medication: prostanoids, endothelin-receptor antagonists (ERAs), and phosphodiesterase type 5 (PDE5) inhibitors. Pooled relative risks (RRs) and 95% confidence intervals (CIs) were calculated for mortality, 6-minute walk distance, dyspnea scores, hemodynamic parameters, and adverse effects. Mortality in the control arms was a combined 4.2% over the mean study length of 14.9 weeks. There was significant mortality benefit with prostanoid treatment (RR 0.49, CI 0.29 to 0.82), particularly comparing intravenous agents to control (RR 0.30, CI 0.14 to 0.63). Mortality benefit was not observed for ERAs (RR 0.58, CI 0.21 to 1.60) or PDE5 inhibitors (RR 0.30, CI 0.08 to 1.08). All three classes of medication improved other clinical and hemodynamic endpoints. Adverse effects that were increased in treatment arms include jaw pain, diarrhea, peripheral edema, headache, and nausea in prostanoids; and visual disturbance, dyspepsia, flushing, headache, and limb pain in PDE5 inhibitors. No adverse events were significantly associated with ERA treatment.

Conclusions

Treatment of PAH with prostanoids reduces mortality and improves multiple other clinical and hemodynamic outcomes. ERAs and PDE5 inhibitors improve clinical and hemodynamic outcomes, but have no proven effect on mortality. The long-term effects of all PAH treatment requires further study.  相似文献   

17.
18.
Mechanisms associated with right ventricular (RV) hypertension and arrhythmias are less understood than those in the left ventricle (LV). The aim of our study was to investigate whether and by what mechanisms a proarrhythmic substrate exists in a rat model of RV hypertension and hypertrophy. Rats were injected with monocrotaline (MCT; 60 mg/kg) to induce pulmonary artery hypertension or with saline (CON). Myocardial levels of mRNA for genes expressing ion channels were measured by real-time RT-PCR. Monophasic action potential duration (MAPD) was recorded in isolated Langendorff-perfused hearts. MAPD restitution was measured, and arrhythmias were induced by burst stimulation. Twenty-two to twenty-six days after treatment, MCT animals had RV hypertension, hypertrophy, and decreased ejection fractions compared with CON. A greater proportion of MCT hearts developed sustained ventricular tachycardias/fibrillation (0.83 MCT vs. 0.14 CON). MAPD was prolonged in RV and less so in the LV of MCT hearts. There were decreased levels of mRNA for K(+) channels. Restitution curves of MCT RV were steeper than CON RV or either LV. Dispersion of MAPD was greater in MCT hearts and was dependent on stimulation frequency. Computer simulations based on ion channel gene expression closely predicted experimental changes in MAPD and restitution. We have identified a proarrhythmic substrate in the hearts of MCT-treated rats. We conclude that steeper RV electrical restitution and rate-dependant RV-LV action potential duration dispersion may be contributing mechanisms and be implicated in the generation of arrhythmias associated with in RV hypertension and hypertrophy.  相似文献   

19.
Pulmonary arterial hypertension (PAH) is a vasculopathy characterized by sustained elevated pulmonary arterial pressures in which the pulmonary vasculature undergoes significant structural and functional remodeling. To better understand disease mechanisms, in this review article we highlight recent insights into the regulation of pulmonary arterial cells by mechanical cues associated with PAH. Specifically, the mechanobiology of pulmonary arterial endothelial cells (PAECs), smooth muscle cells (PASMCs) and adventitial fibroblasts (PAAFs) has been investigated in vivo, in vitro, and in silico. Increased pulmonary arterial pressure increases vessel wall stress and strain and endothelial fluid shear stress. These mechanical cues promote vasoconstriction and fibrosis that contribute further to hypertension and alter the mechanical milieu and regulation of pulmonary arterial cells.  相似文献   

20.
Acute respiratory distress syndrome is a pulmonary disease with a mortality rate of ~40% and 75,000 deaths annually in the United States. Mechanical ventilation restores airway patency and gas transport but leads to ventilator-induced lung injury. Furthermore, surfactant replacement therapy is ineffective due to surfactant delivery difficulties and deactivation by vascular proteins leaking into the airspace. Here, we demonstrated that surfactant function can be substantially improved (up to 50%) in situ in an in vitro pulmonary airway model using unconventional flows that incorporate a short-term retraction of the air-liquid interface, leading to a net decrease in cellular damage. Computational fluid dynamic simulations provided insights into this method and demonstrated the physicochemical hydrodynamic foundation for the improved surfactant microscale transport and mobility. This study may provide a starting point for developing novel ventilation waveforms to improve surfactant function in edematous airways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号