首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微生物能够产生众多结构和生物活性多样的次生代谢产物,而其生物合成基因簇的挖掘和异源表达是药物创新和产量提高的必要前提. 在过去20年里,大量重要天然产物的生物合成基因簇在微生物中被不断的发现. 在这些被挖掘的基因簇中,肽类抗生素的生物合成基因簇占了很大比重.肽类抗生素因具有抗菌、抗肿瘤、抗病毒等多种生物学活性而备受化学家和药物学家的重视. 如能了解它们的生物合成机制,实现其基因簇的异源表达,将使合理化遗传修饰生物合成通路获取结构类似物(药物开发)和提高产量成为可能. 大肠杆菌作为最广泛、最成功的表达体系,常用来表达外源基因,但一般只能表达一个或几个基因,却很少有用它来表达整个生物合成基因簇. 2001年,Khosla和Cane在E.coli中成功异源表达了一个复杂聚酮天然产物(红霉素苷原6dEB)基因簇. 这是首个有关在E.coli中异源表达天然产物生物合成基因簇的研究. 至此之后,大肠杆菌开始作为生物合成基因簇的异源表达宿主,越来越受到相关领域的重视. 紧接着核糖体肽和非核糖体肽生物合成基因簇也相继在大肠杆菌中成功异源表达. 本文对肽类抗生素生物合成基因簇在E.coli中的异源表达进行了综述.  相似文献   

2.
The quest for the discovery of novel natural products has entered a new chapter with the enormous wealth of genetic data that is now available. This information has been exploited by using whole-genome sequence mining to uncover cryptic pathways, or biosynthetic pathways for previously undetected metabolites. Alternatively, using known paradigms for secondary metabolite biosynthesis, genetic information has been 'fished out' of DNA libraries resulting in the discovery of new natural products and isolation of gene clusters for known metabolites. Novel natural products have been discovered by expressing genetic data from uncultured organisms or difficult-to-manipulate strains in heterologous hosts. Furthermore, improvements in heterologous expression have not only helped to identify gene clusters but have also made it easier to manipulate these genes in order to generate new compounds. Finally, and perhaps the most crucial aspect of the efficient and prosperous use of the abundance of genetic information, novel enzyme chemistry continues to be discovered, which has aided our understanding of how natural products are biosynthesized de novo, and enabled us to rework the current paradigms for natural product biosynthesis.  相似文献   

3.
4.
类似于原核生物的操纵子,在真核生物(如酵母、真菌、昆虫等)基因组中也出现了彼此功能相关的非同源基因成簇存在的现象。这些基因形成基因簇,可参与多种次生代谢途径。近年来,植物中也发现了越来越多的参与次生代谢产物合成的基因簇,它们已成为植物生物学研究的热点。本文总结并分析了植物中已鉴定的次生代谢基因簇。这些基因簇存在于玉米(Zea mays L.)、水稻(Oryza sativa L.)、拟南芥(Arabidopsis thaliana(L.) Heynh.)、番茄(Solanum lycopersicum L.)等植物的基因组中,分别参与合成苯并噁唑嗪酮类、萜类和生物碱类等次生代谢产物。本文通过解析这些基因簇的组成及结构特点,对其特征进行总结,探讨了基因簇形成的分子机理及其调控机制,对植物次生代谢基因簇在合成生物学及代谢工程学中的研究方向和应用前景进行了展望。  相似文献   

5.
The genome of actinomycetes and several other microorganisms are endowed with many cryptic gene clusters that can code for previously undetected, a plethora of complex secondary metabolites. Under standard laboratory controlled conditions, the genes regulating these biosynthetic clusters are expressed at very low levels or remain phenotypically cryptic (silent). Over the past several decades, multi-drug-resistant bacteria have been observed with increased frequency, posing a significant threat to human health worldwide. The present alarming situation urgently calls for concerted global efforts for the discovery of new antimicrobials. The present situation, if not controlled, will take us again to the pre-antibiotic era. Today, in the post-genomic era, various new strategies such as the activation of cryptic gene clusters in microorganisms rejuvenate a new conviction in the field of natural product research that may lead to the identification of yet-unidentified novel secondary metabolites of therapeutic and other use. Decryptification of this versatile endogenous genetic reservoir may provide in the near future the more concrete rationale for antibiotic discovery. The present review is an attempt to provide a comprehensive detail, outlining current strategies that have been shown successful to activate cryptic biosynthetic gene clusters in microorganisms.  相似文献   

6.
The full potential of polyketide discovery has yet to be reached owing to a lack of suitable technologies and knowledge required to advance engineering of polyketide biosynthesis. Recent investigations on the discovery, enhancement, and non-natural use of these biosynthetic gene clusters via computational biology, metabolic engineering, structural biology, and enzymology-guided approaches have facilitated improved access to designer polyketides. Here, we discuss recent successes in gene cluster discovery, host strain engineering, precursor-directed biosynthesis, combinatorial biosynthesis, polyketide tailoring, and high-throughput synthetic biology, as well as challenges and outlooks for rapidly generating useful target polyketides.  相似文献   

7.
Microorganisms have a long track record as important sources of novel bioactive natural products, particularly in the field of drug discovery. While microbes have been shown to biosynthesize a wide array of molecules, recent advances in genome sequencing have revealed that such organisms have the potential to yield even more structurally diverse secondary metabolites. Thus, many microbial gene clusters may be silent under standard laboratory growth conditions. In the last ten years, several methods have been developed to aid in the activation of these cryptic biosynthetic pathways. In addition to the techniques that demand prior knowledge of the genome sequences of the studied microorganisms, several genome sequence-independent tools have been developed. One of these approaches is microorganism co-culture, involving the cultivation of two or more microorganisms in the same confined environment. Microorganism co-culture is inspired by the natural microbe communities that are omnipresent in nature. Within these communities, microbes interact through signaling or defense molecules. Such compounds, produced dynamically, are of potential interest as new leads for drug discovery. Microorganism co-culture can be achieved in either solid or liquid media and has recently been used increasingly extensively to study natural interactions and discover new bioactive metabolites. Because of the complexity of microbial extracts, advanced analytical methods (e.g., mass spectrometry methods and metabolomics) are key for the successful detection and identification of co-culture-induced metabolites.  相似文献   

8.
微生物天然产物具有丰富的化学结构多样性和诱人的生物活性,持续启迪着创新医药和农药的发现。近年来,随着高通量测序技术的快速发展,巨大的微生物基因组数据揭示了多样生物合成和新颖天然产物的潜能远高于以前的认知。然而,如何高效地激活隐性的生物合成基因簇 (BGCs) 并识别相应的化合物,以及避免已知代谢产物的重复发现等挑战依然严峻。本文描述了面对这些问题时基因组学、生物信息学、机器学习、代谢组学、基因编辑和合成生物学等新技术在发现药用先导化合物过程中提供的机遇;总结并论述了在潜力菌株优选、BGCs的生物信息学预测、沉默 BGCs的高效激活以及目标产物的识别和跟踪方面的新见解;提出了基于潜力菌株选择和多组学挖掘技术从微生物天然产物中高效发现先导结构的系统线路 (SPLSD),并讨论了未来天然产物药用先导发现的机遇和挑战。  相似文献   

9.
Studies on fungal metabolites have produced an overwhelming expectation concerning the production of novel bioactive compounds for pharmaceutical applications. The adding of various biosynthetic precursors and the changing of nutritional components in the fermentation medium can change biosynthesis pathways, also leading to the production of novel metabolites. In addition, several growing conditions can be classically manipulated to modify fungal metabolite profiles. Recently, modern genome sequence tools have shown that not all gene clusters are regularly expressed in conventional growing conditions, thus expanding the possibilities of modulating the chemical metabolite profiles produced by filamentous fungi. This review discusses and exemplifies classical and epigenetic tools successfully applied to diversify metabolite production and to produce fungal metabolites from silent metabolic pathways.  相似文献   

10.
潘园园  刘钢 《遗传》2018,40(10):874-887
在目前已知的具有生物活性的微生物次级代谢物中约有50%是由丝状真菌产生的,其中包括人们所熟知的青霉素、环孢菌素A以及洛伐他汀等。鉴于丝状真菌次级代谢物在农业、医药和工业上的重要价值,它们的生物合成及其分子调控一直备受关注。丝状真菌次级代谢物的生物合成是一个复杂的过程,一般涉及多步酶学反应,该过程往往受到不同水平的调控。深入了解丝状真菌次级代谢的分子调控机制,可以为其产量的提高、新骨架化合物的发掘以及隐性次级代谢物的激活奠定重要的理论基础。本文以丝状真菌次级代谢分子调控为主线,重点介绍近40年来我国科研工作者在该领域取得的研究进展,并对这一领域未来的发展进行展望。  相似文献   

11.
Modified nucleosides produced by Streptomyces and related actinomycetes are widely used in agriculture and medicine as antibacterial, antifungal, anticancer and antiviral agents. These specialized small-molecule metabolites are biosynthesized by complex enzymatic machineries encoded within gene clusters in the genome. The past decade has witnessed a burst of reports defining the key metabolic processes involved in the biosynthesis of several distinct families of nucleoside antibiotics. Furthermore, genome sequencing of various Streptomyces species has dramatically increased over recent years. Potential biosynthetic gene clusters for novel nucleoside antibiotics are now apparent by analysis of these genomes. Here we revisit strategies for production improvement of nucleoside antibiotics that have defined mechanisms of action, and are in clinical or agricultural use. We summarize the progress for genetically manipulating biosynthetic pathways for structural diversification of nucleoside antibiotics. Microorganism-based biosynthetic examples are provided and organized under genetic principles and metabolic engineering guidelines. We show perspectives on the future of combinatorial biosynthesis, and present a working model for discovery of novel nucleoside natural products in Streptomyces.  相似文献   

12.
Bacteria of the genus Frankia are mycelium-forming actinomycetes that are found as nitrogen-fixing facultative symbionts of actinorhizal plants. Although soil-dwelling actinomycetes are well-known producers of bioactive compounds, the genus Frankia has largely gone uninvestigated for this potential. Bioinformatic analysis of the genome sequences of Frankia strains ACN14a, CcI3, and EAN1pec revealed an unexpected number of secondary metabolic biosynthesis gene clusters. Our analysis led to the identification of at least 65 biosynthetic gene clusters, the vast majority of which appear to be unique and for which products have not been observed or characterized. More than 25 secondary metabolite structures or structure fragments were predicted, and these are expected to include cyclic peptides, siderophores, pigments, signaling molecules, and specialized lipids. Outside the hopanoid gene locus, no cluster could be convincingly demonstrated to be responsible for the few secondary metabolites previously isolated from other Frankia strains. Few clusters were shared among the three species, demonstrating species-specific biosynthetic diversity. Proteomic analysis of Frankia sp. strains CcI3 and EAN1pec showed that significant and diverse secondary metabolic activity was expressed in laboratory cultures. In addition, several prominent signals in the mass range of peptide natural products were observed in Frankia sp. CcI3 by intact-cell matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). This work supports the value of bioinformatic investigation in natural products biosynthesis using genomic information and presents a clear roadmap for natural products discovery in the Frankia genus.  相似文献   

13.
天然产物结构复杂、活性多样,是新药开发的重要来源,对天然产物生物合成途径的研究,有利于探索酶催化的合成机制,促进复杂天然产物的应用。天然产物的生物合成由其对应的基因簇调控,其中大量天然产物生物合成基因簇(biosynthetic gene clusters,BGCs)在野生型菌株中无法表达或表达量低。对这些基因簇的研究,需要进行克隆表达,而如何克隆大片段基因簇并使其表达,从而发现新型天然产物是一个具有挑战性的问题。其中构建基因组文库、转化关联重组(transformation-associated recombination,TAR)、Red/ET重组等是克隆大片段基因簇的重要技术。本文从克隆技术的策略和应用两个方面,总结了这3种克隆技术目前的研究进展,讨论了目前大片段基因簇克隆技术面临的挑战,为研究大片段基因簇提供方法学借鉴。  相似文献   

14.
The recent increase and availability of whole genome sequences have revised our view of the metabolic capabilities of microorganisms. From these data, a large number of orphan biosynthesis pathways have been identified by bio-informatics. Orphan biosynthetic pathways are gene clusters for which the encoded natural product is unknown. It is worthy to note that the number of orphan pathways coding for putative natural products outnumbers by far the number of currently known metabolites for a given organism. Whilst Streptomyces coelicolor was known to produce only 4 secondary metabolites, the genome analysis revealed 18 additional orphan biosynthetic pathways. It is intriguing to note that this is not a particular case because analysis of other microbial genomes originating from myxobacteria, cyanobacteria and filamentous fungi showed the presence of a comparable or even larger number of orphan pathways. The discovery of these numerous pathways represents a treasure trove, which is likely to grow exponentially in the future, uncovering many novel and possibly bio-active compounds. The few natural products that have been correlated with their orphan pathway are merely the tip of the iceberg, whilst plenty of metabolites await discovery. The recent strategies and methods to access these promising hidden natural products are discussed in this review.  相似文献   

15.
基因组学技术解码天然产物合成   总被引:1,自引:0,他引:1  
池淏甜  陈实 《生物工程学报》2019,35(10):1889-1900
天然产物一直以来都是新药发现的重要来源。自20世纪末以来,随着组学技术的不断发展,许多生物的基因组被破译并解析,发现基因组中潜藏着众多未知的天然产物生物合成基因簇,而这些基因簇在实验室生长条件下无法表达或低表达。因此,需要综合运用多种学科深入挖掘生物中潜藏的具有新型结构和生物活性的天然产物,使其广泛应用于人类的生产生活。文中将从天然产物合成基因簇的挖掘、“沉默”天然产物合成途径的激活和生物底盘构建3个方面简述基因组学技术在天然产物挖掘中的研究进展。  相似文献   

16.
Natural products are important because of their significant pharmaceutical properties such as antiviral, antimicrobial, and anticancer activity. Recent breakthroughs in DNA sequencing reveal that a great number of cryptic natural product biosynthetic gene clusters are encoded in microbial genomes, for example, those of Streptomyces species. However, it is still challenging to access compounds from these clusters because many source organisms are uncultivable or the genes are silent during laboratory cultivation. To address this challenge, we develop an efficient cell-free platform for the rapid, in vitro total biosynthesis of the nonribosomal peptide valinomycin as a model. We achieve this goal in two ways. First, we used a cell-free protein synthesis (CFPS) system to express the entire valinomycin biosynthetic gene cluster (>19 kb) in a single-pot reaction, giving rise to approximately 37 μg/L of valinomycin after optimization. Second, we coupled CFPS with cell-free metabolic engineering system by mixing two enzyme-enriched cell lysates to perform a two-stage biosynthesis. This strategy improved valinomycin production ~5000-fold to nearly 30 mg/L. We expect that cell-free biosynthetic systems will provide a new avenue to express, discover, and characterize natural product gene clusters of interest in vitro.  相似文献   

17.
盐孢菌属(Salinispora)作为首个被报道的专性海洋放线菌,主要分布于热带和亚热带海洋沉积环境中,在海绵、海鞘中也有发现。与其他大多数放线菌一样,盐孢菌属的菌株可以产生大量具有抗细菌、抗病毒、抗肿瘤细胞活性、结构新颖的次级代谢产物且表现出物种特异性。全基因组序列分析显示,盐孢菌属菌株基因组中超过10%的基因序列与次级代谢产物合成相关,但绝大多数生物合成基因簇编码的产物未被发现,表明盐孢菌属还存在巨大的生物合成潜能,有待深入发掘。目前新的培养方法、测序技术及生物信息学、基因组发掘技术、合成生物学技术的发展对提升盐孢菌属菌株新型药物的生产潜力发挥重要作用。本文对盐孢菌属的物种多样性、系统分类与化合物发现等方面的研究进行了系统综述。  相似文献   

18.
19.
Exploiting the genetic potential of polyketide producing streptomycetes   总被引:4,自引:0,他引:4  
Streptomycetes are the most important bacterial producers of bioactive secondary metabolites such as antibiotics or cytostatics. Due to the emerging resistance of pathogenic bacteria to all commonly used antibiotics, new and modified natural compounds are required for the development of novel drugs. In addition to the classical screening for natural compounds, genome driven approaches like combinatorial biosynthesis are permanently gaining relevance for the generation of new structures. This technology utilizes the combination of genes from different biosynthesis pathways resulting in the production of novel or modified metabolites. The basis for this strategy is the access to a significant number of genes and the knowledge about the activity and specificity of the enzymes encoded by them. A joint initiative was started to exploit the biosynthesis gene clusters from streptomycetes. In this publication, an overview of the strategy for the identification and characterization of numerous biosynthesis gene clusters for polyketides displaying interesting functions and particular structural features is given.  相似文献   

20.
Gene clusters for the synthesis of secondary metabolites are a common feature of microbial genomes. Well-known examples include clusters for the synthesis of antibiotics in actinomycetes, and also for the synthesis of antibiotics and toxins in filamentous fungi. Until recently it was thought that genes for plant metabolic pathways were not clustered, and this is certainly true in many cases; however, five plant secondary metabolic gene clusters have now been discovered, all of them implicated in synthesis of defence compounds. An obvious assumption might be that these eukaryotic gene clusters have arisen by horizontal gene transfer from microbes, but there is compelling evidence to indicate that this is not the case. This raises intriguing questions about how widespread such clusters are, what the significance of clustering is, why genes for some metabolic pathways are clustered and those for others are not, and how these clusters form. In answering these questions we may hope to learn more about mechanisms of genome plasticity and adaptive evolution in plants. It is noteworthy that for the five plant secondary metabolic gene clusters reported so far, the enzymes for the first committed steps all appear to have been recruited directly or indirectly from primary metabolic pathways involved in hormone synthesis. This may or may not turn out to be a common feature of plant secondary metabolic gene clusters as new clusters emerge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号