首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA damage blocks DNA polymerase progression and increases miscoding. In this study, we assessed the effects of specific lesions on Taq DNA polymerase fidelity and amplification efficiency. In the presence of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), Taq DNA polymerase inserted dCMP and to a lesser extent dAMP. 8-Oxo-7,8-dihydro-2'-deoxyadenosine (8-oxodA) instructed the incorporation of dTMP and caused a pronounced n-1 deletion not observed in other systems. The presence of an abasic lesion led to dAMP incorporation and n-1 deletions. In addition, we introduce the mean modified efficiency (MME) as a more precise method for determining PCR amplification efficiency of damaged templates. Using this method, we were able to quantify reductions in amplification efficiency of templates containing 8-oxodG (single or multiple), 8-oxodA, or abasic sites. Because the MME method can detect small reductions in amplification efficiency, it may be useful in comparing the extent of damage in environmentally degraded or archival DNA specimens.  相似文献   

2.
We report an efficient procedure to synthesize either single- or double-stranded probes labeled with biotin-11-dUTP, biotin-21-dUTP or digoxigenin-11-dUTP. To produce the single-stranded probe, only a single primer is utilized in a Taq polymerase amplification of 55 cycles. A cytomegalovirus probe is presented. This procedure allows easy production of nonradioactively labeled pure single-stranded probes of any desired length and specificity.  相似文献   

3.
Although the thermophilic bacterium Thermus aquaticus grows optimally at 70°C and cannot grow at moderate temperatures, its DNA polymerase I has significant activity at 20–37°C. This activity is a bane to some PCRs, since it catalyzes non-specific priming. We report mutations of Klentaq (an N-terminal deletion variant) DNA polymerase that have markedly reduced activity at 37°C yet retain apparently normal activity at 68°C and resistance at 95°C. The first four of these mutations are clustered on the outside surface of the enzyme, nowhere near the active site, but at the hinge point of a domain that has been proposed to move at each cycle of nucleotide incorporation. We show that the novel cold-sensitive mutants can provide a hot start for PCR and exhibit slightly improved fidelity.  相似文献   

4.
Displacement probes have recently been described as a novel probe-based detection system for use in both quantitative real-time polymerase chain reaction (PCR) and single nucleotide polymorphism genotyping analysis. Previous reports have shown that shorter probes (23 mer) had improved detection sensitivity relative to longer probes (29 mer), with the likely reason for this effect being the improved hybridization kinetics of shorter probes. Sterically modified locked nucleic acids (LNAs) have been used to improve the design of a range of real-time PCR probes by raising the melting temperature (Tm) of the probe and enabling shorter probe designs to be considered. A displacement probe for gapdh was designed and tested successfully, and this probe was then redesigned with LNAs to an 11 mer probe. This probe showed increased detection sensitivity compared with the original 26 mer probe. To detect the widest range of displacement probe designs at maximum sensitivity, we have also developed a novel fluorescence capture two-step PCR protocol. This method produces enhanced probe quenching with a single standardized protocol ideal for high-throughput applications. The displacement probes tested produced sensitive and efficient quantitative analyses of template serial dilutions when compared with a range of commercially available predesigned real-time PCR detection systems, including TaqMan MGB probes, QuantiTect MGB probes, and LUX primers.  相似文献   

5.
Deletion of the first 289 amino acids of the DNA polymerase from Thermus aquaticus (Taq polymerase) removes the 5' to 3' exonuclease domain to yield the thermostable Stoffel polymerase fragment (Lawyer et al., 1989). Preliminary N-terminal truncation studies of the Stoffel fragment suggested that removal of an additional 12 amino acids (the Stof delta 12 mutant) had no significant effect on activity or stability, but that the further truncation of the protein (the Stof delta 47, in which 47 amino acids were deleted), resulted in a significant loss of both activity and thermostability. A 33-amino acid synthetic peptide, based on this critical region (i.e., residues 303-335 inclusive), was able to restore 85% of the Stof delta 12 activity when added back to the truncated Stof delta 47 protein as well as return the temperature optimum to that of the Stof delta 12 and Stoffel proteins. Examination of the crystal structure of Taq polymerase (Kim et al., 1995) shows that residues 302-336 of the enzyme form a three-stranded beta-sheet structure that interacts with the remainder of the protein. CD analysis of the 33-amino acid peptide indicates that the free peptide also adopts an ordered structure in solution with more than 50% beta-sheet content. These data suggest that this 33-amino acid peptide constitutes a stable beta-sheet structure capable of rescuing the truncated polymerase in a fashion analogous to the well-documented complementation of Ribonuclease S protein by the 15-residue, alpha-helical, S peptide.  相似文献   

6.
7.
We tested the ability of Taq DNA polymerase (Taq) to amplify long DNA fragments and showed that, if the conditions were set properly, Taq could successfully perform the "long PCR" up to 24 kb. The conditions include: (1) longer primers, (2) a 2-step cycling, and (3) a "long buffer." We propose that the most important requirements are the survival rate of Taq at high temperatures and that of the primers against the 5' to 3' exonuclease activity of Taq.  相似文献   

8.
9.
10.
11.
12.
13.

Background

Based upon defining a common reference point, current real-time quantitative PCR technologies compare relative differences in amplification profile position. As such, absolute quantification requires construction of target-specific standard curves that are highly resource intensive and prone to introducing quantitative errors. Sigmoidal modeling using nonlinear regression has previously demonstrated that absolute quantification can be accomplished without standard curves; however, quantitative errors caused by distortions within the plateau phase have impeded effective implementation of this alternative approach.

Results

Recognition that amplification rate is linearly correlated to amplicon quantity led to the derivation of two sigmoid functions that allow target quantification via linear regression analysis. In addition to circumventing quantitative errors produced by plateau distortions, this approach allows the amplification efficiency within individual amplification reactions to be determined. Absolute quantification is accomplished by first converting individual fluorescence readings into target quantity expressed in fluorescence units, followed by conversion into the number of target molecules via optical calibration. Founded upon expressing reaction fluorescence in relation to amplicon DNA mass, a seminal element of this study was to implement optical calibration using lambda gDNA as a universal quantitative standard. Not only does this eliminate the need to prepare target-specific quantitative standards, it relegates establishment of quantitative scale to a single, highly defined entity. The quantitative competency of this approach was assessed by exploiting "limiting dilution assay" for absolute quantification, which provided an independent gold standard from which to verify quantitative accuracy. This yielded substantive corroborating evidence that absolute accuracies of ± 25% can be routinely achieved. Comparison with the LinReg and Miner automated qPCR data processing packages further demonstrated the superior performance of this kinetic-based methodology.

Conclusion

Called "linear regression of efficiency" or LRE, this novel kinetic approach confers the ability to conduct high-capacity absolute quantification with unprecedented quality control capabilities. The computational simplicity and recursive nature of LRE quantification also makes it amenable to software implementation, as demonstrated by a prototypic Java program that automates data analysis. This in turn introduces the prospect of conducting absolute quantification with little additional effort beyond that required for the preparation of the amplification reactions.  相似文献   

14.
15.
This study evaluated the applicability of droplet digital PCR (ddPCR) as a tool for maize zygosity determination using quantitative real-time PCR (qPCR) as a reference technology. Quantitative real-time PCR is commonly used to determine transgene copy number or GMO zygosity characterization. However, its effectiveness is based on identical reaction efficiencies for the transgene and the endogenous reference gene. Additionally, a calibrator sample should be utilized for accuracy. Droplet digital PCR is a DNA molecule counting technique that directly counts the absolute number of target and reference DNA molecules in a sample, independent of assay efficiency or external calibrators. The zygosity of the transgene can be easily determined using the ratio of the quantity of the target gene to the reference single copy endogenous gene. In this study, both the qPCR and ddPCR methods were used to determine insect-resistant transgenic maize IE034 zygosity. Both methods performed well, but the ddPCR method was more convenient because of its absolute quantification property.  相似文献   

16.
Summary We have studied the effects of agar and agarose on Vent DNA polymerase and Taq DNA polymerase. Agar strongly inhibited Vent DNA polymerase but only moderately inhibited Taq DNA polymerase. Such a difference may be due to the fact that the two polymerases belong to different structural families. When Vent DNA polymerase is used to amplify DNA from lambda plaques, agarose rather than agar is the solid medium of choice.  相似文献   

17.
18.
19.
20.

Background

Isolation of Rickettsia species from skin biopsies may be replaced by PCR. We evaluated culture sensitivity compared to PCR based on sampling delay and previous antibiotic treatment.

Methodology/Principal Findings

Skin biopsies and ticks from patients with suspected Rickettsia infection were screened for Rickettsia spp. using qPCR, and positive results were amplified and sequenced for the gltA and ompA genes. Immunofluorescence for spotted fever group rickettsial antigens was done for 79 patients. All skin biopsies and only ticks that tested positive using qPCR were cultured in human embryonic lung (HEL) fibroblasts using the centrifugation-shell vial technique. Patients and ticks were classified as definitely having rickettsioses if there was direct evidence of infection with a Rickettsia sp. using culture or molecular assays or in patients if serology was positive. Data on previous antibiotic treatments were obtained for patients with rickettsiosis. Rickettsia spp. infection was diagnosed in 47 out of 145 patients (32%), 41 by PCR and 12 by culture, whereas 3 isolates were obtained from PCR negative biopsies. For 3 of the patients serology was positive although PCR and culture were negative. Rickettsia africae was the most common detected species (n = 25, [17.2%]) and isolated bacterium (n = 5, [3.4%]). The probability of isolating Rickettsia spp. was 12 times higher in untreated patients and 5.4 times higher in patients from our hometown. Rickettsia spp. was amplified in 24 out of 95 ticks (25%) and we isolated 7 R. slovaca and 1 R. raoultii from Dermacentor marginatus.

Conclusions/Significance

We found a positive correlation between the bacteria copies and the isolation success in skin biopsies and ticks. Culture remains critical for strain analysis but is less sensitive than serology and PCR for the diagnosis of a Rickettsia infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号