首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Ontogenetic shifts in prey choice and predator behaviour can affect food‐web structure. Therefore, it is important to establish if the diet and feeding activity differ between life‐stages of the same species. This hypothesis was tested for second, third, fourth and fifth larval instars of Rhyacophila dorsalis by comparing their diel activity and feeding patterns. Second to fifth instars collected from two streams were used either for gut analyses or for observations of their activity and feeding patterns in three stream tanks. Food was provided in excess; being organisms living in bryophytes on top of a large stone in each tank, augmented by different‐sized larvae of Ephemeroptera, Simuliidae and Chironomidae. As few first instars for gut analyses were found in the field, the diet of first instars reared in the laboratory was also studied. 2. Larvae for gut analyses were taken 1 h before dusk or dawn (n = 50 larvae per instar for each day or night sample). First and second instars fed on the smaller food items with no significant day‐night differences in diet. Gut contents indicated a progressive trend from feeding chiefly at night in third instars to almost exclusively at night in fifth instars. Fourth and fifth instars fed on the larger food items, whilst the diet of the third instar larvae overlapped with that of both the earlier and later instars. 3. Diel activity patterns of single larvae differed between instars but not within each instar (n = 20 larvae per instar). Second instars were active throughout the 24 h, with peaks at dusk, around midnight, dawn and around midday. A similar pattern was shown by third instars but the peak of activity at midday was less than the other three peaks. Prey were captured only during these peaks for both instars. Fourth and fifth instars were most active, and fed only, at night. They used an ambush strategy to capture more active prey at dusk and dawn (e.g. Baetis, Gammarus), and a searching strategy to capture more sedentary prey during the night (e.g. chironomids, simuliids). These experiments provided support for the hypothesis under test. If competition and/or interference occur between instars, then it could be reduced between earlier and later instars because of differences in their diet and diel pattern of feeding activity.  相似文献   

2.

The male, female, pupa, 9th‐instar larva, and egg of Austrosimulium (Austrosimulium) tillyardianum Dumbleton, 1973, are redescribed, and larval instars one to eight are described and morphologically differentiated for the first time. The relationship of A. (A.) tillyardianum to other New Zealand species is briefly reviewed.  相似文献   

3.
1. Three predatory chironomid species constituted numerically 8.8% (± 95% CL 2.2) of the macro- and meiobenthic community at the sediment surface and in the hyporheic zone of Oberer Seebach, a gravel stream in Lower Austria. Larvae of Thienemannimyia geijskesi (Goetghebuer) and Nilotanypus dubius (Meigen) occurred in higher densities in sediment depths between 10 and 40 cm, whereas Conchapelopia pallidula (Meigen) achieved higher densities at the sediment surface. The three species completed one generation in a year. 2. A total of ninety-seven prey species and instars were identified by gut analyses, of which forty-one benthic rotifer species constituted 69.5% of individuals and twenty-three chironomid species and their instars, 22.9%. The three tanypod species showed shifts from mainly rotifer species in early instars to chironomids and diverse other meio- and macrofaunal taxa in later instars. Rather than shifting towards larger prey sizes, growing predators expanded their upper size thresholds and continued to include smaller prey species in their diet. The extent to which tanypod instars fed on similar prey size classes declined with increasing larval size. Predation by tanypods amounted to 2.2% (± 95% CL 0.1) of the combined prey densities and prey consumption averaged 1.32 (bootstrap 95% CL 1.26–1.39) individuals per predator individual. 3. Preferences for microhabitat flow differed between predator species and in the prey assemblage. Prey densities and densities of T. geijskesi and C. pallidula were highest in pool areas, whereas N. dubius achieved high densities in riffle sites. 4. Tanypod larvae fed non-selectively among prey types. To test the significance of observed size(instar)-specific spatial and dietary overlap values amongst tanypod species, simulations were generated from random models for pairs of intra- and interspecific associations of individuals and groups of prey and predator species. Groups and individuals of tanypod instars fed near randomly on groups of prey types and a high proportion (P > 0.60) of prey individuals are quasi-randomly chosen by tanypods in those patches. Tanypod instar-pairs did not show a sustained trophic resource partitioning in time, thus reducing the degree of competitive interactions for food in this predator guild. Spatially segregated and non-segregated tanypod instars formed random aggregations independent of each other at different flow microhabitats. 5. Species-rich prey assemblages such as benthic rotifers and larval chironomids increased the probability of non-selective feeding upon a wide spectrum of prey species by tanypods. Prey choice was governed by prey availability and tanypod individuals fed on many species at rather even proportions independent of each other.  相似文献   

4.
Patch selection for cobbles covered by different food types, with and without deposited sediment, by two common New Zealand stream invertebrates, the snail Potamopyrgus antipodarum (Hydrobiidae) and the mayfly Deleatidium sp. (Leptophlebiidae), was quantified. Each taxa was exposed to cobbles covered by (1) filamentous green algae (FGA) or diatoms, and (2) diatoms or heterotrophic biofilms. Two cobbles of each food type were used in each trial, one of which was contaminated by deposited sediment. All cobbles were embedded in plaster in small basins to prevent animals hiding under them, and a known number of animals placed into each basin. The location of each animal was recorded over time, with some observations being made during darkness to see whether this influenced animal movement. More Potamopyrgus were found on cobbles covered by FGA than cobbles covered by diatoms. Sediment-contaminated cobbles covered with FGA also supported more snails than uncontaminated cobbles covered with diatoms. More Potamopyrgus were found on cobbles covered by diatoms than biofilms, and sediment reduced their preference for both these foods. More Deleatidium nymphs were found on diatom-covered cobbles than FGA-covered cobbles. Sediment reduced the preference of Deleatidium for diatoms, but more animals were found on cobbles with sediment-contaminated diatoms than uncontaminated FGA. Patch selection was similar between cobbles covered by either diatoms or biofilms, but sediment reduced the preference of both these foods to Deleatidium. More Deleatidium were recorded on bare plaster during darkness, suggesting they were more mobile at night and searching for new habitats. These results help explain the common occurrence of Potamopyrgus in streams draining developed catchments where FGA blooms and deposited sediment are common, and of Deleatidium in streams draining less developed catchments where FGA and deposited sediment are uncommon.  相似文献   

5.
The distribution, abundance and standing crop biomass of chironomid larvae were determined at one-meter depth intervals along three radial transects. Samples were collected by coring soft sediments while diving. Three genera were found in the lake: Chironomus sp. (collector-filtering larvae), Ablabesmyia sp. (predatory larvae) and Goeldichironomus sp. (collector-filtering larvae). Standing crop densities of chironomids, averaged over the entire lake, varied from 30,594 larvae/m2 to 11,428 larvae/m2 at different depths. No statistically significant zonation in density was found for the two most common taxa, Chironomus sp. (87.8% of specimens) and Ablabesmyia sp. (9.0%), however the deepest zones (>4 m) had the lowest estimated densities. Significant differences in standing crop biomass were detected, with the 6 m depth having greatest biomass. The increase in standing crop biomass was a function of (1) lower frequency of first instars of Chironomus sp. and Ablabesmyia sp. at 6 m (2) higher average larval biomass of both species at 6 m and (3) very significant increase in average biomass of fourth instars of Chironomus sp. at 6 m compared to fourth instars at shallower depths. These results indicate that the lentic chironomids of this isolated oceanic habitat consist of a small number of species that are ecological generalists and tolerant of low oxygen concentrations.  相似文献   

6.
1. Ontogenetic shifts in predator behaviour can affect the assessment of food‐web structure and the development of predator–prey models. Previous studies have shown that the diel activity pattern and functional response differed between larval instars of the carnivorous caddis, Rhyacophila dorsalis. The present study examines switching by larvae of R. dorsalis presented with different proportions of two prey types; either small (length 2–4 mm) and large (5–8 mm) Chironomus larvae for second, third, fourth and fifth instars of R. dorsalis; or Baetis rhodani (9–12 mm) and large Chironomus larvae for fourth and fifth instars. Experiments were performed in stream tanks with one Rhyacophila larva per tank and 200 prey arranged in nine different combinations of the two prey types (20 : 180, 40 : 160, 60 : 140, 80 : 120, 100 : 100, 120 : 80, 140 : 60, 160 : 40 and 180 : 20). Prey were replaced as they were eaten. A model predicted the functional response in the absence of switching and provided a null hypothesis against which any tendency to switch could be tested. 2. There was no prey switching in the second and third instars, with both instars always showing a preference for small over large Chironomus larvae. Prey switching occurred in the fourth and fifth instars. As the relative abundance of one prey type increased in relation to the alternative, the proportion eaten of the former prey changed from less to more than expected from its availability, the relationship being described by an S‐shaped curve. In the experiments with small and large Chironomus, the two instars switched to large larvae when their percentage of the total available prey exceeded 29% and 37% for fourth and fifth instars, respectively. In the experiments with Baetis and large Chironomus, both instars switched to Baetis larvae when their percentage of the total available prey exceeded 36%. 3. Non‐switching in second and third instars was related to their feeding strategies, both instars preferring smaller prey items. When the fourth and fifth instars foraged actively at night, they preferred larger over small Chironomus larvae, but when they behaved as ambush predators at dusk, they captured the more active Baetis larvae in preference to the more sedentary large Chironomus larvae and only switched to the latter when they were >64% of the available prey.  相似文献   

7.
The seasonal change in gut contents of nymphs of Isoperla grammatica and I. difformis from six streams in southern Sweden was analysed. Both species had ingested a variety of benthic prey and vegetable matter, predominantly diatoms. Some seasonality was evident with high percentages of diatoms in spring in I. grammatica, and in autumn in I. difformis. The scope of food was larger in the latter species which contained about equal proportions of vegetable matter, chironomids, mayfly, stonefly, and black fly larvae. In I. grammatica plant matter and chironomids dominated strongly, comprising > 50% of the gut contents on an annual basis, > 90 % in spring. While small nymphs of I. difformis contained a low proportion of animal matter, only gradually increasing with size, the nymphs of I. grammatica were carnivorous from very early instars. Both species switched to a temporarily strong utilization of algae in spring. This differed among sites, and appeared to reflect differences in insolation and thus the availability of algae. There was a significant negative relationship between the mean densities of Isoperla nymphs and the proportion of animal material found in the guts of I. grammatica (R 2 = 0.86). Considering the density of I. grammatica alone, the relationship was weaker (R 2 = 0.56). A positive correlation between predator and prey size was observed. With chironomid prey the size range increased with predator size. With simuliid prey, however, prey size increased with predator size in such a way that it suggests selection rather than just an expanding prey size range. Correlations were stronger and regression coefficients significantly higher for I. grammatica than for I. difformis. We suggest that I. grammatica, which ingests a much wider size range of prey might choose prey of optimal sizes more readily than the more synchronously developing I. difformis. Although the life cycles of the two species are staggered, overlap in size distribution indicates that competition for food could be important in spring. However, observed differences in diet should facilitate coexistence. Gut content differences might in turn be accomplished through microhabitat segregation.  相似文献   

8.
1. Ontogenetic shifts in predator behaviour can affect the assessment of food‐web structure and the development of predator–prey models. Therefore, it is important to establish if the functional response and interference interactions differ between life‐stages. These hypotheses were tested by (i) comparing the functional response of second, third, fourth and fifth larval instars of Rhyacophila dorsalis, using three stream tanks with one Rhyacophila larva per tank and one of 10 prey densities between 20 and 200 larvae of Chironomus sp.; (ii) using other experiments to assess interference within instars (two to five larvae of the same instar per tank), and between pairs of different instars (one, two or three larvae per instar; total predator densities of two, four or six larvae per tank). 2. The first hypothesis was supported. The number of prey eaten by each instar increased with prey density, the relationship being described by a type II model. The curvilinear response was stronger for fourth and fifth instars than for second and third instars. Mean handling time did not change significantly with prey density, and increased with decreasing instar number from 169 s for fifth instars to 200 s for second instars. Attack rate decreased progressively with decreasing instar number. Handling time varied considerably for each predator–prey encounter, but was normally distributed for each predator instar. Variations in attack rate and handling time were related to differences in activity between instars, fourth and fifth instars being more active and aggressive than second and third instars, and having a higher food intake. 3. The second hypothesis was partially supported. In the interference experiments between larvae of the same instar or different instars, mean handling time did not change significantly with increasing predator density, and attack rate did not change for second and third instars but decreased curvilinearly for fourth and fifth instars. Interference between some instars could not be studied because insufficient second instars were available at the same time as fourth and fifth instars, and most third instars were eaten by fourth and fifth instars in the experiments. Prey capture always decreased with decreasing attack rate. Therefore, interference reduced prey consumption in fourth and fifth instars, but not in second and third instars. The varying feeding responses of different instars should be taken into account when assessing their role in predator–prey relationships in the field.  相似文献   

9.
Sheldon  Andrew L.  Oswood  Mark W. 《Hydrobiologia》1977,56(2):113-120
A mathematical model based on assumptions of proportionality of filter-feeding insect larvae and their food supply and of the ability of the larvae to substantially reduce the sestonic food supply was developed. The predictions of the model were tested by censusing simuliid blackfly larvae in the outlet stream of a mesotrophic lake. Observed trends in simuliid density agree closely with the predictions. Two seston components (diatoms, detritus) increase downstream contrary to prediction. Potential predators of simuliids were censumed. Isoperla spp. decreased with increasing distance below the lake while the perlid stoneflies Calineuria and Hesperoperla seemed to be excluded from the outfall region.  相似文献   

10.
Invertebrates at 20 sites on 19 Campbell Island streams were sampled over the Austral summer of 1996/97. Twelve of the 16 benthic invertebrate taxa known from the island were collected. The most abundant group was the Crustacea, which included an isopod (Notidotea lacustris) and two amphipods, one belonging to the family Eusiridae and one to the suborder Gammaridea. Five species of Diptera were found (three chironomids; Orthocladiinae sp., Chironominae sp. and Maoridiamesa insularis, as well as an empidid and a simuliid Austrosimulium campbellense). One trichopteran, the hydroptilid caddis Oxyethira albiceps and two plecopteran species Rungaperla campbelli and R. longicauda and unidentified Oligochaetes were also collected. In general, Campbell Island streams are stable, deeply incised, have unusually high salinity from wind-blown sea spray and a unique benthic invertebrate fauna. With the exception of high altitude streams with large boulders which had invertebrate communities dominated by Crustacea and the endemic stonefly of the genus Rungaperla, none of the measured environmental variables or geographic location could explain the distinctive communities found. The species-poor stream fauna and the absence of many invertebrate families commonly found on mainland New Zealand appears to be related to the extreme isolation and geological history of the island.  相似文献   

11.
Nymphal life histories of six sympatric species of Leptophlebiidae (Ephemeroptera) were studied in Waitakere River and its tributary, Cascade Stream, a kauri forest stream system in northern New Zealand. Species examined were Neozephlebia scita (Walker), Austroclima jollyae Towns & Peters, Deleatidium myzobranchia Phillips, D. lillii Eaton, Deleatidium sp. A and Deleatidium sp. C. A mixture of well and poorly synchronised life cycles occurred within the guild. Species of Deleatidium had life histories which ranged from univoltine (D. lillii and D. myzobranchia) to weakly bivoltine with overlapping generations and cohorts (Deleatidium sp. C). There was little evidence of temporal segregation, but instead a highdegree of habitat and life history overlap. This conflicts with models based on stream insects from temperate northern hemisphere streams and usually attributed to niche differentiation in response to interspecific competition. The possible role of interspecific competition in evolution of life histories of stream in vertebrates is assessed. It is noted that temporal segregation of life histories does not by itself demonstrate differential use of common resources by congenerics, and that there is little direct evidence to support the widespread assumption that competition is a major influence on the evolution and composition of lotic communities.  相似文献   

12.
The diets of larval Rhyacophilidae (Rhyacophila inculta), Polycentropodidae (Polycentropus variegatus) and Arctopsychidae (Parapsyche almota and P. elsis) from five streams in the University of British Columbia Research Forest, British Columbia (Canada), are recorded and related to feeding mode/constructional activities and prey representation in the habitat. Particular attention was paid to the extent of dietary overlap and the degree of intraspecific dietary variations between streams. An overall similarity of the diets of the study species was notable and all commonly consumed chironomid (Diptera) larvae, Simulium (Diptera) and Zapada (Plecoptera), although there was interspecific variation in the relative importance of these items. Polycentropus variegatus and Parapsyche spp. ate Baetis and Paraleptophlebia, the latter predators also consuming Hydrachnellae (Acarina). Other prey were generally of minor importance and consequently interspecific dietary overlaps were high. Differences in the range of prey consumed by predaceous Trichoptera were apparent. Free-foraging R. inculta which selectively consumed sedentary simuliid larvae had the narrowest niche breadth. Parapsyche spp. and Polycentropus variegatus foreguts generally contained an over-representation of chironomid larvae compared to their proportionate occurrence in the benthos, and these caddisflies exhibited high niche overlap. The relative importance of chironomids as food for Parapsyche spp. and Polycentropus variegatus is attributed to prey behaviour, i.e. drift, and poorly developed escape responses when they are caught on the predator's net.  相似文献   

13.
Aphidophagous coccinellid larvae have a wide range of potential prey in alfalfa and during times of low aphid abundance, larvae may supplement their diet with alternative prey. To understand the effects of the seasonal aphid availability on alternative prey use, an order-specific monoclonal antibody, DrosW-VI-B8, was used to examine the frequency of dipteran predation by these important natural enemies. Over 400 larvae were hand-collected from alfalfa and, in parallel, arthropod abundance was recorded. Harmonia axyridis and Coccinella septempunctata larvae were abundant early in the season when aphid populations were at their peak and Coleomegilla maculata larvae were collected later in the season when potato leafhoppers were abundant in the alfalfa. A relatively low proportion of field-collected H. axyridis, C. septempunctata, and C. maculata tested positive for dipteran proteins throughout the season. Similar to prior studies examining stage differences in coccinellid food breadth, older instars tested positive for dipteran proteins (3rd instar, 6% positive; 4th instar, 7% positive) but no early instars screened positive. This study provides a valuable insight into the trophic linkages that exist between coccinellid larvae and Diptera.  相似文献   

14.
A paired design was used to determine that Harmonia axyridis 4th instars were not influenced by the presence of conspecific larval tracks, but well-fed H. axyridis 4th instars spent less time on plants that contained tracks left by Coleomegilla maculata 4th instars. To determine if the presence of larval tracks influences intraguild scavenging by H. axyridis 4th instars, dead 4th instars were placed in Petri dishes that contained or did not contain larval tracks. The presence of larval tracks did not influence the feeding frequency or the amount of time before feeding. However, larvae dragged their pygopod on dish surfaces more frequently if the dish contained larval tracks. In addition, starved H. axyridis larvae were more likely to feed on the prey and dragged their pygopod less frequently than well-fed larvae.  相似文献   

15.
Abstract. 1. Predaceous insects may benefit from feeding on non‐prey foods, such as pollen, nectar, and honeydew, because they can provide nutrients that help maintain metabolism and enhance overall nutrient intake. Yet, the extent to which predaceous insects can assimilate non‐prey food and the importance of diet mixing during particular life history stages is poorly understood. In this study the relative contribution of an omnivorous diet to the growth and survivorship of a predaceous larva was tested in a hypothetical situation in which nutritionally optimal prey was not available. The study system comprised a predaceous larva (second‐ and third‐instar larvae of the green lacewing Chrysoperla carnea), nutritionally poor prey (larvae of Drosophila melanogaster), and non‐prey food (pollen suspension, a mixture of bee pollen and artificial nectar (1 M sucrose solution)). Chrysoperla carnea larvae in the mixed diet treatment were provided with both Drosophila larvae and pollen suspension, while those reared on the prey and non‐prey diet treatments received only Drosophila larvae or pollen suspension respectively. 2. The inclusion of pollen and sucrose in their diet enhanced the growth of C. carnea larvae. Second instars reared on the mixed diet developed significantly faster than their cohorts reared on the prey diet, however third instars reared on the mixed diet did not develop faster than their cohorts reared on the prey diet. Larvae reared on the mixed diet became larger adults than did those reared on either the prey or non‐prey diets. Third instars reared on the non‐prey diet completed their development while second instars in the non‐prey diet treatment failed to pupate. 3. Stable isotope analysis indicated that the larvae obtained most of their carbon (55–73%) and nitrogen (71–73%) from Drosophila but acquired only a minor amount of carbon (2–5%) and nitrogen (3–11%) from pollen. Larvae reared on the mixed and non‐prey diets acquired a relatively significant amount of carbon (23–51%) from sucrose. 4. A model, which included a novel fractionation factor to account for the isotopic effect of metamorphosis, was developed to explain the proportion of larval growth attributable to each diet item. It explained the adult δ13C values to within 0.2‰ and adult δ15N values to within 0.7‰ in all treatments. 5. Adults fed 15N‐labelled pollen as larvae retained the 15N signal of the pollen as adults. 6. The collective results of this study support the view that, despite their dependence on prey arthropods to obtain most of their dietary nitrogen, omnivorous lacewing larvae can enhance their growth and development by supplementing their diets with alternative non‐prey food resources. This finding is consistent with the notion that omnivory has evolved as a feeding strategy to acquire both additional nitrogen as well as trace nutrients.  相似文献   

16.
1. We experimentally tested if a multiplicative risk model accurately predicted the consumption of a common mayfly at risk of predation from three predator species in New Zealand streams. Deviations between model predictions and experimental observations were interpreted as indicators of ecologically important interactions between predators. 2. The predators included a drift‐feeding fish [brown trout (T), Salmo trutta], a benthivorous fish [galaxiid (G), koaro, Galaxias brevipennis] and a benthic predatory stonefly (S; Stenoperla sp.) with Deleatidium sp. mayflies as prey. Eight treatments with all predator species combinations and a predator‐free control were used. Experiments were performed in aquaria with cobbles as predator refuges for mayflies and we measured the proportion of prey consumed after 6 h for both day and night trials. 3. Trout consumed a higher proportion of prey than other predators. For the two predator treatments we found less than expected prey consumption in the galaxiid + trout treatment (G + T) for both day and night trials, whereas a higher than expected proportion of prey was consumed during night time in the stonefly + trout (S + T) treatment. 4. The results indicate interference (G + T) and facilitation (S + T) between predators depending on predator identity and time of day. Thus, to make accurate predictions of interspecific interactions, it is necessary to consider the ecology of individual species and how differences influence the direction and magnitude of interactions.  相似文献   

17.
Interannual population oscillations ofMonoporeia affinis and sedentary chironomids are negatively correlated in Lake Mälaren. Sedentary chironomid abundance regressed againstM. affinis density was highly significant at a lag response of one year (adj. R2=0.54, P=0.0001). The inverse correlation between Tanytarsini (Micropsectra sp. andTanytarsus sp.) andM. affinis densities supports a recruitment limitation hypothesis,viz. that the growth or survival of early instar chironomids is low at high amphipod densities. Microcosm studies showed density-dependent effects on the growth and survival of second instarCh. riparius larvae across an amphipod density gradient. No significant effects were found on growth or survival of third instars. These findings support the chironomid recruitment limitation hypothesis. Amphipod predation on early instar chironomid larvae is suggested as a population controlling mechanism.  相似文献   

18.
Broekhuizen  N.  Parkyn  S.  Miller  D.  Rose  R. 《Hydrobiologia》2002,477(1-3):181-188
Much of the variation in individual growth rates can be attributed to differences in individual feeding rates. Therefore, in order to build predictive models of individual, or population growth, the factors influencing an individual's feeding rate must be described. An important determinant of the feeding rate is the relationship between the local abundance of food and the individual's ingestion rate – otherwise known as the functional response. We determined functional responses for two species of invertebrate grazers: the snail Potamopyrgus antipodarum and the mayfly Deleatidium sp., by measuring their assimilation rate with increasing densities of radiolabelled periphyton. The assimilation rates were consistent with the Holling Type II or Michelis Menten functional response curve. The parameters of the functional response yielded estimates of the search area and handling time for the stream invertebrates. Our functional response data indicate that the half-saturation food density for P. antipodarum and Deleatidium sp. were 980 mg and 3200 mg AFDM m–2, respectively, suggesting that Deleatidium growth may be subject to food limitation more often than is P. antipodarum – despite the lower assimilation efficiency of the latter species.  相似文献   

19.
M. S. Awan 《BioControl》1990,35(2):203-210
Three species of hemipteran predators preyed differently upon 1st instarHeliothis punctiger Wallengren larvae.Cermatulus nasalis consumed more larvae thanOechalia schellenbergii which consumed more larvae thanTropiconabis nigrolineatus. All the species consumed significantly less 1st instar larvae on plants than what they consumed in Petri-dishes. Fifth instar predators showed significant differences in terms of prey consumption due to sex independent of searching conditions. Only 4th and 5th instars ofT. nigrolineatus attacked and captured 2nd instars ofH. punctiger larvae. The other 2 species however readily attacked and consumed 2nd instarH. punctiger larvae. Their prey consumption was similar in Petri-dishes and on plants. Only 5th instars ofT. nigrolineatus could subdue and capture 3rd instarH. punctiger larvae. Second instar pentatomids captured just one 3rd instar larva but older instars killed and ate more. Fourth instarH. punctiger larvae were immune to attacks by allT. nigrolineatus and younger pentatomids due to their defense ploys but 5th instar pentatomids could subdue and capture them. None of the predators captured 5th instarH. punctiger larvae except few 5th instar females ofC. naslis andO. schellenbergii.   相似文献   

20.
Sculpin and stonefly predators fed selectively on the larvae of the chironomids Paratendipes over Cricotopus in laboratory stream microcosms. In these experiments, Cricotopus were usually tube-dwelling, whereas Paratendipes were usually free-living. Paratendipes were also bright red, which may have influenced selectivity by visual feeding sculpin, but tactile feeding stoneflies were most likely influenced only by the difference in tube-dwelling behavior of the two prey types. Both chironomids were abundant in the field, but exhibited discrete microhabitat distributions. Field collected sculpin ate mostly Cricotopus, probably because Cricotopus occurred in a more accessible microhabitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号