首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shoot bud regeneration was obtained from isolated leaflets of Albizia procera cultured on MS medium with various concentrations of 6-benzyladenine (BA) and α-naphthaleneacetic acid (NAA). The highest numbers of adventitious buds were obtained on MS medium supplemented with 10 μM BA and 1 μM NAA. The replacement of 7 g l-1 Difco bacto agar with 2.6 g l-1 Phytagel in the medium enhanced adventitious bud regeneration. Further, addition of 15 μM silver nitrate promoted callus-free shoot regeneration from leaf explants. The regenerated shoot buds were elongated on MS medium containing 0.01 μM BA and 1 μM NAA. Rooting was obtained on modified MS medium supplemented with 2 μM IBA. To our knowledge this is the first report of direct regeneration of shoots from leaflet explants in A. procera, and should help facilitate genetic transformation in this species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
An effective system for in vitro regeneration of adventitious shoots from callus for the transformation or mutation of gerbera was developed. Callus was produced from petioles of the youngest 3–4 leaves detached from auxillary shoots produced in vitro. Induction medium, on which leaves were incubated over 3 or 6 days, contained 2.3 μM thidiazuron and 0.53 μM α-naphthaleneacetic acid. Explants were than transferred to one of three regeneration media with lower levels of growth regulators. Regeneration was quantified over four (4-weeks each) passages at the time of explant transfer to fresh medium. Direct shoot regeneration occurred during the first 4 weeks, and after these shoots were discarded a semi-compact organogenic callus was produced. Effectiveness of shoot regeneration depended on four criteria: the cultivar (three cultivars were tested), the sequence of passage on regeneration medium, the growth regulators in regeneration medium and the duration of the induction period. Regeneration potential from calli of all cultivars increased from the first to the fourth passage. Duration of the incubation period on induction medium (3 or 6 days) influenced regeneration to varying degrees, depending on the cultivar used and the regeneration medium contents. There were no differences between two of the regeneration media – B, containing 2.2 μM 6-benzyladenine and 0.3 μM indole-3-acetic acid and C, containing 4.4 μM 6-benzyladenine, 4.6 μM zeatin and 0.6 μM indole-3-acetic acid. Cultivar Mariola was the most productive and regenerated more than seven shoots per callus in the fourth passage. Regeneration on medium B was further evaluated on four additional gerbera cultivars. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Pterocarpus marsupium (Bijasal) is a valuable multipurpose forest tree. The regeneration rate in natural habitat is low and the tree is overexploited. An in vitro propagation protocol has been developed from nodal explants obtained from in vitro raised 18-day-old axenic seedlings. The highest shoot regeneration frequency (85%), maximum number of multiple shoots (8.6) as well as length (4.8 cm) were induced from nodal explants on Murashige and Skoog (MS) medium amended with 4.0 μM 6-benzyladenine (BA), 0.5 μM indole-3-acetic acid (IAA) and 20 μM adenine sulphate (AdS). The percentage of shoot multiplication as well as the number of shoots per node remained the same during the first two subculture, afterwards a decline was recorded. Rooting was best induced in microshoots excised from proliferated shoot cultures on semisolid hormone-free half-strength MS medium, after a pulse (dip) treatment for 7 days in half-strength MS liquid medium containing 100 μM indole-3-butyric acid (IBA) and 15.84 μM phloroglucinol (PG). The in vitro-raised plantlets were potted and acclimatized under culture room conditions for 4 weeks before their transfer to a greenhouse, where the established plants showed 75% survival.  相似文献   

4.
Plantlet regeneration through shoot formation from young leaf explant-derived callus of Camptotheca acuminata is described. Calli were obtained by placing leaf explants on Woody plant medium (WPM) supplemented with various concentrations of 6-benzyladenine (BA) and naphthaleneacetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D). Callus induction was observed in all media evaluated. On the shoot induction medium, the callus induced on the WPM medium containing 19.8 μM BA and 5.8 μM NAA was the most effective, providing high shoot regeneration frequency (70.3 %) as well as the highest number of shoots (11.2 shoots explant−1). The good rooting percentage and root quality (98 %, 5.9 roots shoot−1) were achieved on WPM medium supplemented with 9.6 μM indole-3-butyric acid (IBA). 96 % of the in vitro rooted plantlets with well developed shoots and roots survived transfer to soil.  相似文献   

5.
An efficient in vitro regeneration system in kumquats (Fortunella crassifolia Swingle) was established. Explant types and orientations, concentrations and combinations of plant growth regulators were evaluated for their influences on efficiency of plant regeneration. It was found that the optimum explant and its orientation was epicotyl planted vertically with upper part upward, and a shoot regeneration frequency of 1.48 shoots per explant was obtained on Murashige and Skoog (1962; MS) medium supplemented with 22.19 μM 6-benzyladenine (BA). A rooting percentage as high as 74 % was obtained on 1/2 MS supplemented with 0.54 μM 1-naphthaleneacetic acid (NAA), 9.29 μM kinetin (KN), and 0.5 g dm−3 activated charcoal.  相似文献   

6.
Attempts were made to study the effect of thidiazuron (TDZ) on adventitious shoot induction and plant development in Paulownia tomentosa explants derived from mature trees. Media with different concentrations of TDZ in combination with an auxin were used to induce adventitious shoot-buds in two explant types: basal leaf halves with the petiole attached (leaf explant) and intact petioles. Optimal shoot regeneration was obtained in leaf explants cultured on induction medium containing TDZ (22.7 or 27.3 μM) in combination with 2.9 μM indole-3-acetic acid (IAA) for 2 weeks, and subsequent culture in TDZ-free shoot development medium including 0.44 μM BA for a further 4-week period. The addition of IAA to the TDZ induction medium enhanced the shoot-forming capacity of explants. The caulogenic response varied significantly with the position of the explant along the shoot axis. The highest regeneration potential (85–87%) and shoot number (up to 17.6 shoots/explant) were obtained in leaf explants harvested from the most apical node exhibiting unfolded leaves (node 1). An analogous trend was also observed in intact petiole explants, although shoot regeneration ability was considerably lower, with values ranging from 15% for petioles isolated from node 1 to 5% for those of nodes 2 and 3. Shoot formation capacity was influenced by the genotype, with regeneration frequencies ranging from 50% to 70%. It was possible to root elongated shoots (20 mm) in basal medium without growth regulators; however, rooting frequency was significantly increased up to 90% by a 7-day treatment with 0.5 μM indole-3-butyric acid, regardless of the previous culture period in shoot development medium (4 or 8 weeks). Shoot quality of rooted plantlets was improved not only by IBA treatment but also by using material derived from the 4-week culture period. Regenerated plantlets were successfully acclimatized in the greenhouse 8 weeks after transplanting.  相似文献   

7.
A procedure is described for the rapid and efficient adventitious shoot regeneration from leaflets, petioles and stems of field-grown sainfoin plants. All explants formed shoots on a range of media supplemented with 6-benzyladenine (BA) and α-naphthaleneacetic acid (NAA). Stem explants appeared to have better regeneration capacity than leaflet and petiole explants in most media tested. The highest frequency of shoot regeneration was achieved from stem segments on a medium containing 20 μM BA and 0.5 μM NAA. Regenerated shoots rooted in half-strength Murashige and Skoog medium containing 5 μM indole-3-butyric acid and later established well under greenhouse conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
An efficient protocol was developed for regeneration of plants from long-term cultured calluses, which originated from mature seeds of a model rice variety Taipei 309 and were maintained by subculture for at least 6 months. The calluses were precultured for 4 weeks on a medium containing 8.88 μmol 6-benzyladenine, 5.37 μmol α-naphthaleneacetic acid and various concentrations of abscisic acid, which converted the calluses to a state more responsive to the subsequent culture conditions for plant regeneration. Supplementation of 8.69 mmol proline in the preculture medium increased the growth rate of the callus masses by 50% and resulted in the regeneration of 60% more plants. A more pronounced effect was observed after raising the 6-benzyladenine concentration to 55.48 μmol in the preculture medium, which promoted the development of adventitious buds on the calluses and led to the regeneration of some 30% more plants of better quality. Results indicate that manipulation of medium supplements and growth regulators leads to efficient plant regeneration in long-term callus cultures of rice. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Justicia gendarussa is a valuable medicinal plant and various parts of this plant are pharmaceutically used for the treatment of different diseases. In vitro regeneration of shoot buds was obtained from culture of nodal cuttings as well as shoot regeneration from callus. The nodal cuttings differed in shoot proliferation in terms of percentage of explants that responded and average shoot length with various concentrations (4.4, 8.9, 13.3, 17.7, 22.2 μM) of 6-benzyladenine (BA), kinetin (Kn) and thidiazuron. In all treatments, one shoot was invariably present. Optimum 87% of cultures responded with an average shoot length of 4.4 cm on Murashige and Skoog (MS) medium supplemented with 17.7 μM BA. Callus was induced from the mature leaf segments on MS medium supplemented with Kn (4.7, 13.9, 23.2 μM) alone or in combination with 2, 4-dichlorophenoxyacetic acid (2, 4-D; 2.3 μM, 4.5 μM). Optimum callus induction (78%) was obtained on MS medium supplemented with 14 μM Kn and 4.5 μM 2, 4-D. When the callus was subcultured on MS medium fortified with BA (8.9, 17.7, 26.6 μM) or Kn (9.3, 18.6, 27.9 μM) alone or in combination with α naphthalene acetic acid (NAA; 2.7, 5.4 μM), shoot regeneration was obtained. The highest response (92%) was observed on MS medium containing 17.7 μM BA and 5.4 μM NAA. On this medium, an average number of 12.2 shoots were obtained per responding callus. The shoots obtained from callus and nodal cuttings were rooted with a frequency of 73% on MS medium augmented with 9.8 μM indole-3-butyric acid. The rooted shoots were successfully transplanted to soil and sand mixture (1:1) with 90% survival rate. The protocol standardized for shoot proliferation and regeneration in J. gendarussa from nodal cuttings and leaf-derived callus is suitable for micropropagation and conservation of this essential medicinal plant.  相似文献   

10.
Using immature embryos and cotyledons as explants, a successful system to culture immature embryos and induce direct regeneration from cotyledons was established for Prunus mume “Xuemei”. For immature embryo culture, a high frequency of plantlet formation (89.5%) from the embryonic axis was obtained using half-strength Murashige and Skoog (1/2 MS) medium supplemented with 13.2 μM 6-benzyladenine (BA) and 2.7 μM 1-naphthaleneacetic (NAA). Shoots formed directly from cotyledons with the embryo axis intact when explants were cultured on 1/2 MS medium containing 2.2 μM BA with different combinations of NAA (2.7, 5.4 μM) and indole-3-butyric acid (IBA) (0, 2.5, 5.0 μM). Better results were achieved when the embryonic axis was removed from the cotyledons and cultured on 1/2 MS medium supplement with 13.2 μM BA, 2.7 μM NAA or 2.2 μM BA, 2.2 μM thidiazuron (TDZ), and 2.7 μM NAA, respectively. Regenerated shoots were successfully rooted on 1/2 MS or Woody Plant medium (WPM) supplemented with 2.5–5.0 μM IBA. The effect of the embryonic axis, BA, and TDZ on cotyledon regeneration was investigated in detail. Rooted plantlets were transferred to soil successfully.  相似文献   

11.
Shoot organogenesis from mature leaf tissues of two scented Pelargonium capitatum cultivars, ‘Attar of Roses’ and ‘Atomic Snowflake’, grown in the greenhouse, were optimized in the presence of thidiazuron (TDZ). The protocol involved preculture of leaf sections on basal Murashige and Skoog (MS) medium supplemented with 10 μM TDZ, 4.4 μM of 6-benzyladenine (BA) and 5.4 μM α-naphtaleneacetic acid (NAA) for a period of 2 weeks and followed by subculture of explants to a fresh medium containing 4.4 μM BA and 5.4 μM NAA. Frequency of regeneration reached approximately 93% for both cultivars, with the induction of more than 100 shoots per explant. Regenerated plantlets were rooted on half-strength MS medium supplemented with 4.4 mM sucrose and 8.6 μM of Indole-3-acetic acid (IAA). All regenerated shoots from both cultivars developed roots when transferred to organic soil mix, acclimatized, and successfully transferred to greenhouse conditions. When regenerated shoots were transferred to hydroponic conditions, frequency of survival was 76.2 and 61.9% for ‘Attar of Roses’ and ‘Atomic Snowflake’, respectively.  相似文献   

12.
A complete protocol for adventitious shoot regeneration was developed from the leaves of peach rootstock ‘Nemaguard’(Prunus persica × P. davidiana) grown in vitro. Shoot explants were cultured in vitro in Murashige and Skoog medium supplemented with 3.55 μM 6-benzyladenine and 7.38 μM indole-3-butyric acid (IBA). Non-expanded leaves along with their petioles from 3-week-old in vitro-grown shoots were used as explants. Regeneration percentage was influenced by plant growth regulators, basal medium, explant type, dark period, and gelling agents. Optimal regeneration was observed with leaf explants wounded by transverse cuts twice along the midrib and first incubated with abaxial surfaces facing upward in the dark for 3 weeks, and then transferred to the light and cultured with the adaxial side in contact with regeneration medium, as seen on 1/2 MS, woody plant medium or Schenk and Hildebrandt medium supplemented with 9.08 μM thidiazuron, 0.54 μM IBA and 0.25% agar. This produced the highest regeneration percentage at 71.7% and a mean of 5.74 ± 3.24 shoots on 1/2 MS medium. Adventitious shoots were rooted (98.3–100%) and rooted plantlets survived after acclimatization to the greenhouse.  相似文献   

13.
Summary Tylophora indica (Burm. f.) Merrill is a threatened medicinal climber distributed in the forests of northern and peninsular India. An efficient and reproducible protocol for high-frequency callus regeneration from immature leaf explants of T. indica was developed. Organogenic callus formation from immature leaf pieces was obtained by using Murashige and Skoog (MS) medium supplemented with 7 μM 2,4-dichlorophenoxyacetic acid and 1.5 μM 6-benzyladenine. On this medium 92% explants produced callus. The optimal hormone combination for plantlet regeneration was 8 μM thidiazuron, at which shoot regeneration was obtained from 100% of the cultures, with an average of 66.7 shoots per culture. Histological studies of the regenerative callus revealed that shoot buds were originated from the outermost regions. For root formation, half-strength MS medium supplemented with 3 μM indole-3-butyric acid was used. Plants were transferred to soil, where 92% survived after 3 mo. of acclimatization.  相似文献   

14.
Summary A method of plant regeneration from hypocotyl segments of Platanus acerifolia Willd, has been developed. Hypocotyl slices were cultured on Murashige and Skoog (MS) basal medium supplemented with a range of combinations of cytokinins [6-benzyladenine (BA) or kinetin] and auxins [indole-3-butyric acid (IBA), indole-3-acetic acid, α-naphthaleneacetic acid or 2,4-dichlorophenoxyacetic acid] for adventitious shoot induetion. The highest regeneration frequency was obtained with MS medium containing 2.0 mg l−1 (8.88 μM) BA and 0.5 mg l−1 (2.46 μM) IBA. Adventitious buds and shoots were differentiated from hypocotyl-derived cellus or directly from the wounded sites within 4–8 wk. The regenerated shoots were elongated and proliferated efficiently on multiplication medium. Complete plantlets were transplanted to the soil and grew normally in the greenhouse after root formation on rooting medium for 4–6 wk.  相似文献   

15.
Shoots were regenerated from in vitro leaf tissues of two genotypes of Viburnum dentatum, a popular shrub species for landscape use. Adventitious shoots were induced when leaf tissues were cultured on woody plant medium (WPM) supplemented with either benzyladenine (BA) or thidiazuron (TDZ). Effects of cytokinin concentration, indole-3-butyric acid (IBA), and dark treatment on shoot regeneration were investigated. Dark treatment for the first 4 weeks of leaf explants cultured in the regeneration medium significantly increased the frequency of regeneration. The highest frequency of shoot regeneration (70%) for ‘Synnesvedt’ was obtained when leaf tissues were cultured in the medium with 40 μM BA or 8 μM TDZ with 4 weeks dark treatment. The highest frequency of shoot regeneration (90%) for ‘MN34’ was found in the 4 μM TDZ medium with 4 weeks dark treatment. Addition of IBA significantly enhanced shoot regeneration. Ethyl methanesulfonate (EMS) treatment inhibited callus proliferation, particularly in the early stage of callus recovery; however, no significant difference in shoot regeneration among different treatments was observed, indicating that the inhibitory effect of EMS was minimal after calluses re-acquired their capacity to grow and regenerate in the regular medium. Regenerated shoots (>1.5 cm) were rooted in the half-strength MS medium containing 5-10 μM IBA or naphthalene acetic acid (NAA). Rooted plants were transferred to the potting medium and grown in the greenhouse.  相似文献   

16.
Dormant buds from a mature tree of Populus tremula ‘Erecta’ were incubated on a Murashige and Skoog (MS) medium supplemented with 1.0 μM thidiazuron (TDZ). Induced shoots were then proliferated on medium of MS or Woody Plant Medium (WPM), or Driver and Kuniyuki Walnut (DKW) supplemented with varying levels of benzyladenine (BA). Overall, shoots grown on MS medium supplemented with 1.25–2.5 μM BA exhibited the highest frequency of shoot proliferation (>95%) and more than 60% of responding explants produced more than five shoots per explant. Shoot organogenesis was induced from both leaf and petiole explants incubated on WPM medium containing BA, or TDZ, or zeatin. Among the different cytokinins tested, zeatin induced the highest frequency (average 72.1%) of shoot organogenesis. None of explants survived on media containing no cytokinins within 6–8 weeks following culture. Overall, a higher frequency of shoot regeneration was obtained from petioles than from leaf explants. The highest frequency of regeneration was achieved when petioles were incubated on WPM containing 10–20 μM zeatin. Addition of naphthaleneacetic acid (NAA) did not have a significant effect on shoot regeneration in all treatments. Shoot organogenesis was directly induced from petiole explants without intervening callus. Regenerated shoots were easily rooted on all tested media supplemented with 0.5 μM NAA. Rooted plants were transferred to potting mix and grown in the greenhouse.  相似文献   

17.
An efficient in vitro regeneration protocol was developed for medicinally important aromatic plant Anethum graveolens. Nodal segments were cultured onto Murashige and Skoog (MS) basal medium supplemented with different auxins and cytokinins singly as well as in combinations. The optimum callus induction (93.33 %) was obtained on medium fortified with 2.2 μM N6-benzyladenine (BA) and 0.21 μM α-naphthaleneacetic acid. The best shoot regeneration (85.7 %) with 12.86 shoots per explant was achieved in two weeks when callus was subcultured on MS medium amended with 2.2 μM BA and 1.85 μM kinetin. The average length of regenerated shoots varied from 3.15 to 4.8 cm. The rooting of regenerated shoots was nearly 100 % on ? MS augmented with 4.9 μM indolebutyric acid with a maximum root length of 5.1 cm. Plantlets were successfully acclimatized with 60 % survival rate. During organogenesis, catalase and ascorbate peroxidase activity increased while superoxid dismutase activity decreased. Clonal fidelity of in vitro raised plants has been checked by random amplified polymorphic DNA using 10 selected decamer primers. It has been found that regenerated plants are true to type plants.  相似文献   

18.
Use of Hypericum perforatum L. has increased in the past few years due to the antidepressant and antiviral activities found in extracts of this plant. As a result of its potential as a pharmaceutical, a new system was developed for in vitro culture of this species. Leaf explants were inoculated onto MS medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D, 0.45 or 4.5 μM) and 6-benzyladenine (BA, 0.44 or 4.4 μM) or kinetin (0.46 or 4.6 μM). Explants were cultivated under dark or light conditions to induce callus formation. Callus initiation was observed in all media evaluated and the highest cell proliferation was obtained from explants cultivated in the presence of 4.4 μM BA and 4.5 μM 2,4-D in the dark. Shoot induction was obtained from callus induced on 4.6 μM kinetin and 0.45 μM 2,4-D 6 weeks after transferring the callus to a MS medium supplemented with 4.4 μM BA. Roots were induced from shoots on full and half-strength MS media with or without indolebutyric acid (IBA, 4.9 μM) and the highest rooting frequencies were obtained on half-strength MS medium, regardless of the presence of IBA. Regenerated plants were easily acclimated in greenhouse conditions. The procedure reported here allows the micropropagation of H. perforatum in five months of culture and the proliferation of cell masses which could be used for studies on organic compounds of pharmaceutical interest. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
A simple and efficient protocol for plant regeneration from protoplasts of the potted plant Kalanchoe blossfeldiana Poelln. is reported. Mesophyll protoplasts were isolated from axenic leaves after a preculture. The enzymatic digestion of the tissue with a solution containing 0.4% Cellulase Onozuka R-10 and 0.2% Driselase yielded 6.0 × 105 protoplasts per gram fresh weight after density gradient purification. Protoplasts were cultured in the dark at an initial density of 1 × 105 protoplasts per milliliter in a liquid medium with 320 mM mannitol, 130 mM sucrose, 2.3 μM 2,4-dichlorophenoxy acetic acid (2,4-D), 5.4 μM 1-naphthaleneacetic acid (NAA) and 2.2 μM 6-benzyladenine (BA). Cell wall regeneration was observed within 4 days of culture and cell division began after 5–7 days. When cultured in a liquid medium with 5.4 μM NAA and 8.9 μM BA, protoplast-derived colonies proliferated until small visible calli, and adventitious buds appeared after transfer to photoperiod conditions. Developed shoots were rooted on a solid medium supplemented with 0.6 μM indole-3-acetic acid (IAA) and successfully established under greenhouse conditions. The process required 4 months from isolation to rooted plants and the best conditions found gave a plant regeneration efficiency of 6.4 plants per 1 × 105 protoplasts. This is the first protocol reported for plant regeneration from protoplasts for a Crassulaceae family species.  相似文献   

20.
Leaf regeneration via direct induction of adventitious shoots obtained from an endangered medicinal plant, Curculigo orchioides Gaertn. by pretreating with thidiazuron. C. orchioides is an endangered medicinal herb belonging to the family Hypoxidaceae. Direct inoculation of leaf pieces on MS medium supplemented with various concentrations of BAP (2–8 μM) or TDZ (2–8 μM) alone or in combination with NAA (0.5 and 1.0 μM) produced low shoot induction both in terms of % response and number of shoots per explant. Hence, leaf explants were pretreated with 15, 25 or 50 μM thidiazuron (TDZ), for 6, 24 or 48 h with the aim of improving shoot regeneration from cultured explants. After pretreatment, explants were transferred to an agar solidified MS medium that was supplemented with BAP (4 μM), TDZ (6 μM), BAP (4 μM) + NAA (1.0 μM), TDZ (6 μM) + NAA (0.5 μM). Control explants were incubated directly on the medium without any pretreatment. The pretreatment of explants with 15 μM TDZ for 24 h significantly promoted the formation of adventitious shoots and the maximum response was observed on MS medium supplemented with 6 μM TDZ. In this medium, 96 % cultures responded with an average number of 16.2 adventitious shoots per explant. The percentage of leaf explants producing shoots and the average number of shoots per explant were significantly improved when TDZ pretreated leaves were cultured onto MS medium supplemented with BAP or TDZ alone or in combination with NAA. The rooted plantlets were successfully transplanted to soil with 90% success. The present investigation indicated the stimulatory role of TDZ pretreatment in regulating shoot regeneration from leaf explants of C. orchioides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号