首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Vibrio cholerae infections cluster in households. This study''s objective was to quantify the relative contribution of direct, within-household exposure (for example, via contamination of household food, water, or surfaces) to endemic cholera transmission. Quantifying the relative contribution of direct exposure is important for planning effective prevention and control measures.

Methodology/Principal Findings

Symptom histories and multiple blood and fecal specimens were prospectively collected from household members of hospital-ascertained cholera cases in Bangladesh from 2001–2006. We estimated the probabilities of cholera transmission through 1) direct exposure within the household and 2) contact with community-based sources of infection. The natural history of cholera infection and covariate effects on transmission were considered. Significant direct transmission (p-value<0.0001) occurred among 1414 members of 364 households. Fecal shedding of O1 El Tor Ogawa was associated with a 4.9% (95% confidence interval: 0.9%–22.8%) risk of infection among household contacts through direct exposure during an 11-day infectious period (mean length). The estimated 11-day risk of O1 El Tor Ogawa infection through exposure to community-based sources was 2.5% (0.8%–8.0%). The corresponding estimated risks for O1 El Tor Inaba and O139 infection were 3.7% (0.7%–16.6%) and 8.2% (2.1%–27.1%) through direct exposure, and 3.4% (1.7%–6.7%) and 2.0% (0.5%–7.3%) through community-based exposure. Children under 5 years-old were at elevated risk of infection. Limitations of the study may have led to an underestimation of the true risk of cholera infection. For instance, available covariate data may have incompletely characterized levels of pre-existing immunity to cholera infection. Transmission via direct exposure occurring outside of the household was not considered.

Conclusions

Direct exposure contributes substantially to endemic transmission of symptomatic cholera in an urban setting. We provide the first estimate of the transmissibility of endemic cholera within prospectively-followed members of households. The role of direct transmission must be considered when planning cholera control activities.  相似文献   

3.
Cholera, the pandemic diarrheal disease caused by the gram-negative bacterium Vibrio cholerae, continues to be a major public health challenge in the developing world. Cholera toxin, which is responsible for the voluminous stools of cholera, causes constitutive activation of adenylyl cyclase, resulting in the export of ions into the intestinal lumen. Environmental studies have demonstrated a close association between V. cholerae and many species of arthropods including insects. Here we report the susceptibility of the fruit fly, Drosophila melanogaster, to oral V. cholerae infection through a process that exhibits many of the hallmarks of human disease: (i) death of the fly is dependent on the presence of cholera toxin and is preceded by rapid weight loss; (ii) flies harboring mutant alleles of either adenylyl cyclase, Gsalpha, or the Gardos K channel homolog SK are resistant to V. cholerae infection; and (iii) ingestion of a K channel blocker along with V. cholerae protects wild-type flies against death. In mammals, ingestion of as little as 25 mug of cholera toxin results in massive diarrhea. In contrast, we found that ingestion of cholera toxin was not lethal to the fly. However, when cholera toxin was co-administered with a pathogenic strain of V. cholerae carrying a chromosomal deletion of the genes encoding cholera toxin, death of the fly ensued. These findings suggest that additional virulence factors are required for intoxication of the fly that may not be essential for intoxication of mammals. Furthermore, we demonstrate for the first time the mechanism of action of cholera toxin in a whole organism and the utility of D. melanogaster as an accurate, inexpensive model for elucidation of host susceptibility to cholera.  相似文献   

4.
The study of 27 V. cholerae strains, isolated from cholera patients and found to be hemolytically inactive, with a view to establish their capacity for the production of cholera toxin has revealed that 4 strains (V. cholerae cholerae Dacca 35, V. cholerae cholerae Dacca 3, V. cholerae cholerae B1307, V. cholerae cholerae J89) produce this protein. The quantitative determination of enterotoxin has been made with the use of GM1 ELISA technique. Strain Dacca 35 has been found to be highly toxigenic and, as regards the amount of exotoxin it produces, no different from V. cholerae cholerae strain 569B, a well-known producer of cholera toxin. In strain Dacca 35 correlation between the capacity of the cells for toxin production and the morphology of colonies has been established. The study has revealed that the chromosome of strain Dacca 35 contains two copies of gene vctAB responsible for the synthesis of cholera toxin.  相似文献   

5.
6.
Since Vibrio cholerae O139 first appeared in 1992, both O1 El Tor and O139 have been recognized as the epidemic serogroups, although their geographic distribution, endemicity, and reservoir are not fully understood. To address this lack of information, a study of the epidemiology and ecology of V. cholerae O1 and O139 was carried out in two coastal areas, Bakerganj and Mathbaria, Bangladesh, where cholera occurs seasonally. The results of a biweekly clinical study (January 2004 to May 2005), employing culture methods, and of an ecological study (monthly in Bakerganj and biweekly in Mathbaria from March 2004 to May 2005), employing direct and enrichment culture, colony blot hybridization, and direct fluorescent-antibody methods, showed that cholera is endemic in both Bakerganj and Mathbaria and that V. cholerae O1, O139, and non-O1/non-O139 are autochthonous to the aquatic environment. Although V. cholerae O1 and O139 were isolated from both areas, most noteworthy was the isolation of V. cholerae O139 in March, July, and September 2004 in Mathbaria, where seasonal cholera was clinically linked only to V. cholerae O1. In Mathbaria, V. cholerae O139 emerged as the sole cause of a significant outbreak of cholera in March 2005. V. cholerae O1 reemerged clinically in April 2005 and established dominance over V. cholerae O139, continuing to cause cholera in Mathbaria. In conclusion, the epidemic potential and coastal aquatic reservoir for V. cholerae O139 have been demonstrated. Based on the results of this study, the coastal ecosystem of the Bay of Bengal is concluded to be a significant reservoir for the epidemic serogroups of V. cholerae.  相似文献   

7.
8.
Toxigenic Vibrio cholerae, rarely isolated from the aquatic environment between cholera epidemics, can be detected in what is now understood to be a dormant stage, i.e., viable but nonculturable when standard bacteriological methods are used. In the research reported here, biofilms have proved to be a source of culturable V. cholerae, even in nonepidemic periods. Biweekly environmental surveillance for V. cholerae was carried out in Mathbaria, an area of cholera endemicity adjacent to the Bay of Bengal, with the focus on V. cholerae O1 and O139 Bengal. A total of 297 samples of water, phytoplankton, and zooplankton were collected between March and December 2004, yielding eight V. cholerae O1 and four O139 Bengal isolates. A combination of culture methods, multiplex-PCR, and direct fluorescent antibody (DFA) counting revealed the Mathbaria aquatic environment to be a reservoir for V. cholerae O1 and O139 Bengal. DFA results showed significant clumping of the bacteria during the interepidemic period for cholera, and the fluorescent micrographs revealed large numbers of V. cholerae O1 in thin films of exopolysaccharides (biofilm). A similar clumping of V. cholerae O1 was also observed in samples collected from Matlab, Bangladesh, where cholera also is endemic. Thus, the results of the study provided in situ evidence for V. cholerae O1 and O139 in the aquatic environment, predominantly as viable but nonculturable cells and culturable cells in biofilm consortia. The biofilm community is concluded to be an additional reservoir of cholera bacteria in the aquatic environment between seasonal epidemics of cholera in Bangladesh.  相似文献   

9.
Toxigenic Vibrio cholerae, rarely isolated from the aquatic environment between cholera epidemics, can be detected in what is now understood to be a dormant stage, i.e., viable but nonculturable when standard bacteriological methods are used. In the research reported here, biofilms have proved to be a source of culturable V. cholerae, even in nonepidemic periods. Biweekly environmental surveillance for V. cholerae was carried out in Mathbaria, an area of cholera endemicity adjacent to the Bay of Bengal, with the focus on V. cholerae O1 and O139 Bengal. A total of 297 samples of water, phytoplankton, and zooplankton were collected between March and December 2004, yielding eight V. cholerae O1 and four O139 Bengal isolates. A combination of culture methods, multiplex-PCR, and direct fluorescent antibody (DFA) counting revealed the Mathbaria aquatic environment to be a reservoir for V. cholerae O1 and O139 Bengal. DFA results showed significant clumping of the bacteria during the interepidemic period for cholera, and the fluorescent micrographs revealed large numbers of V. cholerae O1 in thin films of exopolysaccharides (biofilm). A similar clumping of V. cholerae O1 was also observed in samples collected from Matlab, Bangladesh, where cholera also is endemic. Thus, the results of the study provided in situ evidence for V. cholerae O1 and O139 in the aquatic environment, predominantly as viable but nonculturable cells and culturable cells in biofilm consortia. The biofilm community is concluded to be an additional reservoir of cholera bacteria in the aquatic environment between seasonal epidemics of cholera in Bangladesh.  相似文献   

10.
Systematic dynamic surveillance of the complex of biological properties of V. cholerae makes it possible to find out specific features of this infective agent, to improve diagnostics and to use the data thus obtained for epidemiological surveillance on cholera. The study of the complex of biological properties of V. cholerae O1, its ecological relationships and interactions give evidence to assert that microbiological aspects as one of the primary tasks in monitoring water ecosystems, as well as the necessity of surveillance on strains isolated from humans. Different properties of V. cholerae should be determined irrespective of the object, time and territory of their isolation in the process of epidemiological surveillance on cholera.  相似文献   

11.
Summary The B subunit (CTB) of cholera toxin (CT) can be used as a carrier protein for conjugate vaccines designed to elicit antipolysaccharide antibodies. A defined medium, AGM4, was designed to grow a high-producing mutant of Vibrio cholerae expressing only the B subunit of CT: V. cholerae 0395-NI. AGM4 contains four amino acids, asparagine, glutamic acid, arginine and serine, salts and a trace element solution. The carbon source is glucose. The fermentations performed in AGM4 indicated that CTB production paraleled the growth of the organism but that there was a maximal release of CTB during the stationary phase. There was a clear optimum of productivity at pH 8.0 and 30°C. The pH had an influence on CTB production and not only on its release. Analysis of the amino acids present in the medium showed a correlation between their consumption rates and CTB productivity. Offprint requests to: J. Shiloach  相似文献   

12.
Vibrio cholerae choleragenoid. Mechanism of inhibition of cholera toxin action   总被引:16,自引:0,他引:16  
P Cuatrecasas 《Biochemistry》1973,12(18):3577-3581
  相似文献   

13.
14.
Vibrio cholerae serogroup O1, the causative agent of cholera, is capable of surviving in aquatic environments for extended periods and is considered an autochthonous species in estuarine and brackish waters. These environments contain numerous elements that may affect its ecology. The studies reported here examined physical interactions between V. cholerae O1 and natural plankton populations of a geographical region in Bangladesh where cholera is an endemic disease. Results showed that four of five clinical V. cholerae O1 strains and endogenous bacterial flora were attached preferentially to zooplankton molts (exuviae) rather than to whole specimens. One strain attached in approximately equal numbers to both exuviae and whole specimens. V. cholerae O1 also attached to several phytoplankton species. The results show that V. cholerae O1 can bind to diverse plankton species collected from an area where cholera is an endemic disease, with potentially significant effects on its ecology.  相似文献   

15.
霍乱弧菌检测方法的研究进展   总被引:2,自引:0,他引:2  
烈性肠道传染病霍乱能引起大范围乃至世界性大流行,在我国被列为甲类传染病.霍乱弧菌是导致感染者严重腹泻、引起霍乱的病原菌.霍乱弧菌的快速、准确检测是霍乱预防、控制的重要依据.目前,国内、外针对霍乱弧菌建立了许多有效的检测方法,尤其是分子生物学相关技术的应用,为霍乱弧菌的检测提供了新的手段.本文综述了近年来霍乱弧菌检测方法...  相似文献   

16.
Vibrio cholerae, an environmental organism, is a facultative human pathogen. Here, we report the virulence profiles, comprising 18 genetic markers, of 102 clinical and 692 environmental V. cholerae strains isolated in Bangladesh between March 2004 and January 2006, showing the variability of virulence determinants within the context of public health.  相似文献   

17.
The occurrence of outbreaks of cholera in Africa in 1970 and in Latin America in 1991, mainly in coastal communities, and the appearance of the new serotype Vibrio cholerae O139 in India and subsequently in Bangladesh have stimulated efforts to understand environmental factors influencing the growth and geographic distribution of epidemic Vibrio cholerae serotypes. Because of the severity of recent epidemics, cholera is now being considered by some infectious disease investigators as a "reemerging" disease, prompting new work on the ecology of vibrios. Epidemiological and ecological surveillance for cholera has been under way in four rural, geographically separated locations in Bangladesh for the past 4 years, during which both clinical and environmental samples were collected at biweekly intervals. The clinical epidemiology portion of the research has been published (Sack et al., J. Infect. Dis. 187:96-101, 2003). The results of environmental sampling and analysis of the environmental and clinical data have revealed significant correlations of water temperature, water depth, rainfall, conductivity, and copepod counts with the occurrence of cholera toxin-producing bacteria (presumably V. cholerae). The lag periods between increases or decreases in units of factors, such as temperature and salinity, and occurrence of cholera correlate with biological parameters, e.g., plankton population blooms. The new information on the ecology of V. cholerae is proving useful in developing environmental models for the prediction of cholera epidemics.  相似文献   

18.
The occurrence of outbreaks of cholera in Africa in 1970 and in Latin America in 1991, mainly in coastal communities, and the appearance of the new serotype Vibrio cholerae O139 in India and subsequently in Bangladesh have stimulated efforts to understand environmental factors influencing the growth and geographic distribution of epidemic Vibrio cholerae serotypes. Because of the severity of recent epidemics, cholera is now being considered by some infectious disease investigators as a “reemerging” disease, prompting new work on the ecology of vibrios. Epidemiological and ecological surveillance for cholera has been under way in four rural, geographically separated locations in Bangladesh for the past 4 years, during which both clinical and environmental samples were collected at biweekly intervals. The clinical epidemiology portion of the research has been published (Sack et al., J. Infect. Dis. 187:96-101, 2003). The results of environmental sampling and analysis of the environmental and clinical data have revealed significant correlations of water temperature, water depth, rainfall, conductivity, and copepod counts with the occurrence of cholera toxin-producing bacteria (presumably V. cholerae). The lag periods between increases or decreases in units of factors, such as temperature and salinity, and occurrence of cholera correlate with biological parameters, e.g., plankton population blooms. The new information on the ecology of V. cholerae is proving useful in developing environmental models for the prediction of cholera epidemics.  相似文献   

19.
Summary The survival of UV-irradiated cholera phage e5 was found to increase when the host cells, Vibrio cholerae MAK757, were exposed to a low dose of UV irradiation before phage infection (Weigle reactivation), indicating the existence of a UV-inducible DNA repair pathway (SOS repair) in V. cholerae MAK757. The induction signal generated by UV irradiation was transient in nature and lasted about 20–30 min at 37°C. Maximal weigle reactivation of the phage was obtained when the host cells were irradiated with a UV dose of 16 J/m2. V. cholerae MAK757 was also found to possess efficient photoreactivation and host cell reactivation of UV-damaged DNA in phage e5.  相似文献   

20.
Abstract The sequence of the ctxB gene encoding the B subunit of cholera toxin has been determined for a strain of Vibrio cholerae of the novel O139 serotype associated with recent outbreaks of severe cholera throughout South-East Asia and found to be identical to the ctxB gene in V. cholerae O1 of the E1 Tor biotype. Analyses by Southern hybridization and PCR showed that all strains of the O139 serotype V. cholerae tested carried cholera toxin genes and other gene associated with a virulence cassette DNA region at two loci identical or homologous to those identified in the Classical rather than the E1 Tor biotype of V. cholerae serotype O1 although these loci in O139 could reside on restriction fragments of variable size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号