首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The functional adaptation of juvenile mammalian limb bone to mechanical loading is necessary to maintain bone strength. Diaphyseal size and shape are modified during growth through the process of bone modeling. Although bone modeling is a well-documented response to increased mechanical stress on growing diaphyseal bone, the effect of proximodistal location on bone modeling remains unclear. Distal limb elements in cursorial mammals are longer and thinner, most likely to conserve energy during locomotion because they require less energy to move. Therefore, distal elements are hypothesized to experience greater mechanical loading during locomotion and may be expected to exhibit a greater modeling response to exercise. In this study, histomorphometric comparisons are made between femora and tibiae of mice treated with voluntary exercise and a control group (N = 20). We find that femora of exercised mice exhibit both greater bone growth rates and growth areas than do controls (P < 0.05). The femora of exercised mice also have significantly greater cortical area, bending rigidity, and torsional rigidity (P < 0.05), although bending and torsional rigidity are comparable when standardized by bone length. Histomorphometric and cross-section geometric properties of the tibial midshaft of exercised and control mice did not differ significantly, although tibial length was significantly greater in exercised mice (P < 0.05). Femora of exercised mice were able to adapt to increased mechanical loading through increases in compressive, bending, and torsional rigidity. No such adaptations were found in the tibia. It is unclear if this is a biomechanical adaptation to greater stress in proximal elements or if distal elements are ontogenetically constrained in a tradeoff of bone strength of distal elements for bioenergetic efficiency during locomotion.  相似文献   

2.
Diaphyseal bone formation in murine tibiae in response to knee loading.   总被引:3,自引:0,他引:3  
Mechanical stimulation is critical for bone architecture and bone mass. The aim of this study was to examine the effects of mechanical loads applied to the knee. The specific question was whether loads applied to the tibial epiphysis would enhance bone formation in the tibial diaphysis. In C57/BL/6 mice, loads of 0.5 N were applied for 3 min per day for 3 days at 5, 10, or 15 Hz. Bone samples were harvested 13 days after the last loading. The strains were measured 13 +/- 2 microstrains at 5 Hz in the diaphysis. The histomorphometric data in the diaphysis clearly showed enhanced bone formation. First, compared with nonloaded control the cross-sectional cortical area was increased by 11% at 5 Hz and 8% at 10 Hz (both P < 0.05). Second, the cortical thickness was elevated by 12% at 5 Hz (P < 0.01) and 8% at 10 Hz (P < 0.05). Third, mineralizing surface (MS/BS), mineral apposition rate (MAR), and bone formation rate (BFR/BS) were increased at 5 Hz (P < 0.01 for MS/BS; P < 0.001 for MAR and BFR/BS) and at 10 Hz (P < 0.05 for MS/BS; P < 0.01 for MAR and BFR/BS). Bone formation was enhanced more extensively in the medial side than the lateral or the posterior side. The results reveal that knee loading is an effective means to enhance bone formation in the tibial diaphysis in a loading-frequency dependent manner without inducing significant in situ strain at the site of bone formation.  相似文献   

3.
The objective of this investigation was to assess the effects of chronic nicotine administration on bone status and serum calcium and calciotropic hormone levels in aged, estrogen-replete (intact, sham-operated) and estrogen-deplete (ovariectomized) female rats. Eight-month-old sham-operated (sham) and ovariectomized (ovx) retired breeder rats were maintained untreated for 3 months to allow for the development of osteopenia in the ovx group. The animals were then administered either saline, low dose nicotine (6.0 mg/kg/day), or high dose nicotine (9.0 mg/kg/day) via osmotic minipumps for 3 months. Blood was drawn at necropsy for determination of serum nicotine, cotinine, Ca, PTH, 25(OH)D, and 1,25(OH)(2)D. Right tibiae were collected and processed undecalcified for cancellous and cortical bone histomorphometry. Histomorphometric endpoints evaluated at the proximal tibial metaphysis included cancellous bone volume (BV/TV), osteoclast surface (Oc.S), osteoid surface (OS), mineralizing surface (MS), mineral apposition rate (MAR), and bone formation rate (BFR). Histomorphometric endpoints evaluated at the tibial diaphysis included cortical area (Ct.Ar), marrow area (Ma.Ar), and periosteal and endocortical MS, MAR, and BFR. Ovariectomy resulted in lower cancellous BV/TV and Ct.Ar and higher cancellous, endocortical, and periosteal MS and BFR. The presence of nicotine in serum confirmed successful delivery of the drug via osmotic minipumps. Administration of nicotine at the high dose resulted in lower serum 25(OH)D levels but differences in serum Ca or PTH were not detected with either nicotine treatment. Differences with nicotine treatment were also not detected for Oc.S at the proximal tibia. While treatment with nicotine at the high dose resulted in higher MS and BFR, in both sham and ovx rats, there were no differences due to nicotine treatment in cancellous BV/TV. Marrow area was greater in rats treated with nicotine than in rats treated with vehicle. However, differences with nicotine treatment were not detected in Ct.Ar in either intact or ovx rats. Overall, these findings indicate that steady state nicotine exposure does not alter bone mass in intact or ovx rats but may have detrimental effects on body storage of vitamin D.  相似文献   

4.
Axial compression of the mouse tibia is used to study strain-adaptive bone (re)modeling. In some studies, comparisons between mice of different ages are of interest. We characterized the tibial deformation and force–strain relationships in female C57Bl/6 mice at 5-, 12- and 22-months age. A three-gauge experimental method was used to determine the strain distribution at the mid-diaphysis, while specimen-specific finite element analysis was used to examine strain distribution along the tibial length. The peak strains in the tibial mid-diaphyseal cross-section are compressive and occur at the postero-lateral apex. The magnitudes of these peak compressive strains are 1.5 to 2 times those on the opposite, antero-medial face (a site often used for strain gauge placement). For example, −10 N force applied to a 5-months old mouse engenders a peak compressive strain of −2800 µε and a tensile strain on the antero-medial face of +1450 µε. The orientation of the neutral axis at the mid-diaphysis did not differ with age (p=0.46), indicating a similar deformation mode in young and old tibiae. On the other hand, from 5- to 22-months there is a 25% reduction in cortical thickness and moment of inertia (p<0.05), resulting in significantly greater tibial strain magnitudes in older mice for equivalent applied force (p<0.05). We conclude that comparisons of tibial loading responses in young-adult and old C57Bl/6 tibiae are facilitated by similar deformation pattern across ages, but that modest adjustment of force levels is required to engender matching peak strains.  相似文献   

5.
The skeleton accommodates changes in mechanical environments by increasing bone mass under increased loads and decreasing bone mass under disuse. However, little is known about the adaptive changes in micromechanical behavior of cancellous and cortical tissues resulting from loading or disuse. To address this issue, in vivo tibial loading and hindlimb unloading experiments were conducted on 16-week-old female C57BL/6J mice. Changes in bone mass and tissue-level strains in the metaphyseal cancellous and midshaft cortical bone of the tibiae, resulting from loading or unloading, were determined using microCT and finite element (FE) analysis, respectively. We found that loading- and unloading-induced changes in bone mass were more pronounced in the cancellous than cortical bone. Simulated FE-loading showed that a greater proportion of elements experienced relatively lower longitudinal strains following load-induced bone adaptation, while the opposite was true in the disuse model. While the magnitudes of maximum or minimum principal strains in the metaphyseal cancellous and midshaft cortical bone were not affected by loading, strains oriented with the long axis were reduced in the load-adapted tibia suggesting that loading-induced micromechanical benefits were aligned primarily in the loading direction. Regression analyses demonstrated that bone mass was a good predictor of bone tissue strains for the cortical bone but not for the cancellous bone, which has complex microarchitecture and spatially-variant strain environments. In summary, loading-induced micromechanical benefits for cancellous and cortical tissues are received primarily in the direction of force application and cancellous bone mass may not be related to the micromechanics of cancellous bone.  相似文献   

6.
Several mathematical rules by which bone adapts to mechanical loading have been proposed. Previous work focused mainly on negative feedback models, e.g., bone adapts to increased loading after a minimum strain effective (MES) threshold has been reached. The MES algorithm has numerous caveats, so we propose a different model, according to which bone adapts to changes in its mechanical environment based on the principle of cellular accommodation. With the new algorithm we presume that strain history is integrated into cellular memory so that the reference state for adaptation is constantly changing. To test this algorithm, an experiment was performed in which the ulnae of Sprague-Dawley rats were loaded in axial compression. The animals received loading for 15 weeks with progressively decreasing loads, increasing loads, or a constant load. The results showed the largest increases in geometry in the decreasing load group, followed by the constant load group. Bone formation rates (BFRs) were significantly greater in the decreasing load group during the first 2 weeks of the study as compared to all other groups (P<0.05). After the first few weeks of mechanical loading, the BFR in the loaded ulnae returned to the values of the nonloaded ulnae. These experimental results closely fit the predicted results of the cellular accommodation algorithm. After the initial weeks of loading, bone stopped responding so the degree of adaptation was proportional to the initial peak load magnitude.  相似文献   

7.
We hypothesized that a 10-s rest interval (at zero load) inserted between each load cycle would increase the osteogenic effects of mechanical loading near previously identified thresholds for strain magnitude and cycle numbers. We tested our hypothesis by subjecting the right tibiae of female C57BL/6J mice (16 wk, n = 70) to exogenous mechanical loading within a peri-threshold physiological range of strain magnitudes and load cycle numbers using a noninvasive murine tibia loading device. Bone responses to mechanical loading were determined via dynamic histomorphometry. More specifically, we contrasted bone formation induced by cyclic vs. rest-inserted loading (10-s rest at zero load inserted between each load cycle) by first varying peak strains (1,000, 1,250, or 1,600 micro epsilon) at fixed cycle numbers (50 cycles/day, 3 days/wk for 3 wk) and then varying cycle numbers (10, 50, or 250 cycles/day) at a fixed strain magnitude (1,250 micro epsilon). Within the range of strain magnitudes tested, the slope of periosteal bone formation rate (p.BFR/BS) with increasing strain magnitudes was significantly increased by rest-inserted compared with cyclical loading. Within the range of load cycles tested, the slope of p.BFR/BS with increasing load cycles of rest-inserted loading was also significantly increased by rest-inserted compared with cyclical loading. In sum, the data of this study indicate that inserting a 10-s rest interval between each load cycle amplifies bone's response to mechanical loading, even within a peri-threshold range of strain magnitudes and cycle numbers.  相似文献   

8.
Rest insertion combined with high-frequency loading enhances osteogenesis.   总被引:2,自引:0,他引:2  
Mechanical loading can significantly affect skeletal adaptation. High-frequency loading can be a potent osteogenic stimulus. Additionally, insertion of rest periods between consecutive loading bouts can be a potent osteogenic stimulus. Thus we investigated whether the insertion of rest-periods between short-term high-frequency loading bouts would augment adaptation in the mature murine skeleton. Right tibiae of skeletally mature (16 wk) female C57BL/6 mice were loaded in cantilever bending at peak of 800 microepsilon, 30 Hz, 5 days/wk for 3 wk. Left tibiae were the contralateral control condition. Mice were randomly assigned into one of two groups: continuous high-frequency (CT) stimulation for 100 s (n = 9), or 1-s pulses of high-frequency stimuli followed by 10 s of rest (RI) for 100 s (n = 9). Calcein labels were administered on days 1 and 21; label incorporation was used to histomorphometrically assess periosteal and endosteal indexes of adaptation. Periosteal surface referent bone formation rate (pBFR/BS) was significantly enhanced in CT (>88%) and RI (>126%) loaded tibiae, relative to control tibiae. Furthermore, RI tibiae had significantly greater pBFR/BS, relative to CT tibiae (>72%). The endosteal surface was not as sensitive to mechanical loading as the periosteal surface. Thus short-term high-frequency loading significantly elevated pBFR/BS, relative to control tibiae. Furthermore, despite the 10-fold reduction in cycle number, the insertion of rest periods between bouts of high-frequency stimuli significantly augmented pBFR/BS, relative to tibiae loaded continually. Optimization of osteogenesis in response to mechanical loading may underpin the development of nonpharmacological regiments designed to increase bone strength in individuals with compromised bone structures.  相似文献   

9.
Age-related decline in periosteal adaptation negatively impacts the ability to utilize exercise to enhance bone mass and strength in the elderly. We recently observed that in senescent animals subject to cyclically applied loading, supplementation with Cyclosporin A (CsA) substantially enhanced the periosteal bone formation rates to levels observed in young animals. We therefore speculated that if the CsA supplement could enhance bone response to a variety of types of mechanical stimuli, this approach could readily provide the means to expand the range of mild stimuli that are robustly osteogenic at senescence. Here, we specifically hypothesized that a given CsA supplement would enhance bone formation induced in the senescent skeleton by both cyclic (1-Hz) and rest-inserted loading (wherein a 10-s unloaded rest interval is inserted between each load cycle). To examine this hypothesis, the right tibiae of senescent female C57BL/6 mice (22 Mo) were subjected to cyclic or rest-inserted loading supplemented with CsA at 3.0 mg/kg. As previously, we initially found that while the periosteal bone formation rate (p.BFR) induced by cyclic loading was enhanced when supplemented with 3.0 mg/kg CsA (by 140%), the response to rest-inserted loading was not augmented at this CsA dosage. In follow-up experiments, we observed that while a 30-fold lower CsA dosage (0.1 mg/kg) significantly enhanced p.BFR induced by rest-inserted loading (by 102%), it was ineffective as a supplement with cyclic loading. Additional experiments and statistical analysis confirmed that the dose-response relations were significantly different for cyclic versus rest-inserted loading, only because the two stimuli required distinct CsA dosages for efficacy. While not anticipated a priori, clarifying the complexity underlying the observed interaction between CsA dosage and loading type holds potential for insight into how bone response to a broad range of mechanical stimuli may be substantially enhanced in the senescent skeleton.  相似文献   

10.
Increased mechanical loading of bone with the rat tibia four-point bending device stimulates bone formation on periosteal and endocortical surfaces. With long-term loading cell activity diminishes, and it has been reported that early gains in bone size may reverse. This study examined the time course for bone cellular and structural response after 6, 12, and 18 wk of loading at 1,200-1, 700 microstrain (muepsilon). Bone formation rates, measured by histomorphometry, were compared within groups, between loaded and contralateral nonloaded tibiae, and between weeks. Formation surface, mineral apposition rate, and bone formation rate on periosteal and endocortical surfaces were elevated after 6 wk of loading. By 12 wk of loading, periosteal and endocortical formation surface and endocortical mineral apposition rates were elevated. By 18 wk of loading, periosteal adaptation appeared complete, whereas endocortical mineral apposition rate remained elevated. No periosteal resorption was observed. Average thickness of new bone formed, from baseline to collection, was greater in loaded than nonloaded tibiae by week 6 and was maintained through week 18. Early increases in bone formation result in periosteal apposition of new bone that persists after formation ceases.  相似文献   

11.
Intermittent treatment with parathyroid hormone (PTH) increases bone formation and prevents bone loss in hindlimb-unloaded (HLU) rats. However, the mechanisms of action of PTH are incompletely known. To explore possible interactions between weight bearing and PTH, we treated 6-mo-old weight-bearing and HLU rats with a human therapeutic dose (1 microg.kg(-1).day(-1)) of human PTH(1-34) (hPTH). Cortical and cancellous bone formation was measured in tibia at the diaphysis proximal to the tibia-fibula synostosis and at the proximal metaphysis, respectively. Two weeks of hindlimb unloading resulted in a dramatic decrease in the rate of bone formation at both skeletal sites, which was prevented by PTH treatment at the cancellous site only. In contrast, PTH treatment increased cortical as well as cancellous bone formation in weight-bearing rats. Two-way ANOVA revealed that hPTH and HLU had independent and opposite effects on all histomorphometric indexes of bone formation [mineral apposition rate (MAR), double-labeled perimeter (dLPm), and bone formation rate (BFR)] at both skeletal sites. The bone anabolic effects of weight bearing and hPTH on dLPm and BFR at the cortical site were additive, as were the effects on MAR at the cancellous site. In contrast, weight bearing and hPTH resulted in synergistic increases in cortical bone MAR and cancellous bone dLPm and BFR. We conclude that weight bearing and PTH act cooperatively to increase bone formation by resulting in site-specific additive and synergistic increases in indexes of osteoblast number and activity, suggesting that weight-bearing exercise targeted to osteopenic skeletal sites may improve the efficacy of PTH therapy for osteoporosis.  相似文献   

12.
Differential response of rat limb bones to strenuous exercise   总被引:4,自引:0,他引:4  
We examined the influence of a strenuous exercise regimen on tibial and metatarsal bones to show not only how the geometric, histological, and mechanical properties of immature bone respond to strenuous exercise but also how long bones within the same limb may respond differentially to exercise. Female Sprague-Dawley rats (8 wk old) were divided randomly into two groups: a sedentary control (n = 15) and an exercised group (n = 15). The exercise intensity was 80-90% of maximum oxygen capacity 5 days/wk for 10 wk. Mechanical properties of tibia and second metatarsus (MT) were determined with three-point bending, and contralateral bones were used for geometric and histological analyses. Length and middiaphyseal cross-sectional geometry of the exercised tibiae were significantly less than controls, but material properties were not different. The exercised tibiae had significantly lower structural properties (e.g., loads at the proportional limit and maximum and energy at failure load). The middiaphyseal dorsal cortex of exercised MT was significantly thicker than controls, but tensile stress at the proportional limit and elastic modulus of exercised MT were significantly less than controls. The average number of osteons and osteocytes per unit area of the tibial middiaphysis was significantly greater in the exercised group--especially in lateral and posterior cortices. The number of osteons and osteocytes per unit area in the MT, however, was significantly less in the exercised group. The differential effects of strenuous exercise on tibia and MT suggest that local loading and bone-specific responses have important roles in modulating the response of immature bone to strenuous exercise.  相似文献   

13.
Previous models of cortical bone adaptation, in which loading is imposed on the bone, have estimated the strains in the tissue using strain gauges, analytical beam theory, or finite element analysis. We used digital image correlation (DIC), tracing a speckle pattern on the surface of the bone during loading, to determine surface strains in a murine tibia during compressive loading through the knee joint. We examined whether these surface strains in the mouse tibia are modified following two weeks of load-induced adaptation by comparison with contralateral controls. Results indicated non-uniform strain patterns with isolated areas of high strain (0.5%), particularly on the medial side. Strain measurements were reproducible (standard deviation of the error 0.03%), similar between specimens, and in agreement with strain gauge measurements (between 0.1 and 0.2% strain). After structural adaptation, strains were more uniform across the tibial surface, particularly on the medial side where peak strains were reduced from 0.5% to 0.3%. Because DIC determines local strains over the entire surface, it will provide a better understanding of how strain stimulus influences the bone response during adaptation.  相似文献   

14.
Prolonged exposure to micro-gravity causes substantial bone loss (Leblanc et al., Journal of Bone Mineral Research 11 (1996) S323) and treadmill exercise under gravity replacement loads (GRLs) has been advocated as a countermeasure. To date, the magnitudes of GRLs employed for locomotion in space have been substantially less than the loads imposed in the earthbound 1G environment, which may account for the poor performance of locomotion as an intervention. The success of future treadmill interventions will likely require GRLs of greater magnitude. It is widely held that mechanical tissue strain is an important intermediary signal in the transduction pathway linking the external loading environment to bone maintenance and functional adaptation; yet, to our knowledge, no data exist linking alterations in external skeletal loading to alterations in bone strain. In this preliminary study, we used unique cadaver simulations of micro-gravity locomotion to determine relationships between localized tibial bone strains and external loading as a means to better predict the efficacy of future exercise interventions proposed for bone maintenance on orbit. Bone strain magnitudes in the distal tibia were found to be linearly related to ground reaction force magnitude (R(2)>0.7). Strain distributions indicated that the primary mode of tibial loading was in bending, with little variation in the neutral axis over the stance phase of gait. The greatest strains, as well as the greatest strain sensitivity to altered external loading, occurred within the anterior crest and posterior aspect of the tibia, the sites furthest removed from the neutral axis of bending. We established a technique for estimating local strain magnitudes from external loads, and equations for predicting strain during simulated micro-gravity walking are presented.  相似文献   

15.
There are conflicting data on whether age reduces the response of the skeleton to mechanical stimuli. We examined this question in female BALB/c mice of different ages, ranging from young to middle-aged (2, 4, 7, 12 months). We first assessed markers of bone turnover in control (non-loaded) mice. Serum osteocalcin and CTX declined significantly from 2 to 4 months (p<0.001). There were similar age-related declines in tibial mRNA expression of osteoblast- and osteoclast-related genes, most notably in late osteoblast/matrix genes. For example, Col1a1 expression declined 90% from 2 to 7 months (p<0.001). We then assessed tibial responses to mechanical loading using age-specific forces to produce similar peak strains (-1300 με endocortical; -2350 με periosteal). Axial tibial compression was applied to the right leg for 60 cycles/day on alternate days for 1 or 6 weeks. qPCR after 1 week revealed no effect of loading in young (2-month) mice, but significant increases in osteoblast/matrix genes in older mice. For example, in 12-month old mice Col1a1 was increased 6-fold in loaded tibias vs. controls (p = 0.001). In vivo microCT after 6 weeks revealed that loaded tibias in each age group had greater cortical bone volume (BV) than contralateral control tibias (p<0.05), due to relative periosteal expansion. The loading-induced increase in cortical BV was greatest in 4-month old mice (+13%; p<0.05 vs. other ages). In summary, non-loaded female BALB/c mice exhibit an age-related decline in measures related to bone formation. Yet when subjected to tibial compression, mice from 2-12 months have an increase in cortical bone volume. Older mice respond with an upregulation of osteoblast/matrix genes, which increase to levels comparable to young mice. We conclude that mechanical loading of the tibia is anabolic for cortical bone in young and middle-aged female BALB/c mice.  相似文献   

16.
In comparing long‐bone cross‐sectional geometric properties between individuals, percentages of bone length are often used to identify equivalent locations along the diaphysis. In fragmentary specimens where bone lengths cannot be measured, however, these locations must be estimated more indirectly. In this study, we examine the effect of inaccurately located femoral and tibial midshafts on estimation of geometric properties. The error ranges were compared on 30 femora and tibiae from the Eneolithic and Bronze Age. Cross‐sections were obtained at each 1% interval from 60 to 40% of length using CT scans. Five percent of deviation from midshaft properties was used as the maximum acceptable error. Reliability was expressed by mean percentage differences, standard deviation of percentage differences, mean percentage absolute differences, limits of agreement, and mean accuracy range (MAR) (range within which mean deviation from true midshaft values was less than 5%). On average, tibial cortical area and femoral second moments of area are the least sensitive to positioning error, with mean accuracy ranges wide enough for practical application in fragmentary specimens (MAR = 40–130 mm). In contrast, tibial second moments of area are the most sensitive to error in midshaft location (MAR = 14–20 mm). Individuals present significant variation in morphology and thus in error ranges for different properties. For highly damaged fossil femora and tibiae we recommend carrying out additional tests to better establish specific errors associated with uncertain length estimates. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Strain-induced adaption of bone has been well-studied in an axial loading model of the mouse tibia. However, most outcomes of these studies are restricted to changes in bone architecture and do not explore the mechanical implications of those changes. Herein, we studied both the mechanical and morphological adaptions of bone to three strain levels using a targeted tibial loading mouse model. We hypothesized that loading would increase bone architecture and improve cortical mechanical properties in a dose-dependent fashion. The right tibiae of female C57BL/6 mice (8 week old) were compressively loaded for 2 weeks to a maximum compressive force of 8.8N, 10.6N, or 12.4N (generating periosteal strains on the anteromedial region of the mid-diaphysis of 1700 με, 2050 με, or 2400 με as determined by a strain calibration), while the left limb served as an non-loaded control. Following loading, ex vivo analyses of bone architecture and cortical mechanical integrity were assessed by micro-computed tomography and 4-point bending. Results indicated that loading improved bone architecture in a dose-dependent manner and improved mechanical outcomes at 2050 με. Loading to 2050 με resulted in a strong and compelling formation response in both cortical and cancellous regions. In addition, both structural and tissue level strength and energy dissipation were positively impacted in the diaphysis. Loading to the highest strain level also resulted in rapid and robust formation of bone in both cortical and cancellous regions. However, these improvements came at the cost of a woven bone response in half of the animals. Loading to the lowest strain level had little effect on bone architecture and failed to impact structural- or tissue-level mechanical properties. Potential systemic effects were identified for trabecular bone volume fraction, and in the pre-yield region of the force-displacement and stress-strain curves. Future studies will focus on a moderate load level which was largely beneficial in terms of cortical/cancellous structure and cortical mechanical function.  相似文献   

18.
Loss of mechanical stress causes bone loss. However, the mechanisms underlying the unloading-induced bone loss are largely unknown. Here, we examined the effects of gold-thioglucose (GTG) treatment, which destroys ventromedial hypothalamus (VMH), on unloading-induced bone loss. Unloading reduced bone volume in control (saline-treated) mice. Treatment with GTG-reduced bone mass and in these GTG-treated mice, unloading-induced reduction in bone mass levels was not observed. Unloading reduced the levels of bone formation rate (BFR) and mineral apposition rate (MAR). GTG treatment also reduced these parameters and under this condition, unloading did not further reduce the levels of BFR and MAR. Unloading increased the levels of osteoclast number (Oc.N/BS) and osteoclast surface (Oc.S/BS). GTG treatment did not alter the basal levels of these bone resorption parameters. In contrast to control, GTG treatment suppressed unloading-induced increase in the levels of Oc.N/BS and Oc.S/BS. Unloading reduced the levels of mRNA expression of the genes encoding osteocalcin, type I collagen and Cbfa1 in bone. In contrast, GTG treatment suppressed such unloading-induced reduction of mRNA expression. Unloading also enhanced the levels of fat mass in bone marrow and mRNA expression of the genes encoding PPARgamma2, C/EBPalpha, and C/EBPbeta in bone. In GTG-treated mice, unloading did not increase fat mass and the levels of fat-related mRNA expression. These results indicated that GTG treatment suppressed unloading-induced alteration in bone loss.  相似文献   

19.
Bone contact forces on the distal tibia during the stance phase of running   总被引:1,自引:0,他引:1  
Although the tibia is a common site of stress fractures in runners, the loading of the tibia during running is not well understood. An integrated experimental and modeling approach was therefore used to estimate the bone contact forces acting on the distal end of the tibia during the stance phase of running, and the contributions of external and internal sources to these forces. Motion capture and force plate data were recorded for 10 male runners as they ran at 3.5-4 m/s. From these data, the joint reaction force (JRF), muscle forces, and bone contact force on the tibia were computed at the ankle using inverse dynamics and optimization methods. The distal end of the tibia was compressed and sheared posteriorly throughout most of stance, with respective peak forces of 9.00+/-1.13 and 0.57+/-0.18 body weights occurring during mid stance. Internal muscle forces were the primary source of tibial compression, whereas the JRF was the primary source of tibial shear due to the forward inclination of the leg relative to the external ground reaction force. The muscle forces and JRF both acted to compress the tibia, but induced tibial shear forces in opposing directions during stance, magnifying tibial compression and reducing tibial shear. The superposition of the peak compressive and posterior shear forces at mid stance may contribute to stress fractures in the posterior face of the tibia. The implications are that changes in running technique could potentially reduce stress fracture risk.  相似文献   

20.
The femoral chordotonal organ of stick insects senses position and velocity of movements in the femur-tibia joint, as well as tibial vibration. While sensory information about large-scale tibial movements is processed by a well-known neuronal network and elicits resistance reflexes in extensor and flexor tibiae motoneurons, it is not yet known how sensory information about vibration of the tibia is processed. We investigated the transmission of vibration stimuli to tibial extensor motoneurons and their premotor interneurons. Vibration stimuli applied to the femoral chordotonal organ evoked responses in tibial extensor and flexor muscles. During ongoing vibration this response adapted rapidly. This adaptation had no effect on the motoneuronal response to large-scale tibial movements. Recording from premotor interneurons revealed that vibratory signals were processed in part by the same interneuronal pathways as (large-scale) velocity and position information. While only certain parts of the interneuronal reflex pathways showed little or no response during vibration stimuli, most neurons responded to both position or velocity stimuli and vibration at the femoral chordotonal organ. We conclude that sensory information about vibration of the tibia shares part of the interneuronal pathways that transmit sensory information about large-scale tibial movements to the motoneurons. Accepted: 25 April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号