首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Leptin is an adipocyte-derived hormone with multiple functions that regulates energy homeostasis and reproductive functions. Increased knowledge of leptin receptor function will enhance our understanding of the physiological roles of leptin in animals.

Methodology/Principal Findings

In the present study, a full-length leptin receptor (lepr) cDNA, consisting of 1,353 nucleotides, was cloned from Chinese mitten crab (Eriocheir sinensis) using rapid amplification of cDNA ends (RACE) following the identification of a single expressed sequence tag (EST) clone in a cDNA library. The lepr cDNA consisted of a 22-nucleotide 5′-untranslated region (5′ UTR), a 402-nucleotide open reading frame (ORF) and a 929-nucleotide 3′ UTR. Multiple sequence alignments revealed that Chinese mitten crab lepr shared a conserved vacuolar protein sorting 55 (Vps55) domain with other species. Chinese mitten crab lepr expression was determined in various tissues and at three different reproductive stages using quantitative real-time RT-PCR. Lepr expression was highest in the intestine, thoracic ganglia, gonad, and accessory gonad, moderate in hepatopancreas and cranial ganglia, and low in muscle, gill, heart, haemocytes, and stomach. Furthermore, lepr expression was significantly higher in the intestine, gonad and thoracic ganglia in immature crabs relative to precocious and mature crabs. In contrast, lepr expression was significantly lower in the hepatopancreas of immature crabs relative to mature crabs.

Conclusions/Significance

We are the first to identify the lepr gene and to determine its gene expression patterns in various tissues and at three different reproductive stages in Chinese mitten crab. Taken together, our results suggest that lepr may be involved in the nutritional regulation of metabolism and reproduction in Chinese mitten crabs.  相似文献   

2.

Introduction

In spite of contemporary morphological taxonomy appraisals, apparent high morphological similarity raises uncertainty about the species status of certain Pagurus hermit crabs. This is exemplified between two European species, Pagurus excavatus (Herbst, 1791) and Pagurus alatus (Fabricius 1775), whose species status is still difficult to resolve using morphological criteria alone.

Methodology/Principal Findings

To address such ambiguities, we used combinations of Maximum Likelihood (ML) and Bayesian Inference (BI) methods to delineate species boundaries of P. alatus and P. excavatus and formulate an intermediate Pagurus phylogenetic hypothesis, based upon single and concatenated mitochondrial (cytochrome oxidase I [COI]) and nuclear (16S and 28s ribosomal RNA) gene partitions. The molecular data supported the species status of P. excavatus and P. alatus and also clearly resolved two divergent clades within hermit crabs from the Northeast Atlantic Ocean and the Mediterranean Sea.

Conclusions/Significance

Despite the abundance and prominent ecological role of hermit crabs, Pagurus, in North East Atlantic Ocean and Mediterranean Sea ecosystems, many important aspects of their taxonomy, biology, systematics and evolution remain poorly explored. The topologies presented here should be regarded as hypotheses that can be incorporated into the robust and integrated understanding of the systematic relationships within and between species of the genus Pagurus inhabiting the Northeast Atlantic Ocean and the Mediterranean Sea.  相似文献   

3.

Background and Aims

The main assemblage of the grass subfamily Chloridoideae is the largest known clade of C4 plant species, with the notable exception of Eragrostis walteri Pilg., whose leaf anatomy has been described as typical of C3 plants. Eragrostis walteri is therefore classically hypothesized to represent an exceptional example of evolutionary reversion from C4 to C3 photosynthesis. Here this hypothesis is tested by verifying the photosynthetic type of E. walteri and its classification.

Methods

Carbon isotope analyses were used to determine the photosynthetic pathway of several E. walteri accessions, and phylogenetic analyses of plastid rbcL and ndhF and nuclear internal transcribed spacer DNA sequences were used to establish the phylogenetic position of the species.

Results

Carbon isotope analyses confirmed that E. walteri is a C3 plant. However, phylogenetic analyses demonstrate that this species has been misclassified, showing that E. walteri is positioned outside Chloridoideae in Arundinoideae, a subfamily comprised entirely of C3 species.

Conclusions

The long-standing hypothesis of C4 to C3 reversion in E. walteri is rejected, and the classification of this species needs to be re-evaluated.  相似文献   

4.
5.
6.

Background

Visceral Leishmaniasis (VL) is a life threatening neglected infectious disease in the Indian subcontinent, transmitted by the bite of female sand flies. Estimation of the infectivity in the vector population, collected in different seasons, may be useful to better understanding the transmission dynamics of VL as well as to plan vector control measures.

Methodology

We collected sand flies from highly endemic regions of Bihar state, India for one year over three seasons. The species of the sand flies were confirmed by species-specific PCR-RFLP. Leishmania donovani infection was investigated in 1397 female Phlebotomus argentipes using PCR, targeting the Leishmania specific minicircle of the kDNA region. Further, the parasitic load in the infected sand flies was measured using quantitative PCR.

Conclusion

Though sand flies were most abundant in the rainy season, the highest rate of infection was detected in the winter season with 2.84% sand flies infected followed by the summer and rainy seasons respectively. This study can help in vector elimination programmes and to reduce disease transmission.  相似文献   

7.

Background and Aims

Asexual reproduction is a prominent evolutionary process within land plant lineages and especially in ferns. Up to 10 % of the approx. 10 000 fern species are assumed to be obligate asexuals. In the Asplenium monanthes species complex, previous studies identified two triploid, apomictic species. The purpose of this study was to elucidate the phylogenetic relationships in the A. monanthes complex and to investigate the occurrence and evolution of apomixis within this group.

Methods

DNA sequences of three plastid markers and one nuclear single copy gene were used for phylogenetic analyses. Reproductive modes were assessed by examining gametophytic and sporophyte development, while polyploidy was inferred from spore measurements.

Key Results

Asplenium monanthes and A. resiliens are confirmed to be apomictic. Asplenium palmeri, A. hallbergii and specimens that are morphologically similar to A. heterochroum are also found to be apomictic. Apomixis is confined to two main clades of taxa related to A. monanthes and A. resiliens, respectively, and is associated with reticulate evolution. Two apomictic A. monanthes lineages, and two putative diploid sexual progenitor species are identified in the A. monanthes clade.

Conclusions

Multiple origins of apomixis are inferred, in both alloploid and autoploid forms, within the A. resiliens and A. monanthes clades.  相似文献   

8.
9.

Background

Bivalves are very ancient and successful conchiferan mollusks (both in terms of species number and geographical distribution). Despite their importance in marine biota, their deep phylogenetic relationships were scarcely investigated from a molecular perspective, whereas much valuable work has been done on taxonomy, as well as phylogeny, of lower taxa.

Methodology/Principal Findings

Here we present a class-level bivalve phylogeny with a broad sample of 122 ingroup taxa, using four mitochondrial markers (MT-RNR1, MT-RNR2, MT-CO1, MT-CYB). Rigorous techniques have been exploited to set up the dataset, analyze phylogenetic signal, and infer a single final tree. In this study, we show the basal position of Opponobranchia to all Autobranchia, as well as of Palaeoheterodonta to the remaining Autobranchia, which we here propose to call Amarsipobranchia. Anomalodesmata were retrieved as monophyletic and basal to (Heterodonta + Pteriomorphia).

Conclusions/Significance

Bivalve morphological characters were traced onto the phylogenetic trees obtained from the molecular analysis; our analysis suggests that eulamellibranch gills and heterodont hinge are ancestral characters for all Autobranchia. This conclusion would entail a re-evaluation of bivalve symplesiomorphies.  相似文献   

10.
11.

Background

The Yellow Cat Member of the Cedar Mountain Formation (Early Cretaceous, Barremian?) of Utah has yielded a rich dinosaur fauna, including the basal therizinosauroid theropod Falcarius utahensis at its base. Recent excavation uncovered a new possible therizinosauroid taxon from a higher stratigraphic level in the Cedar Mountain Formation than F. utahensis.

Methodology/Principal Findings

Here we describe a fragmentary skeleton of the new theropod and perform a phylogenetic analysis to determine its phylogenetic position. The skeleton includes fragments of vertebrae, a scapula, forelimb and hindlimb bones, and an ischium. It also includes several well-preserved manual unguals. Manual and pedal morphology show that the specimen is distinct from other theropods from the Cedar Mountain Formation and from previously described therizinosauroids. It is here named as the holotype of a new genus and species, Martharaptor greenriverensis. Phylogenetic analysis places M. greenriverensis within Therizinosauroidea as the sister taxon to Alxasaurus + Therizinosauridae, although support for this placement is weak.

Conclusions/Significance

The new specimen adds to the known dinosaurian fauna of the Yellow Cat Member of the Cedar Mountain Formation. If the phylogenetic placement is correct, it also adds to the known diversity of Therizinosauroidea.  相似文献   

12.

Background

Physcomitrella patens, a haploid dominant plant, is fast becoming a useful molecular genetics and bioinformatics tool due to its key phylogenetic position as a bryophyte in the post-genomic era. Genome sequences from select reference species were compared bioinformatically to Physcomitrella patens using reciprocal blasts with the InParanoid software package. A reference protein interaction database assembled using MySQL by compiling BioGrid, BIND, DIP, and Intact databases was queried for moss orthologs existing for both interacting partners. This method has been used to successfully predict interactions for a number of angiosperm plants.

Results

The first predicted protein-protein interactome for a bryophyte based on the interolog method contains 67,740 unique interactions from 5,695 different Physcomitrella patens proteins. Most conserved interactions among proteins were those associated with metabolic processes. Over-represented Gene Ontology categories are reported here.

Conclusion

Addition of moss, a plant representative 200 million years diverged from angiosperms to interactomic research greatly expands the possibility of conducting comparative analyses giving tremendous insight into network evolution of land plants. This work helps demonstrate the utility of “guilt-by-association” models for predicting protein interactions, providing provisional roadmaps that can be explored using experimental approaches. Included with this dataset is a method for characterizing subnetworks and investigating specific processes, such as the Calvin-Benson-Bassham cycle.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0524-1) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background:

Stearoyl-CoA desaturase (SCD) is a key enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids (MUFAs) in fat biosynthesis. Despite being crucial for interpreting SCDs’ roles across species, the evolutionary relationship of SCD proteins across species has yet to be elucidated. This study aims to present this evolutionary relationship based on amino acid sequences.

Methods:

Using Multiple Sequence Alignment (MSA) and phylogenetic construction methods, a hypothetical evolutionary relationship was generated between the stearoyl-CoA desaturase (SCD) protein sequences between 18 different species.

Results:

SCD protein sequences from Homo sapiens, Pan troglodytes (chimpanzee), and Pongo abelii (orangutan) have the lowest genetic distances of 0.006 of the 18 species studied. Capra hircus (goat) and Ovis aries (Sheep) had the next lowest genetic distance of 0.023. These farm animals are 99.987% identical at the amino acid level.

Conclusions:

The SCD proteins are conserved in these 18 species, and their evolutionary relationships are similar. Key Words: Phylogenetic analysis, Stearoyl-CoA desaturase (SCD) proteins, Multiple sequence alignment  相似文献   

14.

Background and Aims

Tribe Arabideae are the most species-rich monophyletic lineage in Brassicaceae. More than 500 species are distributed in the majority of mountain and alpine regions worldwide. This study provides the first comprehensive phylogenetic analysis for the species assemblage and tests for association of trait and characters, providing the first explanations for the enormous species radiation since the mid Miocene.

Methods

Phylogenetic analyses of DNA sequence variation of nuclear encoded loci and plastid DNA are used to unravel a reliable phylogenetic tree. Trait and ancestral area reconstructions were performed and lineage-specific diversification rates were calculated to explain various radiations in the last 15 Myr in space and time.

Key Results

A well-resolved phylogenetic tree demonstrates the paraphyly of the genus Arabis and a new systematic concept is established. Initially, multiple radiations involved a split between lowland annuals and mountain/alpine perennial sister species. Subsequently, increased speciation rates occur in the perennial lineages. The centre of origin of tribe Arabideae is most likely the Irano-Turanian region from which the various clades colonized the temperate mountain and alpine regions of the world.

Conclusions

Mid Miocene early diversification started with increased speciation rates due to the emergence of various annual lineages. Subsequent radiations were mostly driven by diversification within perennial species during the Pliocene, but increased speciation rates also occurred during that epoch. Taxonomic concepts in Arabis are still in need of a major taxonomic revision to define monophyletic groups.  相似文献   

15.

Background and Aims

Ibicella lutea and Proboscidea parviflora are two American semi-desert species of glandular sticky plants that are suspected of carnivory as they can catch small insects. The same characteristics might also hold for two semi-desert plants with glandular sticky leaves from Israel, namely Cleome droserifolia and Hyoscyamus desertorum. The presence of proteases on foliar hairs, either secreted by the plant or commensals, detected using a simple test, has long been considered proof of carnivory. However, this test does not prove whether nutrients are really absorbed from insects by the plant. To determine the extent to which these four species are potentially carnivorous, hair secretion of phosphatases and uptake of N, P, K and Mg from fruit flies as model prey were studied in these species and in Roridula gorgonias and Drosophyllum lusitanicum for comparison. All species examined possess morphological and anatomical adaptations (hairs or emergences secreting sticky substances) to catch and kill small insects.

Methods

The presence of phosphatases on foliar hairs was tested using the enzyme-labelled fluorescence method. Dead fruit flies were applied to glandular sticky leaves of experimental plants and, after 10–15 d, mineral nutrient content in their spent carcasses was compared with initial values in intact flies after mineralization.

Key Results

Phosphatase activity was totally absent on Hyoscyamus foliar hairs, a certain level of activity was usually found in Ibicella, Proboscidea and Cleome, and a strong response was found in Drosophyllum. Roridula exhibited only epidermal activity. However, only Roridula and Drosophyllum took up nutrients (N, P, K and Mg) from applied fruit flies.

Conclusions

Digestion of prey and absorption of their nutrients are the major features of carnivory in plants. Accordingly, Roridula and Drosophyllum appeared to be fully carnivorous; by contrast, all other species examined are non-carnivorous as they did not meet the above criteria.Key words: Roridula gorgonias, Drosophyllum lusitanicum, Proboscidea parviflora, Ibicella lutea, Cleome droserifolia, Hyoscyamus desertorum, phosphatase, phosphomonoesters, fruit flies, N, P, K, Mg uptake from prey  相似文献   

16.

Background

Using gene order as a phylogenetic character has the potential to resolve previously unresolved species relationships. This character was used to resolve the evolutionary history within the genus Prochlorococcus, a group of marine cyanobacteria.

Methodology/Principal Findings

Orthologous gene sets and their genomic positions were identified from 12 species of Prochlorococcus and 1 outgroup species of Synechococcus. From this data, inversion and breakpoint distance-based phylogenetic trees were computed by GRAPPA and FastME. Statistical support of the resulting topology was obtained by application of a 50% jackknife resampling technique. The result was consistent and congruent with nucleotide sequence-based and gene-content based trees. Also, a previously unresolved clade was resolved, that of MIT9211 and SS120.

Conclusions/Significance

This is the first study to use gene order data to resolve a bacterial phylogeny at the genus level. It suggests that the technique is useful in resolving the Tree of Life.  相似文献   

17.

Background and aims

South America and Oceania possess numerous floristic similarities, often confirmed by morphological and molecular data. The carnivorous Drosera meristocaulis (Droseraceae), endemic to the Neblina highlands of northern South America, was known to share morphological characters with the pygmy sundews of Drosera sect. Bryastrum, which are endemic to Australia and New Zealand. The inclusion of D. meristocaulis in a molecular phylogenetic analysis may clarify its systematic position and offer an opportunity to investigate character evolution in Droseraceae and phylogeographic patterns between South America and Oceania.

Methods Drosera meristocaulis

was included in a molecular phylogenetic analysis of Droseraceae, using nuclear internal transcribed spacer (ITS) and plastid rbcL and rps16 sequence data. Pollen of D. meristocaulis was studied using light microscopy and scanning electron microscopy techniques, and the karyotype was inferred from root tip meristem.

Key Results

The phylogenetic inferences (maximum parsimony, maximum likelihood and Bayesian approaches) substantiate with high statistical support the inclusion of sect. Meristocaulis and its single species, D. meristocaulis, within the Australian Drosera clade, sister to a group comprising species of sect. Bryastrum. A chromosome number of 2n = approx. 32–36 supports the phylogenetic position within the Australian clade. The undivided styles, conspicuous large setuous stipules, a cryptocotylar (hypogaeous) germination pattern and pollen tetrads with aperture of intermediate type 7–8 are key morphological traits shared between D. meristocaulis and pygmy sundews of sect. Bryastrum from Australia and New Zealand.

Conclusions

The multidisciplinary approach adopted in this study (using morphological, palynological, cytotaxonomic and molecular phylogenetic data) enabled us to elucidate the relationships of the thus far unplaced taxon D. meristocaulis. Long-distance dispersal between southwestern Oceania and northern South America is the most likely scenario to explain the phylogeographic pattern revealed.  相似文献   

18.

Background and Aims

Solving relationships of recently diverged taxa, poses a challenge due to shared polymorphism and weak reproductive barriers. Multiple lines of evidence are needed to identify independently evolving lineages. This is especially true of long-lived species with large effective population sizes, and slow rates of lineage sorting. North American pines are an interesting group to test this multiple approach. Our aim is to combine cytoplasmic genetic markers with environmental information to clarify species boundaries and relationships of the species complex of Pinus flexilis, Pinus ayacahuite, and Pinus strobiformis.

Methods

Mitochondrial and chloroplast sequences were combined with previously obtained microsatellite data and contrasted with environmental information to reconstruct phylogenetic relationships of the species complex. Ecological niche models were compared to test if ecological divergence is significant among species.

Key Results and Conclusion

Separately, both genetic and ecological evidence support a clear differentiation of all three species but with different topology, but also reveal an ancestral contact zone between P. strobiformis and P. ayacahuite. The marked ecological differentiation of P. flexilis suggests that ecological speciation has occurred in this lineage, but this is not reflected in neutral markers. The inclusion of environmental traits in phylogenetic reconstruction improved the resolution of internal branches. We suggest that combining environmental and genetic information would be useful for species delimitation and phylogenetic studies in other recently diverged species complexes.  相似文献   

19.

Background

Introduced parasites are a particular threat to small populations of hosts living on islands because extinction can occur before hosts have a chance to evolve effective defenses. An experimental approach in which parasite abundance is manipulated in the field can be the most informative means of assessing a parasite''s impact on the host. The parasitic fly Philornis downsi, recently introduced to the Galápagos Islands, feeds on nestling Darwin''s finches and other land birds. Several correlational studies, and one experimental study of mixed species over several years, reported that the flies reduce host fitness. Here we report the results of a larger scale experimental study of a single species at a single site over a single breeding season.

Methodology/Principal Findings

We manipulated the abundance of flies in the nests of medium ground finches (Geospiza fortis) and quantified the impact of the parasites on nestling growth and fledging success. We used nylon nest liners to reduce the number of parasites in 24 nests, leaving another 24 nests as controls. A significant reduction in mean parasite abundance led to a significant increase in the number of nests that successfully fledged young. Nestlings in parasite-reduced nests also tended to be larger prior to fledging.

Conclusions/Significance

Our results confirm that P. downsi has significant negative effects on the fitness of medium ground finches, and they may pose a serious threat to other species of Darwin''s finches. These data can help in the design of management plans for controlling P. downsi in Darwin''s finch breeding populations.  相似文献   

20.

Background and Aims

Ceropegia (Apocynaceae subfamily Asclepiadoideae) is a large, Old World genus of >180 species, all of which possess distinctive flask-shaped flowers that temporarily trap pollinators. The taxonomic diversity of pollinators, biogeographic and phylogenetic patterns of pollinator exploitation, and the level of specificity of interactions were assessed in order to begin to understand the role of pollinators in promoting diversification within the genus.

Methods

Flower visitor and pollinator data for approx. 60 Ceropegia taxa were analysed with reference to the main centres of diversity of the genus and to a cpDNA–nrDNA molecular phylogeny of the genus.

Key Results

Ceropegia spp. interact with flower-visiting Diptera from at least 26 genera in 20 families, of which 11 genera and 11 families are pollinators. Size range of flies was 0·5–4·0 mm and approx. 94 % were females. Ceropegia from particular regions do not use specific fly genera or families, though Arabian Peninsula species are pollinated by a wider range of Diptera families than those in other regions. The basal-most clade interacts with the highest diversity of Diptera families and genera, largely due to one hyper-generalist taxon, C. aristolochioides subsp. deflersiana. Species in the more-derived clades interact with a smaller diversity of Diptera. Approximately 60 % of taxa are so far recorded as interacting with only a single genus of pollinators, the remaining 40 % being less conservative in their interactions. Ceropegia spp. can therefore be ecological specialists or generalists.

Conclusions

The genus Ceropegia has largely radiated without evolutionary shifts in pollinator functional specialization, maintaining its interactions with small Diptera. Intriguing biogeographic and phylogenetic patterns may reflect processes of regional dispersal, diversification and subsequent specialization onto a narrower range of pollinators, though some of the findings may be caused by inconsistent sampling. Comparisons are made with other plant genera in the Aristolochiaceae and Araceae that have evolved flask-shaped flowers that trap female flies seeking oviposition sites.Key words: Apocynaceae, Asclepiadoideae, Brachystelma, Ceropegia, Diptera, flower evolution, generalization, mutualism, pollination, Riocreuxia, specialization, Stapeliinae  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号