首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Piezoelectric-excited millimeter-sized cantilever (PEMC) sensors consisting of a piezoelectric and a borosilicate glass layer with a sensing area of 2.48 mm2 were fabricated. Antibody specific to Bacillus anthracis (BA, Sterne strain 7702) spores was immobilized on PEMC sensors, and exposed to spores (300 to 3x10(6) spores/mL). The resonant frequency decreased at a rate proportional to the spore concentration and reached a steady state frequency change of 5+/-5 Hz (n=3), 92+/-7 Hz (n=3), 500+/-10 Hz (n=3), 1030+/-10 Hz (n=2), and 2696+/-6 Hz (n=2) corresponding to 0, 3x10(2), 3x10(3), 3x10(4), and 3x10(6) spores/mL, respectively. The reduction in resonant frequency is proportional to the change in cantilever mass, and thus the observed changes are due to the attachment of spores on the sensor surface. Selectivity of the antibody-functionalized sensor was determined with samples of BA (3x10(6)/mL) mixed with Bacillus thuringiensis (BT; 1.5x10(9)/mL) in various volume ratios that yielded BA:BT ratios of 1:0, 1:125, 1:250, 1:500 and 0:1. The corresponding resonance frequency decreases were, respectively, 2345, 1980, 1310, 704 and 10 Hz. Sample containing 100% BT spores (1.5x10(9)/mL and no BA) gave a steady state frequency decrease of 10 Hz, which is within noise level of the sensor, indicating excellent selectivity. The observed binding rate constant for the pure BA and BT-containing samples ranged from 0.105 to 0.043 min-1 in the spore concentration range 300 to 3x10(6)/mL. These results show that detection of B. anthracis spore at a very low concentration (300 spores/mL) and with high selectivity in presence of another Bacillus spore (BT) can be accomplished using piezoelectric-excited millimeter-sized cantilever sensors.  相似文献   

2.
This article presents an investigation of the effect of salt and phage concentrations on the binding affinity of magnetoelastic (ME) biosensors. The sensors were fabricated by immobilizing filamentous phage on the ME platform surface for the detection of Bacillus anthracis spores. In response to the binding of spores to the phage on the ME biosensor, a corresponding decrease occurs in resonance frequency. Transmission electron microscopy (TEM) was used to verify the structure of phage under different combinations of salt/phage concentration. The chemistry of the phage solution alters phage bundling characteristics and, hence, influences both the sensitivity and detection limit of the ME biosensors. The frequency responses of the sensors were measured to determine the effects of salt concentration on the sensors' performance. Scanning electron microscopy (SEM) was used to confirm and quantify the binding of spores to the sensor surface. This showed that 420 mM salt at a phage concentration of 1 x 10(11) vir/mL results in an optimal distribution of immobilized phages on the sensor surface, consequently promoting better binding of spores to the biosensor's surface. Additionally, the sensors immobilized with phage under this condition were exposed to B. anthracis spores in different concentrations ranging from 5 x 10(1) to 5 x 10(8) cfu/mL in a flowing system. The results showed that the sensitivity of this ME biosensor was 202 Hz/decade.  相似文献   

3.
AIMS: To determine the size distribution of the spores of Bacillus anthracis, and compare its size with other Bacillus species grown and sporulated under similar conditions. METHODS AND RESULTS: Spores from several Bacillus species, including seven strains of B. anthracis and six close neighbours, were prepared and studied using identical media, protocols and instruments. Here, we report the spore length and diameter distributions, as determined by transmission electron microscopy (TEM). We calculated the aspect ratio and volume of each spore. All the studied strains of B. anthracis had similar diameter (mean range between 0.81 +/- 0.08 microm and 0.86 +/- 0.08 microm). The mean lengths of the spores from different B. anthracis strains fell into two significantly different groups: one with mean spore lengths 1.26 +/- 0.13 microm or shorter, and another group of strains with mean spore lengths between 1.49 and 1.67 microm. The strains of B. anthracis that were significantly shorter also sporulated with higher yield at relatively lower temperature. The grouping of B. anthracis strains by size and sporulation temperature did not correlate with their respective virulence. CONCLUSIONS: The spores of Bacillus subtilis and Bacillus atrophaeus (previously named Bacillus globigii), two commonly used simulants of B. anthracis, were considerably smaller in length, diameter and volume than all the B. anthracis spores studied. Although rarely used as simulants, the spores of Bacillus cereus and Bacillus thuringiensis had dimensions similar to those of B. anthracis. SIGNIFICANCE AND IMPACT OF THE STUDY: Spores of nonvirulent Bacillus species are often used as simulants in the development and testing of countermeasures for biodefence against B. anthracis. The data presented here should help in the selection of simulants that better resemble the properties of B. anthracis, and thus, more accurately represent the performance of collectors, detectors and other countermeasures against this threat agent.  相似文献   

4.
Piezoelectric-excited millimeter-sized cantilever (PEMC) sensors consisting of a piezoelectric and a borosilicate glass layer with a sensing area of 4 mm2 were fabricated. An antibody specific to Escherichia coli (anti-E. coli) O157:H7 was immobilized on PEMC sensors, and exposed to samples containing E. coli O157:H7 (EC) prepared in various matrices: (1) broth, broth plus raw ground beef, and broth plus sterile ground beef without inoculation of E. coli O157:H7 served as controls, (2) 100 mL of broth inoculated with 25 EC cells, (3) 100 mL of broth containing 25 g of raw ground beef and (4) 100 mL of broth with 25 g of sterile ground beef inoculated with 25 EC cells. The total resonant frequency change obtained for the broth plus EC samples were 16+/-2 Hz (n=2), 30 Hz (n=1), and 54+/-2 Hz (n=2) corresponding to 2, 4, and 6h growth at 37 degrees C, respectively. The response to the broth plus 25 g of sterile ground beef plus EC cells were 21+/-2 Hz (n=2), 37 Hz (n=1), and 70+/-2 Hz (n=2) corresponding to 2, 4, and 6 h, respectively. In all cases, the three different control samples yielded a frequency change of 0+/-2 Hz (n=6). The E. coli O157:H7 concentration in each broth and beef samples was determined by both plating and by pathogen modeling program. The results indicate that the PEMC sensor detects E. coli O157:H7 reliably at 50-100 cells/mL with a 3 mL sample.  相似文献   

5.
AIMS: To determine the irradiation dose necessary to reduce the populations of Bacillus anthracis spores in a dry medium in postal envelopes. METHODS AND RESULTS: Bacillus anthracis Sterne 34F2 spores were dispersed in non-fat dry milk and then placed into standard business postal envelopes. The spores were treated with a sequence of irradiation doses to determine the decimal reduction value (D10) in kiloGrays (kGy). The average D10 value was 3.35 +/- 0.02 kGy. CONCLUSIONS: An irradiation dose of 40.2 kGy would be required to result in a process equivalent to the thermal canning process (12 D10 reduction) to eliminate Clostridium botulinum spores. SIGNIFICANCE AND IMPACT OF THE STUDY: Irradiation is an effective means of reducing or eliminating B. anthracis spores in a dry medium in postal envelopes.  相似文献   

6.
To enhance the mass change sensitivity of the resonating piezoelectric-excited millimeter-sized cantilever (PEMC) sensors, we reduced its length and eliminated one layer of its composite structure. As a result the mass sensitivity of the second flexural mode increased by two orders of magnitude (from 10(-9) to 10(-11)g/Hz) and the resonant frequency increased by more than 5 kHz. We demonstrate the effects of modification by detecting a model pathogen Group A Streptococcus (GAS) at 700 cells/mL. The resonant frequency change of the second mode at concentrations of 700, 7 x 10(3), 7 x 10(5), 7 x 10(6), 7 x 10(7), and 7 x 10(9)cells/mL resulted in, respectively, 3.1+/-0.5, 11.6+/-1, 15.7+/-1, 25.7+/-0.15, 28.5+/-2, and 40.5+/-3 ng (n=3 for all) of pathogen attachment. A kinetic model for the binding is proposed and verified. The observed binding rate constant was found to be in the range of 0.051-0.166 min(-1). The significance of the results we report is that the modified PEMC sensors have high mass sensitivity that pathogens can be detected at very low concentration under liquid immersion conditions.  相似文献   

7.
Since the anthrax spore bioterrorism attacks in America in 2001, the early detection of Bacillus anthracis spores and vegetative cells has gained significant interest. At present, many polyclonal antibody-based quartz crystal microbalance (QCM) sensors have been developed to detect B. anthracis simulates. To achieve a simultaneous rapid detection of B. anthracis spores and vegetative cells, this paper presents a biosensor that utilizes an anti-B. anthracis monoclonal antibody designated to 8G3 (mAb 8G3, IgG) functionalized QCM sensor. Having compared four kinds of antibody immobilizations on Au surface, an optimized mAb 8G3 was immobilized onto the Au electrode with protein A on a mixed self-assembled monolayer (SAM) of 11-mercaptoundecanoic acid (11-MUA) and 6-mercaptohexan-1-ol (6-MHO) as adhesive layer. The detection of B. anthracis was investigated under three conditions: dip-and-dry, static addition and flow through procedure. The results indicated that the sensor yielded a distinct response to B. anthracis spores or vegetative cells but had no significant response to Bacillus thuringiensis species. The functionalized sensor recognized B. anthracis spores and vegetative cells specifically from its homophylic ones, and the limit of detection (LOD) reached 10(3)CFU or spores/ml of B. anthracis in less than 30 min. Cyclic voltammogram (CV) and scanning electronic microscopy (SEM) were performed to characterize the surface of the sensor in variable steps during the modification and after the detection. The mAb functionalized QCM biosensor will be helpful in the fabrication of a similar biosensor that may be available in anti-bioterrorism in the future.  相似文献   

8.
AIMS: To compare the relative sensitivity of Bacillus anthracis and spores of other Bacillus spp. deposited on different solid surfaces to inactivation by liquid chemical disinfecting agents. METHODS AND RESULTS: We prepared under similar conditions spores from five different virulent and three attenuated strains of B. anthracis, as well as spores of Bacillus subtilis, Bacillus atrophaeus (previously known as Bacillus globigii), Bacillus cereus, Bacillus thuringiensis and Bacillus megaterium. As spore-surface interactions may bias inactivation experiments, we evaluated the relative binding of different spores to carrier materials. The survival of spores deposited on glass, metallic or polymeric surfaces were quantitatively measured by ASTM standard method E-2414-05 which recovers spores from surfaces by increasing stringency. The number of spores inactivated by each decontaminant was similar and generally within 1 log among the 12 different Bacillus strains tested. This similarity among Bacillus strains and species was observed through a range of sporicidal efficacy on spores deposited on painted metal, polymeric rubber or glass. CONCLUSIONS: The data obtained indicate that the sensitivity of common simulants (B. atrophaeus and B. subtilis), as well as spores of B. cereus, B. thuringiensis, and B. megaterium, to inactivation by products that contain either: peroxide, chlorine or oxidants is similar to that shown by spores from all eight B. anthracis strains studied. SIGNIFICANCE AND IMPACT OF THE STUDY: The comparative results of the present study suggest that decontamination and sterilization data obtained with simulants can be safely extrapolated to virulent spores of B. anthracis. Thus, valid conclusions on sporicidal efficacy could be drawn from safer and less costly experiments employing non-pathogenic spore simulants.  相似文献   

9.
We present an acoustic Love-wave biosensor for detection of the Bacillus anthracis simulant, Bacillus thuringiensis at or below inhalational infectious levels. The present work is an experimental study of 36 degrees YX cut LiTaO3 based Love-wave devices for detection of pathogenic spores in aqueous conditions. Given that the detection limit (D1) of Love-wave-based sensors is a strong function of the overlying waveguide, two waveguide materials have been investigated, which are polyimide and polystyrene. To determine the mass sensitivity of Love-wave sensor, bovine serum albumin (BSA) protein was injected into the Love-wave test cell while recording the magnitude and phase shift across each sensor. Polyimide had the lowest mass detection limit with an estimated value of 1.0-2.0 ng/cm2, as compared to polystyrene where D1 = 2.0 ng/cm2. Suitable chemistries were used to orient antibodies on the Love-wave sensor using protein G. The thickness of each biofilm was measured using ellipsometry from which the surface concentrations were calculated. The monoclonal antibody BD8 with a high degree of selectivity for anthrax spores was used to capture the non-pathogenic simulant B. thuringiensis B8 spores. Bacillus subtilis spores were used as a negative control to determine whether significant non-specific binding would occur. Spore aliquots were prepared using an optical counting method, which permitted removal of background particles for consistent sample preparation. This work demonstrates that Love-wave biosensors are promising for low-level detection for whole-cell biological pathogens.  相似文献   

10.
Recent bioterrorism concerns have prompted renewed efforts towards understanding the biology of bacterial spore resistance to radiation with a special emphasis on the spores of Bacillus anthracis. A review of the literature revealed that B. anthracis Sterne spores may be three to four times more resistant to 254-nm-wavelength UV than are spores of commonly used indicator strains of Bacillus subtilis. To test this notion, B. anthracis Sterne spores were purified and their UV inactivation kinetics were determined in parallel with those of the spores of two indicator strains of B. subtilis, strains WN624 and ATCC 6633. When prepared and assayed under identical conditions, the spores of all three strains exhibited essentially identical UV inactivation kinetics. The data indicate that standard UV treatments that are effective against B. subtilis spores are likely also sufficient to inactivate B. anthracis spores and that the spores of standard B. subtilis strains could reliably be used as a biodosimetry model for the UV inactivation of B. anthracis spores.  相似文献   

11.
A commercially available flow cytometer (Cytofluorograf) was used for the immunofluorescence (IF) analysis of spores of Bacillus anthracis, Bacillus cereus, and Bacillus subtilis, using fluorescein-labelled antispore conjugates. The cytometer was modified to allow analysis of known numbers of bacteria. In attempting to identify the region of the cytometer fluorescence histogram associated with the presence of stained spores, evidence was produced for signal components due to antibody bound to extracellular antigens. Under some reaction conditions these components were large enough partially or completely to obscure the fluorescence distribution imputed to the spores. The results support the hypothesis that the fluorescence histogram for a bacterial suspension can be modified by subtracting the histogram of the cell-free centrifugation supernatant to provide a fluorescence distribution more representative of the bacteria themselves. Spore and vegetative forms of B. anthracis could be differentiated in the flow IF assay by comparing the peak and area (integral) values of the photomultiplier output. The 90 degrees scatter histograms of the stained spores and their cell-free supernatants were so alike in shape that it was not possible to ascribe a unique peak to the spores themselves. Overall, these results confirm the considerable potential of flow cytometry for the rapid and quantitative IF assay of bacterial populations.  相似文献   

12.
Aim:  Combination of immunomagnetic separation (IMS) and lateral flow device (LFD) assays for the development of a sensitive, rapid, on-site methodology that enables concentration and detection of Bacillus anthracis spores in complex samples.
Methods and Results:  The data presents the development of an optimized, 30 min, IMS assay, with about 95% capture of B. anthracis spores from different dairy products ( n  = 38). No cross reactivity was detected with typical milk flora and some closely related Bacilli. To enable direct application of the IMS captured spores on the LFD, spores were eluted from the bead–spore complex utilizing 95% (v/v) formamide-10 mmol l−1 EDTA for 30 s in a microwave oven. Detached spores were analysed on LFD enabling detection within 10 min. The combined IMS–LFD methodology (40 min) demonstrates a 60-fold improvement in sensitivity, relative to samples that were applied directly on the LFD without the IMS concentrating step.
Conclusions:  The IMS–LFD method is a powerful platform, combining rapidity, specificity and efficiency for concentrating and detecting B. anthracis from water and milk contaminated samples.
Significant and Impact of the Study:  The combination of IMS and LFD enhances the sensitivity and flexibility of B. anthracis spore detection from complex samples. This method can potentially be extended to other toxins and micro-organisms in a variety of matrices.  相似文献   

13.
Bacillus anthracis has four plasmid possible virulence genotypes: pXO1+/pXO2+, pXO1+/pXO2-, pXO1-/pXO2+ or pXO1-/pXO2-. Due to the lack of a specific chromosomal marker for B. anthracis, differentiation of the pXO1-/pXO2- form of B. anthracis from closely related Bacillus cereus group species is difficult. In this study, we evaluate the ability of sspE, pXO1 and pXO2 primers to discriminate individual B. anthracis and the B. cereus group genotypes using multiplex real-time PCR and melting curve analysis. Optimal conditions for successful multiplex assays have been established. Purified DNAs from 38 bacterial strains including 11 strains of B. anthracis and 18 B. cereus group strains were analyzed. Nine of the B. cereus group near-neighbor strains were shown by multilocus sequence typing to be phylogenetically proximate to the B. anthracis clade. We have demonstrated that the four plasmid genotypes of B. anthracis and B. cereus group near-neighbors were differentially and simultaneously discriminated by this assay.  相似文献   

14.
The U.S. Department of Justice (DOJ) mail facility in Landover, Maryland, was contaminated with Bacillus anthracis spores as a result of the 2001 anthrax bioterrorism attacks through the U.S. postal system. Surface environmental sampling within the facility indicated that the contamination was due to receipt of mail that had come in contact with Bacillus anthracis spores from the source letters at the Brentwood postal facility in Washington, DC. The DOJ adopted a two-pronged approach for remediating the facility, using aqueous chlorine dioxide to decontaminate hard, nonporous surfaces and paraformaldehyde to fumigate two pieces of mail equipment. Before the start of the remediation activities, all porous materials were removed from the mail area. Since all postremediation environmental samples were negative for growth of Bacillus anthracis spores, the remediation was judged to be effective. The facility remained closed for almost 4(1/2) months. The cleanup activities took about 2(1/2) months, with source reduction activities being the most time-consuming. Of the seven facilities that performed fumigations to remediate Bacillus anthracis contamination, the DOJ mail facility was the second building to be reopened.  相似文献   

15.
1. Resonant frequency of the chest-lung system in six tracheotomized, spontaneously breathing dogs was determined by analyzing the shape of the respiratory flow curve. 2. The resonant frequency was calculated from the periodic deviations from a sinusoidal flow pattern observed in the inspiratory phase of the breathing cycle. 3. Mean (+/- S.D.) resonant frequency was 6.1 +/- 0.9 Hz which was very close to the panting frequency (5.7 Hz) of the same dogs. 4. Resonant frequencies of the respiratory system in various species are compared.  相似文献   

16.
Spores of Bacillus anthracis, the causative agent of anthrax, are enclosed by an exosporium, which consists of a basal layer surrounded by a nap of hair-like filaments. The major structural component of the filaments is called BclA, which comprises a central collagen-like region (CLR) and a globular C-terminal domain. Here, the entire CLR coding sequence of BclA was removed, and the resulting protein (tBclA) produced in Escherichia coli. The crystallographic structure of tBclA was determined to 1.35 A resolution, and consists of an all-beta structure with a TNF-like jelly fold topology (12 beta-strands which form 2 beta-sheets of five strands each) consistent with previous studies on wild-type BclA. These globular domains are tightly packed into trimeric structures (surface shape complementarity; S (c) = 0.83), demonstrating that formation of the core structure of BclA is independent of the anchoring collagen-like region. A polyclonal antibody raised against tBclA recognized B. anthracis spores directly, and showed little cross-reactivity (<10%) with the spores of the closely related species Bacillus cereus and Bacillus thuringiensis, when compared to two other polyclonal antibodies raised against B. anthracis spore extracts and inactivated spores. The tBclA protein was used to purify a pool of specific antibodies from bovine colostrum whey samples from cows inoculated with the Sterne strain anthrax vaccine, which also showed reactivity with B. anthracis spores. Together, these results demonstrate that tBclA provides a safer and more effective way to the production and purification of antibodies with high binding affinity for B. anthracis spores. Biotechnol. Bioeng. 2008;99: 774-782. (c) 2007 Wiley Periodicals, Inc.  相似文献   

17.
Typical real-time PCR methods used to identify Bacillus anthracis do not distinguish between viable and non-viable spores, which would be critical in any first response and remediation scenarios. This study combined both real-time PCR, using primers specifically designed for gamma phage, with the highly specific gamma phage amplification into one simple assay to indirectly detect Bacillus anthracis. Since the amplification of gamma phage only occurs in the presence of a suitable host, the detection of increasing concentrations of progeny gamma phage DNA using real-time PCR implies the presence of viable Bacillus anthracis cells. This method detected a starting Bacillus anthracis concentration of 207 cfu/mL, equivalent to less than one cell in 20 microL, in less than 5 h.  相似文献   

18.
The flow cytometry of Bacillus anthracis spores revisited   总被引:6,自引:0,他引:6  
Stopa PJ 《Cytometry》2000,41(4):237-244
BACKGROUND: The potential use of Bacillus anthracis spores as a weapon of terror has rekindled interest in the rapid detection and identification of the spores of these bacteria. Prior efforts to utilize flow cytometry (FCM) for this purpose resulted in tedious and time-consuming protocols. Advances in rapid immunoassays suggest a reinvestigation of the use of FCM because this may allow for the development of a rapid and sensitive system for detection and/or identification of spores in suspect samples. METHODS: In this study, antiserum was raised in goats using three different strains of B. anthracis spores as the immunogen. The resultant antibodies were purified, labeled with fluorescein, and evaluated for use in an immunoassay on a Coulter Epics XL flow cytometer. In the protocol that was developed, fluorescein-labeled antibodies are simply mixed with the sample, allowed to incubate, and then analyzed on the flow cytometer. Washes and centrifugation were eliminated. RESULTS: The results showed that a rapid (5 min) and sensitive immunological analysis was feasible. The detection limit (approximately 10(3) colony-forming units [CFU]/ ml) varied with strain, but there was no difference in the detection limit between live and irradiated spores. In addition, the power of FCM was utilized to minimize false-positive reactions among similar species of Bacillus by placing constraints on scatter and fluorescence intensity. The data also suggest that scatter might be useful to determine spore viability. CONCLUSION: This study shows that FCM may be an effective platform on which to perform immunological analysis for the detection and/or presumptive identification of B. anthracis spores. Published 2000 Wiley-Liss, Inc.  相似文献   

19.
Towards the goal of developing a real-time monitoring device for microorganisms, we demonstrate the use of microcantilevers as resonant mass sensors for detection of Bacillus anthracis Sterne spores in air and liquid. The detection scheme was based on measuring resonant frequency decrease driven by thermally induced oscillations, as a result of the added mass of the spores with the use of a laser Doppler vibrometer (LDV). Viscous effects were investigated by comparing measurements in air and deionized (DI) water along with theoretical values. Moreover, biological experiments were performed which involved suspending spores onto the cantilevers and performing mass detection in air and water. For detection of spores in water, the cantilevers were functionalized with antibodies in order to fix the spores onto the surface. We demonstrate that as few as 50 spores on the cantilever can be detected in water using the thermal noise as excitation source. Measurement sensitivity of 9.23 Hz/fg for air and 0.1 Hz/fg for water were obtained. These measurements were compared with theoretical values and sources of improvement in cantilever sensitivity in a viscous medium were also discussed. It is expected that by driving the cantilevers and using higher order modes, detection of a single spore in liquids should be achievable.  相似文献   

20.
A non-competitive immunoassay was performed by sodium dodecyl sulfate–capillary gel electrophoresis with UV detection using bovine serum albumin (BSA) and monoclonal anti-BSA. BSA, anti-BSA and their immunocomplexes were well resolved under non-denaturing conditions. A linear calibration curve was obtained and can be used for the quantification of anti-BSA. The limit of detection of anti-BSA was 0.1 μM under the present conditions. Compared with capillary zone electrophoresis, we believed that this method has the potential to be used as a more general format for performing capillary electrophoresis-based immunoassay of medium- and large-sized analytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号