首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel transient outward K(+) current that exhibits inward-going rectification (I(to.ir)) was identified in guinea pig atrial and ventricular myocytes. I(to.ir) was insensitive to 4-aminopyridine (4-AP) but was blocked by 200 micromol/l Ba(2+) or removal of external K(+). The zero current potential shifted 51-53 mV/decade change in external K(+). I(to.ir) density was twofold greater in ventricular than in atrial myocytes, and biexponential inactivation occurs in both types of myocytes. At -20 mV, the fast inactivation time constants were 7.7 +/- 1.8 and 6.1 +/- 1.2 ms and the slow inactivation time constants were 85.1 +/- 14.8 and 77.3 +/- 10.4 ms in ventricular and atrial cells, respectively. The midpoints for steady-state inactivation were -36.4 +/- 0.3 and -51.6 +/- 0.4 mV, and recovery from inactivation was rapid near the resting potential (time constants = 7.9 +/- 1.9 and 8.8 +/- 2.1 ms, respectively). I(to.ir) was detected in Na(+)-containing and Na(+)-free solutions and was not blocked by 20 nmol/l saxitoxin. Action potential clamp revealed that I(to.ir) contributed an outward current that activated rapidly on depolarization and inactivated by early phase 2 in both tissues. Although it is well known that 4-AP-sensitive transient outward current is absent in guinea pig, this Ba(2+)-sensitive and 4-AP-insensitive K(+) current has been overlooked.  相似文献   

2.
We previously demonstrated that a balance of K+ and Ca2+-activated Cl- channel activity maintained the basal tone of circular smooth muscle of opossum lower esophageal sphincter (LES). In the current studies, the contribution of major K+ channels to the LES basal tone was investigated in circular smooth muscle of opossum LES in vitro. K+ channel activity was recorded in dispersed single cells at room temperature using patch-clamp recordings. Whole-cell patch-clamp recordings displayed an outward current beginning to activate at -60 mV by step test pulses lasting 400 ms (-120 mV to +100 mV) with increments of 20 mV from holding potential of -80 mV ([K+]I = 150 mM, [K+]o = 2.5 mM). However, no inward rectification was observed. The outward current peaked within 50 ms and showed little or no inactivation. It was significantly decreased by bath application of nifedipine, tetraethylammonium (TEA), 4-aminopyridine (4-AP), and iberiotoxin (IBTN). Further combination of TEA with 4-AP, nifedipine with 4-AP, and IBTN with TEA, or vice versa, blocked more than 90% of the outward current. Ca2+-sensitive single channels were recorded at asymetrical K+ gradients in cell-attached patch-clamp configurations (100.8+/-3.2 pS, n = 8). Open probability of the single channels recorded in inside-out patch-clamp configurations were greatly decreased by bath application of IBTN (100 nM) (Vh = -14.4+/-4.8 mV in control vs. 27.3+/-0.1 mV, n = 3, P < 0.05). These data suggest that large conductance Ca2+-activated K+ and delayed rectifier K+ channels contribute to the membrane potential, and thereby regulate the basal tone of opossum LES circular smooth muscle.  相似文献   

3.
Depolarization-activated outward K+ currents in isolated adult rat ventricular myocytes were characterized using the whole-cell variation of the patch-clamp recording technique. During brief depolarizations to potentials positive to -40 mV, Ca(2+)-independent outward K+ currents in these cells rise to a transient peak, followed by a slower decay to an apparent plateau. The analyses completed here reveal that the observed outward current waveforms result from the activation of two kinetically distinct voltage-dependent K+ currents: one that activates and inactivates rapidly, and one that activates and inactivates slowly, on membrane depolarization. These currents are referred to here as Ito (transient outward) and IK (delayed rectifier), respectively, because their properties are similar (although not identical) to these K+ current types in other cells. Although the voltage dependences of Ito and IK activation are similar, Ito activates approximately 10-fold and inactivates approximately 30-fold more rapidly than IK at all test potentials. In the composite current waveforms measured during brief depolarizations, therefore, the peak current predominantly reflects Ito, whereas IK is the primary determinant of the plateau. There are also marked differences in the voltage dependences of steady-state inactivation of these two K+ currents: IK undergoes steady-state inactivation at all potentials positive to -120 mV, and is 50% inactivated at -69 mV; Ito, in contrast, is insensitive to steady-state inactivation at membrane potentials negative to -50 mV. In addition, Ito recovers from steady-state inactivation faster than IK: at -90 mV, for example, approximately 70% recovery from the inactivation produced at -20 mV is observed within 20 ms for Ito; IK recovers approximately 25-fold more slowly. The pharmacological properties of Ito and IK are also distinct: 4-aminopyridine preferentially attenuates Ito, and tetraethylammonium suppresses predominantly IK. The voltage- and time-dependent properties of these currents are interpreted here in terms of a model in which Ito underlies the initial, rapid repolarization phase of the action potential (AP), and IK is responsible for the slower phase of AP repolarization back to the resting membrane potential, in adult rat ventricular myocytes.  相似文献   

4.
Transient outward currents in rat saphenous arterial myocytes were studied using the perforated configuration of the patch-clamp method. When myocytes were bathed in a Na-gluconate solution containing TEA to block large-conductance Ca2+-activated K+ (BK) currents, depolarizing pulses positive to +20 mV from a holding potential of -100 mV induced fast transient outward currents. The activation and inactivation time constants of the current were voltage dependent, and at +40 mV were 3.6 +/- 0.8 ms and 23.9 +/- 6.4 ms (n = 4), respectively. The steady-state inactivation of the transient outward current was steeply voltage dependent (z = 1.7), with 50% of the current inactivated at -55 mV. The current was insensitive to the A-type K+ channel blocker 4-AP (1-5 mM), and was modulated by external Ca, decreasing to approximately 0.85 of control values upon raising Ca2+ from 1 to 10 mM, and increasing approximately 3-fold upon lowering it to 0.1 mM. Transient outward currents were also recorded following replacement of internal K+ with either Na+ or Cs+, raising the possibility that the current was carried by monovalent ions passing through voltage-gated Ca2+ channels. This hypothesis was supported by the finding that the transient outward current had the same inactivation rate as the inward Ba2+ current, and that both currents were effectively blocked by the L-type Ca2+ channel blocker, nifedipine and enhanced by the agonist BAYK8644.  相似文献   

5.
External divalent cations are known to play an important role in the function of voltage-gated ion channels. The purpose of this study was to examine the sensitivity of the voltage-gated K(+) currents of human atrial myocytes to external Ca(2+) ions. Myocytes were isolated by collagenase digestion of atrial appendages taken from patients undergoing coronary artery-bypass surgery. Currents were recorded from single isolated myocytes at 37 degrees C using the whole-cell patch-clamp technique. With 0.5 mM external Ca(2+), voltage pulses positive to -20 mV (holding potential = -60 mV) activated outward currents which very rapidly reached a peak (I(peak)) and subsequently inactivated (tau = 7.5 +/- 0.7 msec at +60 mV) to a sustained level, demonstrating the contribution of both rapidly inactivating transient (I(to1)) and non-inactivating sustained (I(so)) outward currents. The I(to1) component of I(peak), but not I(so), showed voltage-dependent inactivation using 100 msec prepulses (V(1/2) = -35.2 +/- 0.5 mV). The K(+) channel blocker, 4-aminopyridine (4-AP, 2 mM), inhibited I(to1) by approximately 76% and reduced I(so) by approximately 33%. Removal of external Ca(2+) had several effects: (i) I(peak) was reduced in a manner consistent with an approximately 13 mV shift to negative voltages in the voltage-dependent inactivation of I(to1). (ii) I(so) was increased over the entire voltage range and this was associated with an increase in a non-inactivating 4-AP-sensitive current. (iii) In 79% cells (11/14), a slowly inactivating component was revealed such that the time-dependent inactivation was described by a double exponential time course (tau(1) = 7.0 +/- 0.7, tau(2) = 90 +/- 21 msec at +60 mV) with no effect on the fast time constant. Removal of external Ca(2+) was associated with an additional component to the voltage-dependent inactivation of I(peak) and I(so) (V(1/2) = -20.5 +/- 1.5 mV). The slowly inactivating component was seen only in the absence of external Ca(2+) ions and was insensitive to 4-AP (2 mM). Experiments with Cs(+)-rich pipette solutions suggested that the Ca(2+)-sensitive currents were carried predominantly by K(+) ions. External Ca(2+) ions are important to voltage-gated K(+) channel function in human atrial myocytes and removal of external Ca(2+) ions affects I(to1) and 4-AP-sensitive I(so) in distinct ways.  相似文献   

6.
Single ventricular myocytes of adult mice were prepared by enzymatic dissociation for voltage clamp experiments with the one suction pipette dialysis method. After blocking the Na current by 10(-4) mol/l TTX early outward currents (IEO) with incomplete inactivation could be elicited by clamping from -50 mV to test potentials (VT) positive to -30 mV. Interfering Ca currents were very small (less than 0.6 nA at VT = 0 mV). The approximation of IEO by the q4r-model showed a pronounced decrease in the time constant of activation (tau q) to more positive potentials. At 50 ms test pulses the time course of the incomplete inactivation could be described by two exponentials and a constant. The time constant of the fast exponential (tau r1) showed a slight decline towards more positive test potentials (8.1 +/- 1.0 ms at -10 mV; 5.8 +/- 1.2 ms at +50 mV, mean +/- SD, n = 5) whereas the time constant of the slow exponential (tau r2) was voltage independent (41.1 +/- 7.9 ms, mean +/- SD, n = 5). The contributions of the fast exponential and the pedestal increased towards positive test potentials. The Q10 value for the time constants of activation and fast inactivation was 2.36 +/- 0.19 and 2.51 +/- 0.09 (mean +/- SD, n = 3), respectively. After an initial delay the recovery of IEO at a recovery potential of -50 mV could be fitted monoexponentially with a time constant of 16.3 +/- 2.9 ms (mean +/- SD, n = 3). The time course of the onset of inactivation determined with the double pulse protocol was slower than the decay at the same potential, and could be described as sum of a fast (tau = 18.4 +/- 6.0 ms) and a slow (tau = 62.1 +/- 19.9ms, mean +/- SD, n = 3) exponential. IEO could be blocked completely by 1 mmol/l 4-aminopyridine at potentials up to +20 mV. Stronger depolarizations had an unblocking effect.  相似文献   

7.
The electrophysiological properties of HK2 (Kv1.5), a K+ channel cloned from human ventricle, were investigated after stable expression in a mouse Ltk- cell line. Cell lines that expressed HK2 mRNA displayed a current with delayed rectifier properties at 23 degrees C, while sham transfected cell lines showed neither specific HK2 mRNA hybridization nor voltage-activated currents under whole cell conditions. The expression of the HK2 current has been stable for over two years. The dependence of the reversal potential of this current on the external K+ concentration (55 mV/decade) confirmed K+ selectivity, and the tail envelope test was satisfied, indicating expression of a single population of K+ channels. The activation time course was fast and sigmoidal (time constants declined from 10 ms to < 2 ms between 0 and +60 mV). The midpoint and slope factor of the activation curve were Eh = -14 +/- 5 mV and k = 5.9 +/- 0.9 (n = 31), respectively. Slow partial inactivation was observed especially at large depolarizations (20 +/- 2% after 250 ms at +60 mV, n = 32), and was incomplete in 5 s (69 +/- 3%, n = 14). This slow inactivation appeared to be a genuine gating process and not due to K+ accumulation, because it was present regardless of the size of the current and was observed even with 140 mM external K+ concentration. Slow inactivation had a biexponential time course with largely voltage-independent time constants of approximately 240 and 2,700 ms between -10 and +60 mV. The voltage dependence of slow inactivation overlapped with that of activation: Eh = -25 +/- 4 mV and k = 3.7 +/- 0.7 (n = 14). The fully activated current-voltage relationship displayed outward rectification in 4 mM external K+ concentration, but was more linear at higher external K+ concentrations, changes that could be explained in part on the basis of constant field (Goldman-Hodgkin-Katz) rectification. Activation and inactivation kinetics displayed a marked temperature dependence, resulting in faster activation and enhanced inactivation at higher temperature. The current was sensitive to low concentrations of 4- aminopyridine, but relatively insensitive to external TEA and to high concentrations of dendrotoxin. The expressed current did not resemble either the rapid or the slow components of delayed rectification described in guinea pig myocytes. However, this channel has many similarities to the rapidly activating delayed rectifying currents described in adult rat atrial and neonatal canine epicardial myocytes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The ionic nature and pharmacological properties of the outward current activated by membrane depolarization were studied on isolated neurones of the snail Helix pomatia, placed in Na+- and Ca2+-free extracellular solutions and intracellularly perfused with K+-free solution ("nonspecific outward current"). It was shown that the amplitude and reversal potential of this current (estimated from instantaneous current-voltage characteristics) are determined mainly by the transmembrane gradient for H+ ions. Lowering of pHi induced an increase in the current amplitude and a shift of the reversal potential to more negative values; the shift magnitude was comparable with that predicted for the hydrogen electrode. Raising pHi, as well as lowering pHo, induced a decrease in the current amplitude and a displacement of the current activation curve to more positive potentials. Addition of EGTA (8 mmol/l) to the intracellular perfusate did not affect the current amplitude. Extracellular 4-aminopyridine (10 mmol/l), verapamil (0.25 mmol/l) or Cd2+ (0.5 mmol/l) blocked the current. It is concluded that the current studied is carried mainly by H+ ions. In the same neurones the nature of the fast decay of the calcium inward current was also studied (in the presence of extracellular Ca2+ ions). This decay considerably slowed when pHi was raised or pHo was lowered, and it became less pronounced upon extracellular application of 4-aminopyridine or upon intracellular introduction of phenobarbital (4 mmol/l) and tolbutamide (3 mmol/l). It is suggested that the fast decay of the calcium inward current is due to activation of a Ca-sensitive component of the hydrogen current which depends on accumulation of Ca2+ ions. The possible physiological role of the transmembrane hydrogen currents is discussed.  相似文献   

9.
In cardiac cells that lack macroscopic transient outward K(+) currents (I(to)), the removal of extracellular Ca(2+) can unmask "I(to)-like" currents. With the use of pig ventricular myocytes and the whole cell patch-clamp technique, we examined the possibility that cation efflux via L-type Ca(2+) channels underlies these currents. Removal of extracellular Ca(2+) and extracellular Mg(2+) induced time-independent currents at all potentials and time-dependent currents at potentials greater than -50 mV. Either K(+) or Cs(+) could carry the time-dependent currents, with reversal potential of +8 mV with internal K(+) and +34 mV with Cs(+). Activation and inactivation were voltage dependent [Boltzmann distributions with potential of half-maximal value (V(1/2)) = -24 mV and slope = -9 mV for activation; V(1/2) = -58 mV and slope = 13 mV for inactivation]. The time-dependent currents were resistant to 4-aminopyridine and to DIDS but blocked by nifedipine at high concentrations (IC(50) = 2 microM) as well as by verapamil and diltiazem. They could be increased by BAY K-8644 or by isoproterenol. We conclude that the I(to)-like currents are due to monovalent cation flow through L-type Ca(2+) channels, which in pig myocytes show low sensitivity to nifedipine.  相似文献   

10.
Patch-clamp studies were carried out in villus enterocytes isolated from the guinea pig proximal small intestine. In the whole-cell mode, outward K+ currents were found to be activated by depolarizing command pulses to -45 mV. The activation followed fourth order kinetics. The time constant of K+ current activation was voltage-dependent, decreasing from approximately 3 ms at -10 mV to 1 ms at +50 mV. The K+ current inactivated during maintained depolarizations by a voltage- independent, monoexponential process with a time constant of approximately 470 ms. If the interpulse interval was shorter than 30 s, cumulative inactivation was observed upon repeated stimulations. The steady state inactivation was voltage-dependent over the voltage range from -70 to -30 mV with a half inactivation voltage of -46 mV. The steady state activation was also voltage-dependent with a half- activation voltage of -22 mV. The K+ current profiles were not affected by chelation of cytosolic Ca2+. The K+ current induced by a depolarizing pulse was suppressed by extracellular application of TEA+, Ba2+, 4-aminopyridine or quinine with half-maximal inhibitory concentrations of 8.9 mM, 4.6 mM, 86 microM and 26 microM, respectively. The inactivation time course was accelerated by quinine but decelerated by TEA+, when applied to the extracellular (but not the intracellular) solution. Extracellular (but not intracellular) applications of verapamil and nifedipine also quickened the inactivation time course with 50% effective concentrations of 3 and 17 microM, respectively. Quinine, verapamil and nifedipine shifted the steady state inactivation curve towards more negative potentials. Outward single K+ channel events with a unitary conductance of approximately 8.4 pS were observed in excised inside-out patches of the basolateral membrane, when the patch was depolarized to -40 mV. The ensemble current rapidly activated and thereafter slowly inactivated with similar time constants to those of whole-cell K+ currents. It is concluded that the basolateral membrane of guinea pig villus enterocytes has a voltage-gated, time-dependent, Ca(2+)-insensitive, small-conductance K+ channel. Quinine, verapamil, and nifedipine accelerate the inactivation time course by affecting the inactivation gate from the external side of the cell membrane.  相似文献   

11.
Voltage-dependent membrane currents were investigated in enzymatically dissociated photoreceptors of Lima scabra using the whole-cell clamp technique. Depolarizing steps to voltages more positive than -10 mV elicit a transient inward current followed by a delayed, sustained outward current. The outward current is insensitive to replacement of a large fraction of extracellular Cl- with the impermeant anion glucuronate. Superfusion with tetraethylammonium and 4-aminopyridine reversibly abolishes the outward current, and internal perfusion with cesium also suppresses it, indicating that it is mediated by potassium channels. Isolation of the inward current reveals a fast activation kinetics, the peak amplitude occurring as early as 4-5 ms after stimulus onset, and a relatively rapid, though incomplete inactivation. Within the range of voltages examined, spanning up to +90 mV, reversal was not observed. The inward current is not sensitive to tetrodotoxin at concentrations up to 10 microM, and survives replacement of extracellular Na with tetramethylammonium. On the other hand, it is completely eliminated by calcium removal from the perfusing solution, and it is partially blocked by submillimolar concentrations of cadmium, suggesting that it is entirely due to voltage-dependent calcium channels. Analysis of the kinetics and voltage dependence of the isolated calcium current indicates the presence of two components, possibly reflecting the existence of separate populations of channels. Barium and strontium can pass through these channels, though less easily than calcium. Both the activation and the inactivation become significantly more sluggish when these ions serve as the charge carrier. A large fraction of the outward current is activated by preceding calcium influx. Suppression of this calcium-dependent potassium current shows a small residual component resembling the delayed rectifier. In addition, a transient outward current sensitive to 4-aminopyridine (Ia) could also be identified. The relevance of such conductance mechanisms in the generation of the light response in Lima photoreceptors is discussed.  相似文献   

12.
It has been suggested that the positive inotropic effect of the vasoactive peptide hormone, endothelin-1 (ET-1), involves inhibition of cardiac K(+) currents. In order to identify the K(+) currents modulated by ET-1, the outward K(+) currents of isolated rat ventricular myocytes were investigated using whole-cell patch-clamp recording techniques. Outward currents were elicited by depolarisation to +40 mV for 200 ms from the holding potential of -60 mV. Currents activated rapidly, reaching a peak (I(pk)) of 1310 +/- 115 pA and subsequently inactivating to an outward current level of 1063 +/- 122 pA at the end of the voltage-pulse (I(late)) (n = 11). ET-1 (20 nM) reduced I(pk) by 247.6 +/- 60.7 pA (n = 11, P < 0.01) and reduced I(late) by 323.2 +/- 43.9 pA (P < 0.001). The effects of ET-1 were abolished in the presence of the nonselective ET receptor antagonist, PD 142893 (10 microM, n = 5). Outward currents were considerably reduced and the effects of ET-1 were not observed when K(+) was replaced with Cs(+) in the experimental solutions; this indicates that ET-1 modulated K(+)-selective currents. A double-pulse protocol was used to investigate the inactivation of the currents. The voltage-dependent inactivation of the currents from potentials positive to -80 mV was fitted by a Boltzmann equation revealing the existence of an inactivating transient outward component (I(to)) and a noninactivating steady-state component (I(ss)). ET-1 markedly inhibited I(ss) by 43.0 +/- 3.8% (P < 0.001, n = 7) and shifted the voltage-dependent inactivation of I(to) by +3.3 +/- 1.2 mV (P < 0.05). Although ET-1 had little effect on the onset of inactivation of the currents elicited from a conditioning potential of -70 mV, the time-independent noninactivating component of the currents was markedly inhibited. In conclusion, the predominant effect of ET-1 was to inhibit a noninactivating steady-state background K(+) current (I(ss)). These results are consistent with the hypothesis that I(ss) inhibition contributes to the inotropic effects of ET-1.  相似文献   

13.
The voltage-dependent K+ channel was examined in enzymatically isolated guinea pig hepatocytes using whole-cell, excised outside-out and inside- out configurations of the patch-clamp technique. The resting membrane potential in isolated hepatocytes was -25.3 +/- 4.9 mV (n = 40). Under the whole-cell voltage-clamp, the time-dependent delayed rectifier outward current was observed at membrane potentials positive to -20 mV at physiological temperature (37 degrees C). The reversal potential of the current, as determined from tail current measurements, shifted by approximately 57 mV per 10-fold change in the external K+ concentration. In addition, the current did not appear when K+ was replaced with Cs+ in the internal and external solutions, indicating that the current was carried by K+ ions. The envelope test of the tails demonstrated that the growth of the tail current followed that of the current activation. The ratio between the activated current and the tail amplitude was constant during the depolarizing step. The time course of growth and deactivation of the tail current were best described by a double exponential function. The current was suppressed in Ca(2+)-free, 5 mM EGTA internal or external solution (pCa > 9). The activation curve (P infinity curve) was not shifted by changing the internal Ca2+ concentration ([Ca2+]i). The current was inhibited by bath application of 4-aminopyridine or apamin. alpha 1-Adrenergic stimulation with noradrenaline enhanced the current but beta-adrenergic stimulation with isoproterenol had no effect on the current. In single- channel recordings from outside-out patches, unitary current activity was observed by depolarizing voltage-clamp steps whose slope conductance was 9.5 +/- 2.2 pS (n = 10). The open time distribution was best described by a single exponential function with the mean open lifetime of 18.5 +/- 2.6 ms (n = 14), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 2.0 +/- 0.3 ms (n = 14) and that for the slow component of 47.7 +/- 5.9 ms (n = 14). Ensemble averaged current exhibited delayed rectifier nature which was consistent with whole-cell measurements. In excised inside-out patch recordings, channel open probability was sensitive to [Ca2+]i. The concentration of Ca2+ at the half-maximal activation was 0.031 microM. These results suggest that guinea pig hepatocytes possess voltage-gated delayed rectifier K+ channels which are modified by intracellular Ca2+.  相似文献   

14.
In the experiments here, the time- and voltage-dependent properties of the Ca2+-independent, depolarization-activated K+ currents in adult mouse ventricular myocytes were characterized in detail. In the majority (65 of 72, approximately 90%) of cells dispersed from the ventricles, analysis of the decay phases of the outward currents revealed three distinct K+ current components: a rapidly inactivating, transient outward K+ current, Ito,f (mean +/- SEM taudecay = 85 +/- 2 ms); a slowly (mean +/- SEM taudecay = 1,162 +/- 29 ms) inactivating K+ current, IK,slow; and a non inactivating, steady state current, Iss. In a small subset (7 of 72, approximately 10%) of cells, Ito,f was absent and a slowly inactivating (mean +/- SEM taudecay = 196 +/- 7 ms) transient outward current, referred to as Ito,s, was identified; the densities and properties of IK,slow and Iss in Ito,s-expressing cells are indistinguishable from the corresponding currents in cells with Ito,f. Microdissection techniques were used to remove tissue pieces from the left ventricular apex and from the ventricular septum to allow the hypothesis that there are regional differences in Ito,f and Ito,s expression to be tested directly. Electrophysiological recordings revealed that all cells isolated from the apex express Ito,f (n = 35); Ito,s is not detected in these cells (n = 35). In the septum, by contrast, all of the cells express Ito,s (n = 28) and in the majority (22 of 28, 80%) of cells, Ito,f is also present. The density of Ito,f (mean +/- SEM at +40 mV = 6.8 +/- 0.5 pA/pF, n = 22) in septum cells, however, is significantly (P < 0.001) lower than Ito,f density in cells from the apex (mean +/- SEM at +40 mV = 34.6 +/- 2.6 pA/pF, n = 35). In addition to differences in inactivation kinetics, Ito,f, Ito,s, and IK,slow display distinct rates of recovery (from inactivation), as well as differential sensitivities to 4-aminopyridine (4-AP), tetraethylammonium (TEA), and Heteropoda toxin-3. IK,slow, for example, is blocked selectively by low (10-50 microM) concentrations of 4-AP and by (>/=25 mM) TEA. Although both Ito,f and Ito,s are blocked by high (>100 microM) 4-AP concentrations and are relatively insensitive to TEA, Ito,f is selectively blocked by nanomolar concentrations of Heteropoda toxin-3, and Ito,s (as well as IK,slow and Iss) is unaffected. Iss is partially blocked by high concentrations of 4-AP or TEA. The functional implications of the distinct properties and expression patterns of Ito,f and Ito,s, as well as the likely molecular correlates of these (and the IK,slow and Iss) currents, are discussed.  相似文献   

15.
Voltage-dependent membrane currents were studied in dissociated hepatocytes from chick, using the patch-clamp technique. All cells had voltage-dependent outward K+ currents; in 10% of the cells, a fast, transient, tetrodotoxin-sensitive Na+ current was identified. None of the cells had voltage-dependent inward Ca2+ currents. The K+ current activated at a membrane potential of about -10 mV, had a sigmoidal time course, and did not inactivate in 500 ms. The maximum outward conductance was 6.6 +/- 2.4 nS in 18 cells. The reversal potential, estimated from tail current measurements, shifted by 50 mV per 10-fold increase in the external K+ concentration. The current traces were fitted by n2 kinetics with voltage-dependent time constants. Omitting Ca2+ from the external bath or buffering the internal Ca2+ with EGTA did not alter the outward current, which shows that Ca2+-activated K+ currents were not present. 1-5 mM 4-aminopyridine, 0.5-2 mM BaCl2, and 0.1-1 mM CdCl2 reversibly inhibited the current. The block caused by Ba was voltage dependent. Single-channel currents were recorded in cell-attached and outside-out patches. The mean unitary conductance was 7 pS, and the channels displayed bursting kinetics. Thus, avian hepatocytes have a single type of K+ channel belonging to the delayed rectifier class of K+ channels.  相似文献   

16.
Single transient K channels in mammalian sensory neurons.   总被引:8,自引:0,他引:8       下载免费PDF全文
A single-channel recording of the transient outward current (A-current) was obtained from dorsal root ganglion cells in culture using patch-clamp techniques. Depolarization of the membrane patch elicited pulse like current of a uniform amplitude in an outward direction, of which the unitary conductance was 20 pS. Alteration of extracellular ionic compositions indicated that the charge carriers were K ions. A systematic study was made on the voltage-dependence of the ensemble average current; (a) the activation started at a potential around -60 mV; (b) the time course of the activation was relatively rapid; (c) the channel was completely inactivated at a potential positive to -40 mV. Two time constants (tau f = 100 ms and tau s = 4,000 ms) were detected in the decay of the current indicating that the channels had two different states of inactivation. A convulsant, 4-aminopyridine (4-AP), acted on the channel only from the intracellular side of the membrane. 4-AP (5 mM) reduced not only mean open time (by 50%) but also the single-channel conductance (by 20%). The properties of the channel were independent of Ca ions in the intracellular space.  相似文献   

17.
In whole cell patch clamp recordings on enzymatically dissociated adrenal zona fasciculata (AZF) cells, a rapidly inactivating A-type K+ current was observed in each of more than 150 cells. Activation of IA was steeply voltage dependent and could be described by a Boltzmann function raised to an integer power of 4, with a midpoint of -28.3 mV. Using the "limiting logarithmic potential sensitivity," the single channel gating charge was estimated to be 7.2 e. Voltage-dependent inactivation could also be described by a Boltzmann function with a midpoint of -58.7 mV and a slope factor of 5.92 mV. Gating kinetics of IA included both voltage-dependent and -independent transitions in pathways between closed, open, and inactivated states. IA activated with voltage-dependent sigmoidal kinetics that could be fit with an n4h formalism. The activation time constant, tau a, reached a voltage- independent minimum at potentials positive to 0 mV. IA currents inactivated with two time constants that were voltage independent at potentials ranging from -30 to +45 mV. At +20 mV, tau i(fast) and tau i(slow) were 13.16 +/- 0.64 and 62.26 +/- 5.35 ms (n = 34), respectively. In some cells, IA inactivation kinetics slowed dramatically after many minutes of whole cell recording. Once activated by depolarization, IA channels returned to the closed state along pathways with two voltage-dependent time constants which were 0.208 s, tau rec-f and 10.02 s, tau rec-s at -80 mV. Approximately 90% of IA current recovered with slow kinetics at potentials between -60 and -100 mV. IA was blocked by 4-aminopyridine (IC50 = 629 microM) through a mechanism that was strongly promoted by channel activation. Divalent and trivalent cations including Ni2+ and La3+ also blocked IA with IC50's of 467 and 26.4 microM, respectively. With respect to biophysical properties and pharmacology, IA in AZF cells resembles to some extent transient K+ currents in neurons and muscle, where they function to regulate action potential frequency and duration. The function of this prominent current in steroid hormone secretion by endocrine cells that may not generate action potentials is not yet clear.  相似文献   

18.
Slow cholinergic and peptidergic transmission in sympathetic ganglia   总被引:1,自引:0,他引:1  
Experiments of voltage-clamped bullfrog sympathetic neurons suggest that the "slow depolarization" produced by orthodromic stimulation, by muscarinic agonists, or by the peptide luteinizing hormone-releasing hormone (LHRH), results from the suppression of a time- and voltage-dependent outward K+ current, the "M current" (IM). This current is activated between -60 and -10mV, with a half-maximal activation voltage of -35 mV, a minimum time constant (TM) of 150 ms at -35 mV, and a voltage sensitivity corresponding to a single gating particle with a minimum valency of 4.IM does not show time-dependent inactivation within its activation range and provides the sole potential-sensitive component of the steady outward membrane conductances between -60 and -25 mV. Muscarinic agonists and LHRH selectively depress IM via different receptors, without altering their voltage sensitivity. Although not dependent on external Ca2+ ion, IM is also selectively depressed by Ba2+ ions, so accounting for the cholinomimetic action of Ba2+. It is suggested that IM acts as a braking control on spike discharges and that removal of this control during slow cholinergic and peptidergic transmission provides a unique synaptic tuning mechanism.  相似文献   

19.
Voltage-dependent membrane currents of cells dissociated from tongues of larval tiger salamanders (Ambystoma tigrinum) were studied using whole-cell and single-channel patch-clamp techniques. Nongustatory epithelial cells displayed only passive membrane properties. Cells dissociated from taste buds, presumed to be gustatory receptor cells, generated both inward and outward currents in response to depolarizing voltage steps from a holding potential of -60 or -80 mV. Almost all taste cells displayed a transient inward current that activated at -30 mV, reached a peak between 0 and +10 mV and rapidly inactivated. This inward current was blocked by tetrodotoxin (TTX) or by substitution of choline for Na+ in the bath solution, indicating that it was a Na+ current. Approximately 60% of the taste cells also displayed a sustained inward current which activated slowly at about -30 mV and reached a peak at 0 to +10 mV. The amplitude of the slow inward current was larger when Ca2+ was replaced by Ba2+ and it was blocked by bath applied CO2+, indicating it was a Ca2+ current. Delayed outward K+ currents were observed in all taste cells although in about 10% of the cells, they were small and activated only at voltages more depolarized than +10 mV. Normally, K+ currents activated at -40 mV and usually showed some inactivation during a 25-ms voltage step. The inactivating component of outward current was not observed at holding potentials more depolarized -40 mV. The outward currents were blocked by tetraethylammonium chloride (TEA) and BaCl2 in the bath or by substitution of Cs+ for K+ in the pipette solution. Both transient and noninactivating components of outward current were partially suppressed by CO2+, suggesting the presence of a Ca2(+)-activated K+ current component. Single-channel currents were recorded in cell-attached and outside-out patches of taste cell membranes. Two types of K+ channels were partially characterized, one having a mean unitary conductance of 21 pS, and the other, a conductance of 148 pS. These experiments demonstrate that tiger salamander taste cells have a variety of voltage- and ion-dependent currents including Na+ currents, Ca2+ currents and three types of K+ currents. One or more of these conductances may be modulated either directly by taste stimuli or indirectly by stimulus-regulated second messenger systems to give rise to stimulus-activated receptor potentials. Others may play a role in modulation of neurotransmitter release at synapses with taste nerve fibers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号