首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Population dynamics of ammonia-oxidizing bacteria (AOB) and uncultured Nitrospira-like nitrite-oxidizing bacteria (NOB) dominated in autotrophic nitrifying biofilms were determined by using real-time quantitative polymerase chain reaction (RTQ-PCR) and fluorescence in situ hybridization (FISH). Although two quantitative techniques gave the comparable results, the RTQ-PCR assay was easier and faster than the FISH technique for quantification of both nitrifying bacteria in dense microcolony-forming nitrifying biofilms. Using this RTQ-PCR assay, we could successfully determine the maximum specific growth rate (mu = 0.021/h) of uncultured Nitrospira-like NOB in the suspended enrichment culture. The population dynamics of nitrifying bacteria in the biofilm revealed that once they formed the biofilm, the both nitrifying bacteria grew slower than in planktonic cultures. We also calculated the spatial distributions of average specific growth rates of both nitrifying bacteria in the biofilm based on the concentration profiles of NH4+, NO2-, and O2, which were determined by microelectrodes, and the double-Monod model. This simple model estimation could explain the stratified spatial distribution of AOB and Nitrospira-like NOB in the biofilm. The combination of culture-independent molecular techniques and microelectrode measurements is a very powerful approach to analyze the in situ kinetics and ecophysiology of nitrifying bacteria including uncultured Nitrospira-like NOB in complex biofilm communities.  相似文献   

2.
泉州西湖沉积物中硝化细菌的分布及其作用   总被引:4,自引:0,他引:4  
陈国元  黄晓鸣 《微生物学通报》2011,38(11):1632-1638
比较研究泉州西湖沉积物中氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)的分布及氨氧化潜力和亚硝酸盐(NO2?)氧化潜力。结果表明: 西湖沉积物中存在高浓度的有机质(OM)、总氮(TN)和氨氮。AOB生物量为1.1×106?6.4×106 个/g干土, 显著高于NOB生物量4.2×105?7.4×105 个/g 干土(配对t-检验, P<0.05)。对于NOB, 硝化杆菌属(Nitrobacter)和硝化螺菌属(Nitrospira)同时存在于西湖沉积物中, 以Nitrobacter为优势种群。AOB和NOB生物量的差异一定程度上导致西湖沉积物中氨氧化潜力显著高于NO2?氧化潜力(配对t-检验, P<0.05), NO2?氧化过程成为硝化作用的限制步骤。另外, 西湖沉积物中存在的较高浓度氨氮, 一方面促进了AOB的生长和活性, 导致较高速率的氨氧化过程, 另一方面却对亚硝酸盐氧化过程产生选择性抑制, 这也是导致NO2?氧化潜力较低的主要原因之一。  相似文献   

3.
Influences of infaunal burrows constructed by the polychaete (Tylorrhynchus heterochaetus) on O(2) concentrations and community structures and abundances of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in intertidal sediments were analyzed by the combined use of a 16S rRNA gene-based molecular approach and microelectrodes. The microelectrode measurements performed in an experimental system developed in an aquarium showed direct evidence of O(2) transport down to a depth of 350 mm of the sediment through a burrow. The 16S rRNA gene-cloning analysis revealed that the betaproteobacterial AOB communities in the sediment surface and the burrow walls were dominated by Nitrosomonas sp. strain Nm143-like sequences, and most of the clones in Nitrospira-like NOB clone libraries of the sediment surface and the burrow walls were related to the Nitrospira marina lineage. Furthermore, we investigated vertical distributions of AOB and NOB in the infaunal burrow walls and the bulk sediments by real-time quantitative PCR (Q-PCR) assay. The AOB and Nitrospira-like NOB-specific 16S rRNA gene copy numbers in the burrow walls were comparable with those in the sediment surfaces. These numbers in the burrow wall at a depth of 50 to 55 mm from the surface were, however, higher than those in the bulk sediment at the same depth. The microelectrode measurements showed higher NH(4)(+) consumption activity at the burrow wall than those at the surrounding sediment. This result was consistent with the results of microcosm experiments showing that the consumption rates of NH(4)(+) and total inorganic nitrogen increased with increasing infaunal density in the sediment. These results clearly demonstrated that the infaunal burrows stimulated O(2) transport into the sediment in which otherwise reducing conditions prevailed, resulting in development of high NH(4)(+) consumption capacity. Consequently, the infaunal burrow became an important site for NH(4)(+) consumption in the intertidal sediment.  相似文献   

4.
In activated sludge, protozoa feed on free-swimming bacteria and suspended particles, inducing flocculation and increasing the turnover rate of nutrients. In this study, the effect of protozoan grazing on nitrification rates under various conditions in municipal activated sludge batch reactors was examined, as was the spatial distribution of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) within the activated sludge. The reactors were monitored for ammonia, nitrite, nitrate, and total nitrogen concentrations, and bacterial numbers in the presence and absence of cycloheximide (a protozoan inhibitor), allylthiourea (an inhibitor of ammonia oxidation), and EDTA (a deflocculating agent). The accumulations of nitrate, nitrite, and ammonia were lower in batches without than with protozoa grazing. Inhibition of ammonia oxidation also decreased the amount of nitrite and nitrate accumulation. Inhibiting protozoan grazing along with ammonia oxidation further decreased the amounts of nitrite and nitrate accumulated. Induction of deflocculation led to high nitrate accumulation, indicating high levels of nitrification; this effect was lessened in the absence of protozoan grazing. Using fluorescent in situ hybridization and confocal laser scanning microscopy, AOB and NOB were found clustered within the floc, and inhibiting the protozoa, inhibiting ammonia oxidation, or inducing flocculation did not appear to lower the number of AOB and NOB present or affect their position within the floc. These results suggest that the AOB and NOB are present but less active in the absence of protozoa.  相似文献   

5.
Forest fertilization in British Columbia is increasing, to alleviate timber shortfalls resulting from the mountain pine beetle epidemic. However, fertilization effects on soil microbial communities, and consequently ecosystem processes, are poorly understood. Fertilization has contrasting effects on ammonia-oxidizing bacteria and archaea (AOB and AOA) in grassland and agricultural ecosystems, but there are no studies on AOB and AOA in forests. We assessed the effect of periodic (6-yearly application 200 kg N ha?1) and annual (c. 75 kg N ha?1) fertilization of lodgepole pine and spruce stands at five long-term maximum productivity sites on potential nitrification (PN), and the abundance and diversity of AOB, AOA and Nitrobacter and Nitrospira-like nitrite-oxidizing bacteria (NOB). Fertilization increased AOB and Nitrobacter-like NOB abundances at some sites, but did not influence AOA and Nitrospira-like NOB abundances. AOB and Nitrobacter-like NOB abundances were correlated with PN and soil nitrate concentration; no such correlations were observed for AOA and Nitrospira-like NOB. Autotrophic nitrification dominated (55–97%) in these forests and PN rates were enhanced for up to 2 years following periodic fertilization. More changes in community composition between control and fertilized plots were observed for AOB and Nitrobacter-like NOB than AOA. We conclude that fertilization causes rapid shifts in the structure of AOB and Nitrobacter-like NOB communities that dominate nitrification in these forests.  相似文献   

6.
We investigated autotrophic anaerobic ammonium-oxidizing (anammox) biofilms for their spatial organization, community composition, and in situ activities by using molecular biological techniques combined with microelectrodes. Results of phylogenetic analysis and fluorescence in situ hybridization (FISH) revealed that "Brocadia"-like anammox bacteria that hybridized with the Amx820 probe dominated, with 60 to 92% of total bacteria in the upper part (<1,000 microm) of the biofilm, where high anammox activity was mainly detected with microelectrodes. The relative abundance of anammox bacteria decreased along the flow direction of the reactor. FISH results also indicated that Nitrosomonas-, Nitrosospira-, and Nitrosococcus-like aerobic ammonia-oxidizing bacteria (AOB) and Nitrospira-like nitrite-oxidizing bacteria (NOB) coexisted with anammox bacteria and accounted for 13 to 21% of total bacteria in the biofilms. Microelectrode measurements at three points along the anammox reactor revealed that the NH(4)(+) and NO(2)(-) consumption rates decreased from 0.68 and 0.64 micromol cm(-2) h(-1) at P2 (the second port, 170 mm from the inlet port) to 0.30 and 0.35 micromol cm(-2) h(-1) at P3 (the third port, 205 mm from the inlet port), respectively. No anammox activity was detected at P4 (the fourth port, 240 mm from the inlet port), even though sufficient amounts of NH(4)(+) and NO(2)(-) and a high abundance of anammox bacteria were still present. This result could be explained by the inhibitory effect of organic compounds derived from biomass decay and/or produced by anammox and coexisting bacteria in the upper parts of the biofilm and in the upstream part of the reactor. The anammox activities in the biofilm determined by microelectrodes reflected the overall reactor performance. The several groups of aerobic AOB lineages, Nitrospira-like NOB, and Betaproteobacteria coexisting in the anammox biofilm might consume a trace amount of O(2) or organic compounds, which consequently established suitable microenvironments for anammox bacteria.  相似文献   

7.
The cause of seasonal failure of a nitrifying municipal landfill leachate treatment plant utilizing a fixed biofilm was investigated by wastewater analyses and batch respirometric tests at every treatment stage. Nitrification of the leachate treatment plant was severely affected by the seasonal temperature variation. High free ammonia (NH3-N) inhibited not only nitrite oxidizing bacteria (NOB) but also ammonia oxidizing bacteria (AOB). In addition, high pH also increased free ammonia concentration to inhibit nitrifying activity especially when the NH4-N level was high. The effects of temperature and free ammonia of landfill leachate on nitrification and nitrite accumulation were investigated with a semi-pilot scale biofilm airlift reactor. Nitrification rate of landfill leachate increased with temperature when free ammonia in the reactor was below the inhibition level for nitrifiers. Leachate was completely nitrified up to a load of 1.5 kg NH4-N m(-3)d(-1) at 28 degrees C. The activity of NOB was inhibited by NH3-N resulting in accumulation of nitrite. NOB activity decreased more than 50% at 0.7 mg NH3-N L(-1). Fluorescence in situ hybridization (FISH) was carried out to analyze the population of AOB and NOB in the nitrite accumulating nitrifying biofilm. NOB were located close to AOB by forming small clusters. A significant fraction of AOB identified by probe Nso1225 specifically also hybridized with the Nitrosomonas specific probe Nsm156. The main NOB were Nitrobacter and Nitrospira which were present in almost equal amounts in the biofilm as identified by simultaneous hybridization with Nitrobacter specific probe Nit3 and Nitrospira specific probe Ntspa662.  相似文献   

8.
In this study, we analysed the nitrifying microbial community (ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB)) within three different aerobic granular sludge treatment systems as well as within one flocculent sludge system. Granular samples were taken from one pilot plant run on municipal wastewater as well as from two lab-scale reactors. Fluorescent in situ hybridization (FISH) and quantitative PCR (qPCR) showed that Nitrobacter was the dominant NOB in acetate-fed aerobic granules. In the conventional system, both Nitrospira and Nitrobacter were present in similar amounts. Remarkably, the NOB/AOB ratio in aerobic granular sludge was elevated but not in the conventional treatment plant suggesting that the growth of Nitrobacter within aerobic granular sludge, in particular, was partly uncoupled from the lithotrophic nitrite supply from AOB. This was supported by activity measurements which showed an approximately threefold higher nitrite oxidizing capacity than ammonium oxidizing capacity. Based on these findings, two hypotheses were considered: either Nitrobacter grew mixotrophically by acetate-dependent dissimilatory nitrate reduction (ping-pong effect) or a nitrite oxidation/nitrate reduction loop (nitrite loop) occurred in which denitrifiers reduced nitrate to nitrite supplying additional nitrite for the NOB apart from the AOB.  相似文献   

9.
The spatial distribution and activities of nitrifying and denitrifying bacteria in sponge media were investigated using diverse tools, because understanding of in situ microbial condition of sponge phase is critical for the successful design and operation of sponge media process. The bacterial consortia within the media was composed of diverse groups including a 14.5% Nitrosomonas spp.-like ammonia oxidizing bacteria (AOB), 12.5% Nitrobacter spp.-like nitrite oxidizing bacteria (NOB), 2.0% anaerobic ammonium-oxidizing (ANAMMOX) bacteria and 71.0% other bacteria. The biofilm appeared to be most dense in the relatively outer region of the media and gradually decreased with depth, but bacterial viabilities showed space-independent feature. The fluorescent in situ hybridization results revealed that AOB and NOB co-existed in similar quantities on the side fragments of the media, which was reasonably supported by the microelectrode measurements showing the concomitant oxidation of NH(4) (+) and production of NO(3) (-) in this zone. However, a significantly higher fraction of AOB was observed in the center than side fragment. As with the overall biofilm density profile, the denitrifying bacteria were also more abundant on the side than in the center fragments. ANAMMOX bacteria detected throughout the entire depth offer another advantage for the removal of nitrogen by simultaneously converting NH(4) (+) and NO(2) (-) to nitrogen gas.  相似文献   

10.
Altlhough ammonia oxidation and ammonia-oxidizing bacteria (AOB) have been extensively studied, nitrite oxidation and nitrite-oxidizing bacteria (NOB) are still not well understood. In this article, the effect of organic matter on NOB and heterotrophic bacteria was investigated with functional performance analysis and bacterial community shift analysis. The results showed that at low concentrations of initial sodium acetate [initial sodium acetate (ISA) = 0.5 or 1 g/L], the nitrite removal rate was higher than that obtained under autotrophic conditions and the bacteria had a single growth phase, whereas at high ISA concentrations (5 or 10 g/L), continuous aerobic nitrification and denitrification occurred in addition to higher nitrite removal rates, and the bacteria had double growth phases. The community structure of total bacteria strikingly varied with the different concentrations of ISA; the dominant populations shifted from autotrophic and oligotrophic bacteria (NOB, and some strains of Bacteroidetes, Alphaproteobacteria, Actinobacteria, and green nonsulfur bacteria) to heterotrophic and denitrifying bacteria (strains of Gammaproteobacteria, especially Pseudomonas stutzeri and P. nitroreducens). The reasons that nitrite removal rate increased with supplement of organic matters were discussed.  相似文献   

11.
Nitrification is an important process for nitrogen removal in many wastewater treatment plants, which requires the mutualistic oxidation of ammonia to nitrate by ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB). However, this process can be quite unpredictable because both guilds are conditionally sensitive to small changes in operating conditions. Here, dynamics are examined within the NOB guild in two parallel chemostats operated at low and high dilution rates (0.10 and 0.83 day(-1), respectively) during periods of varying nitrification performance. NOB and AOB guild abundances and nitrogen-oxidation efficiency were relatively constant over time in the 0.10 day(-1) reactor; however, the 0.83 day(-1) reactor had two major disturbance episodes that caused destabilization of the NOB guild, which ultimately led to nitrification failure. The first episode caused the extinction of Nitrospira spp. from the system, resulting in chronic incomplete ammonia oxidation and nitrite accumulation. The second episode caused complete loss of nitrification activity, likely resulting from metal toxicity and the previous extinction of Nitrospira spp. from the system. These results exemplify the types of changes that can occur within the NOB guild that result in process impairment or failure, and provide one possible explanation for why nitrification is often unstable at higher dilution rates.  相似文献   

12.
A sequencing batch reactor was employed to treat the acrylic fiber wastewater. The dissolved oxygen and mixed liquor suspended solids were 2–3 and 3,500–4,000 mg/L, respectively. The results showed ammonium oxidizing bacteria (AOB) had superior growth rate at high temperature than nitrite oxidizing bacteria (NOB). Partial nitrification could be obtained with the temperature of 28 °C. When the pH value was 8.5, the nitrite-N accumulation efficiency was 82 %. The combined inhibitions of high pH and free ammonium to NOB devoted to the nitrite-N buildup. Hydraulic retention time (HRT) was a key factor in partial nitrification control, and the optimal HRT was 20 h for nitrite-N buildup in acrylic fiber wastewater treatment. The ammonium oxidation was almost complete and the transformation from nitrite to nitrate could be avoided. AOB and NOB accounted for 2.9 and 4.7 %, respectively, corresponding to the pH of 7.0. When the pH was 8.5, they were 6.7 and 0.9 %, respectively. AOB dominated nitrifying bacteria, and NOB was actually washed out from the system.  相似文献   

13.
Biological nitrogen removal (BNR) based on partial nitrification and denitrification via nitrite is a cost-effective alternate to conventional nitrification and denitrification (via nitrate). The goal of this study was to investigate the microbial ecology, biokinetics, and stability of partial nitrification. Stable long-term partial nitrification resulting in 82.1 +/- 17.2% ammonia oxidation, primarily to nitrite (77.3 +/- 19.5% of the ammonia oxidized) was achieved in a lab-scale bioreactor by operation at a pH, dissolved oxygen and solids retention time of 7.5 +/- 0.1, 1.54 +/- 0.87 mg O(2)/L, and 3.0 days, respectively. Bioreactor ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) populations were most closely related to Nitrosomonas europaea and Nitrobacter spp., respectively. The AOB population fraction varied in the range 61 +/- 45% and was much higher than the NOB fraction, 0.71 +/- 1.1%. Using direct measures of bacterial concentrations in conjunction with independent activity measures and mass balances, the maximum specific growth rate (micro(max)), specific decay (b) and observed biomass yield coefficients (Y(obs)) for AOB were 1.08 +/- 1.03 day(-1), 0.32 +/- 0.34 day(-1), and 0.15 +/- 0.06 mg biomass COD/mg N oxidized, respectively. Corresponding micro(max), b, and Y(obs) values for NOB were 2.6 +/- 2.05 day(-1), 1.7 +/- 1.9 day(-1), and 0.04 +/- 0.02 mg biomass COD/mg N oxidized, respectively. The results of this study demonstrate that the highly selective partial nitrification operating conditions enriched for a narrow diversity of rapidly growing AOB and NOB populations unlike conventional BNR reactors, which host a broader diversity of nitrifying bacteria. Further, direct measures of microbial abundance enabled not only elucidation of mixed community microbial ecology but also estimation of key engineering parameters describing bioreactor systems supporting these communities.  相似文献   

14.
We have developed a 3D dry lift-off process to localize multiple types of nitrifying bacteria in polyethylene glycol diacrylate (PEGDA) cubes for enhanced nitrification, a two-step biological process that converts ammonium to nitrite and then to nitrate. Ammonia-oxidizing bacteria (AOB) is responsible for converting ammonia into nitrite, and nitrite-oxidizing bacteria (NOB) is responsible for converting nitrite to nitrate. Successful nitrification is often challenging to accomplish, in part because AOB and NOB are slow growers and highly susceptible to many organic and inorganic chemicals in wastewater. Most importantly, the transportation of chemicals among scattered bacteria is extremely inefficient and can be problematic. For example, nitrite, produced from ammonia oxidation, is toxic to AOB and can lead to the failure of nitrification. To address these challenges, we closely localize AOB and NOB in PEGDA cubes as microenvironment modules to promote synergetic interactions. The AOB is first localized in the vicinity of the surface of the PEGDA cubes that enable AOB to efficiently uptake ammonia from a liquid medium and convert it into nitrite. The produced nitrite is then efficiently transported to the NOB localized at the center of the PEGDA particle and converted into non-toxic nitrate. Additionally, the nanoscale PEGDA fibrous structures offer a protective environment for these strains, defending them from sudden toxic chemical shocks and immobilize in cubes. This engineered microenvironment cube significantly enhances nitrification and improves the overall ammonia removal rate per single AOB cell. This approach—encapsulation of multiple strains at close range in cube in order to control their interactions—not only offers a new strategy for enhancing nitrification, but also can be adapted to improve the production of fermentation products and biofuel, because microbial processes require synergetic reactions among multiple species.  相似文献   

15.
The effects of the lengths of aeration and nonaeration periods on nitrogen removal and the nitrifying bacterial community structure were assessed in intermittently aerated (IA) reactors treating digested swine wastewater. Five IA reactors were operated in parallel with different aeration-to-nonaeration time ratios (ANA). Populations of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were monitored using 16S rRNA slot blot hybridizations. AOB species diversity was assessed using amoA gene denaturant gradient gel electrophoresis. Nitrosomonas and Nitrosococcus mobilis were the dominant AOB and Nitrospira spp. were the dominant NOB in all reactors, although Nitrosospira and Nitrobacter were also detected at lower levels. Reactors operated with the shortest aeration time (30 min) showed the highest Nitrosospira rRNA levels, and reactors operated with the longest anoxic periods (3 and 4 h) showed the lowest levels of Nitrobacter, compared to the other reactors. Nitrosomonas sp. strain Nm107 was detected in all reactors, regardless of the reactor's performance. Close relatives of Nitrosomonas europaea, Nitrosomonas sp. strain ENI-11, and Nitrosospira multiformis were occasionally detected in all reactors. Biomass fractions of AOB and effluent ammonia concentrations were not significantly different among the reactors. NOB were more sensitive than AOB to long nonaeration periods, as nitrite accumulation and lower total NOB rRNA levels were observed for an ANA of 1 h:4 h. The reactor with the longest nonaeration time of 4 h performed partial nitrification, followed by denitrification via nitrite, whereas the other reactors removed nitrogen through traditional nitrification and denitrification via nitrate. Superior ammonia removal efficiencies were not associated with levels of specific AOB species or with higher AOB species diversity.  相似文献   

16.
Polyclonal rabbit antisera raised against sulfate-reducing bacteria (SRB) could detect several distinct populations of bacteria in sediment from the German Baltic Sea. The depth distribution of immunoreactive bacteria was determined by an indirect immunofluorescence filter method. Anti-Desulfovibrio desulfuricans DSM 1926 serum showed maximum bacterial numbers at a depth of 18 cm, with a concentration of 60 x 10(6) cells cm-3. With anti-Desulfovibrio baculatus DSM 2555 serum, counts were highest at the same depth, approaching 0.7 x 10(6) cells cm-3. Other significantly smaller populations were observed. Anti-SRBStrain 1 (lactate,vibrio) maxima were at 0 to 4 cm and at 17 to 18 cm. Anti-SRBStrain 2 (lactate,vibrio) serum showed several local maxima. Anti-SRBStrain 3 (lactate,oval) serum detected one single peak at a depth of 10 to 12 cm. Also determined were rates of sulfate reduction, total bacterial counts by acridine orange staining, and the viable counts by dilution series on anaerobic lactate medium. The total bacterial counts were highest (180 x 10(6) cells cm-3) at 3 to 4 cm and dropped to 24 x 10(6) cells cm-3 at 10 to 11 cm but showed additional local maxima reaching 140 x 10(6) cells cm-3 at a depth of 17 to 18 cm. Viable counts probable number) were above 10(5) CFU cm-3 at 0 to 3.6 cm but remained below 10(3) CFU at 7.2 to 18 cm. The sulfate reduction rate was maximal (107 nmol cm-3 day-1) at a depth of 1 to 2 cm, dropped to 10 nmol cm-3 day-1 at 12 to 13 cm, and reached 38 nmol cm-3 day-1 at 17 to 18 cm.  相似文献   

17.
In a pot-cultural experiment, the impact of the antibiotic roxithromycin (ROX) addition was assessed on the diversities of microbial structure and function communities, especially involved in ammonia and nitrite oxidation in wheat rhizosphere soil with and without the addition of earthworms. The abundances of ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), and total bacteria were surveyed by the quantitative PCR. The quantities of total bacteria, AOB, and NOB with earthworms were higher than those without earthworms because of the synergistic effect. ROX inhibited the growth of AOB in all treatments, although the quantities of AOB were in a light increase in medium and heavy polluted treatments compared with that in the light polluted treatments. Different from AOB, the quantities of NOB were lowest in light polluted treatments, but the quantities of NOB were rapidly increased in medium and heavy polluted treatments compared with that in the control. These results indicated that the application of ROX principally had a negative effect on nitrification performance by affecting the abundances and relative ratios of both AOB and NOB in soil communities, which affected the N cycle in an agricultural ecosystem. According to the metabolic diversities evaluated by the biologic assay, the tendency of metabolic diversities was quite contrary to the quantities of NOB in all treatments and showed the contrast growing relation of autotrophic and heterotrophic bacteria under ROX pollution pressure in agricultural ecosystems.  相似文献   

18.
A lab-scale sequencing batch reactor was operated with alternating anoxic/aerobic conditions for nitrogen removal. Flocs and granules co-existed in the same reactor, with distinct aggregate structure and size, for over 180 days of reactor operation. Process data showed complete nitrogen removal, with temporary nitrite accumulation before full depletion of ammonia in the aerobic phase. Microbial quantification of the biomass by fluorescence in situ hybridisation showed that granules contained most of the nitrite-oxidising bacteria (NOB) whereas the ammonium-oxidising bacteria (AOB) seemed to be more abundant in the flocs. This was supported by microsensor measurements, which showed a higher potential of NO2 uptake than NH4 uptake in the granules. The segregation is possibly linked to the different growth rates of the two types of nitrifiers and the reactor operational conditions, which produced different sludge retention time for flocs and granules. The apparent physical separation of AOB and NOB in two growth forms could potentially affect mass transfer of NO2 from AOB to NOB, but the data presented here shows that it did not impact negatively on the overall nitrogen removal.  相似文献   

19.
Achieving sustainable partial nitrification to nitrite has been proven difficult in treating low strength nitrogenous wastewater. Real-time aeration duration control was used to achieve efficient partial nitrification to nitrite in a sequencing batch reactor (SBR) to treat low strength domestic wastewater. Above 90% nitrite accumulation ratio was maintained for long-term operation at normal condition, or even lower water temperature in winter. Partial nitrification established by controlling aeration duration showed good performance and robustness even though encountering long-term extended aeration and starvation period. Process control enhanced the successful accumulation of ammonia oxidizing bacteria (AOB) and washout of nitrite oxidizing bacteria (NOB). Scanning electron microscope observations indicated that the microbial morphology showed a shift towards small rod-shaped clusters. Fluorescence in situ hybridization (FISH) results demonstrated AOB were the dominant nitrifying bacteria, up to 8.3 ± 1.1% of the total bacteria; on the contrary, the density of NOB decreased to be negligible after 135 days operation since adopting process control.  相似文献   

20.
Shortcut nitrogen removal, that is, removal via formation and reduction of nitrite rather than nitrate, has been observed in membrane-aerated biofilms (MABs), but the extent, the controlling factors, and the kinetics of nitrite formation in MABs are poorly understood. We used a special MAB reactor to systematically study the effects of the dissolved oxygen (DO) concentration at the membrane surface, which is the biofilm base, on nitrification rates, extent of shortcut nitrification, and microbial community structure. The focus was on anoxic bulk liquids, which is typical in MAB used for total nitrogen (TN) removal, although aerobic bulk liquids were also studied. Nitrifying MABs were grown on a hollow-fiber membrane exposed to 3 mg N/L ammonium. The MAB intra-membrane air pressure was varied to achieve different DO concentrations at the biofilm base, and the bulk liquid was anoxic or with 2 g m(-3) DO. With 2.2 and 3.5 g m(-3) DO at the biofilm base, and with an anoxic bulk-liquid, the ammonium fluxes were 0.75 and 1.0 g N m(-2) day(-1), respectively, and nitrite was the main oxidized nitrogen product. However, with membrane DO of 5.5 g m(-3), and either zero or 2 g m(-3) DO in the bulk, the ammonium flux was around 1.3 g N m(-2) day(-1), and nitrate flux increased significantly. For all experiments, the cell density of ammonium oxidizing bacteria (AOB) was relatively uniform throughout the biofilm, but the density of nitrite oxidizing bacteria (NOB) decreased with decreasing biofilm DO. Among NOB, Nitrobacter spp. were dominant in biofilm regions with 2 g m(-3) DO or greater, while Nitrospira spp. were dominant in regions with less than 2 g m(-3) DO. A biofilm model, including AOB, Nitrobacter spp., and Nitrospira spp., was developed and calibrated with the experimental results. The model predicted the greatest extent of nitrite formation (95%) and the lowest ammonium oxidation flux (0.91 g N m(-2) day(-1)) when the membrane DO was 2 g m(-3) and the bulk liquid was anoxic. Conversely, the model predicted the lowest extent of nitrite formation (40%) and the highest ammonium oxidation flux (1.5 g N m(-2) day(-1)) when the membrane-DO and bulk-DO were 8 g m(-3) and 2 g m(-3), respectively. The estimated kinetic parameters for Nitrospira spp., revealed a high affinity for nitrite and oxygen. This explains the dominance of Nitrospira spp. over Nitrobacter spp. in regions with low nitrite and oxygen concentrations. Our results suggest that shortcut nitrification can effectively be controlled by manipulating the DO at the membrane surface. A tradeoff is made between increased nitrite accumulation at lower DO, and higher nitrification rates at higher DO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号