首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The alkali-soluble glucan of the yeast cell wall contains beta-(1,3)- and (1,6)-D-linkages and systemically enhances the immune system. To isolate Saccharomyces cerevisiae mutants producing glucan with a high degree of beta-(1,6)-D-glycosidic bonds, a wild-type strain was mutagenized with ultraviolet light. The mutants were then selected by treatment with 1.0 mg laminarinase, endo-beta-(1,3)-D-glucanase/ml. The alkali-soluble glucan was extracted by modified alkalysis followed by the Cetavlon method and concanavalin-A chromatography. The prepared alkali-soluble glucans from the wild-type and the mutants were compared with respect to yield and polymer structure using gas chromatography, 13C-NMR spectrometry, high performance liquid, and multi-angle laser light scattering and refractive index detectors. The results indicated that the S. cerevisiae mutants had ten-fold more alkali-soluble glucan than the wild-type. Structural analysis revealed that the alkali-soluble glucan from the mutants also had a higher degree of beta-(1,6)-D-linkage than that from the wild-type.  相似文献   

2.
An alkali-soluble glucan from the cell walls of Saccharomyces cerevisiae NCYC1109 has been hydrolysed with a purified endo-(1 leads to 3)-beta-D-glucanase and an endo-(1 leads to 6)-beta-D-glucanase from Bacillus circulans WL-12. The products of enzyme action include various oligosaccharide and polysaccharide fractions which have been separated by gel filtration and characterized, giving new information on the fine structure of the glucan. The isolated cell walls have also been subjected to enzymic hydrolysis. The results suggest that part of the cell-wall mannan is held in place by a glucan component.  相似文献   

3.
The GGP1/GAS1 gene codes for a glycosylphosphatidylinositol-anchored plasma membrane glycoprotein of Saccharomyces cerevisiae. The ggp1delta mutant shows morphogenetic defects which suggest changes in the cell wall matrix. In this work, we have investigated cell wall glucan levels and the increase of chitin in ggp1delta mutant cells. In these cells, the level of alkali-insoluble 1,6-beta-D-glucan was found to be 50% of that of wild-type cells and was responsible for the observed decrease in the total alkali-insoluble glucan. Moreover, the ratio of alkali-soluble to alkali-insoluble glucan almost doubled, suggesting a change in glucan solubility. The increase of chitin in ggp1delta cells was found to be essential since the chs3delta ggp1delta mutations determined a severe reduction in the growth rate and in cell viability. Electron microscopy analysis showed the loss of the typical structure of yeast cell walls. Furthermore, in the chs3delta ggp1delta cells, the level of alkali-insoluble glucan was 57% of that of wild-type cells and the alkali-soluble/alkali-insoluble glucan ratio was doubled. We tested the effect of inhibition of chitin synthesis also by a different approach. The ggp1delta cells were treated with nikkomycin Z, a well-known inhibitor of chitin synthesis, and showed a hypersensitivity to this drug. In addition, studies of genetic interactions with genes related to the construction of the cell wall indicate a synthetic lethal effect of the ggp1delta kre6delta and the ggp1delta pkc1delta combined mutations. Our data point to an involvement of the GGP1 gene product in the cross-links between cell wall glucans (1,3-beta-D-glucans with 1,6-beta-D-glucans and with chitin). Chitin is essential to compensate for the defects due to the lack of Ggp1p. Moreover, the activities of Ggp1p and Chs3p are essential to the formation of the organized structure of the cell wall in vegetative cells.  相似文献   

4.
Determination of the polysaccharide contents and structural studies on the mannan by acetolysis and permethylation analysis shows an altered polysaccharide biosynthesis of the osmotic-sensitive mutant VY 1160 of Saccharomyces cerevisiae S 288. The mutant contains more glucan, less mannan, and less alkali-soluble glycogen. Its mannan is characterized by more short side chains and less long side chains. Its main chain is 1 leads to 6-linked, but its side chains consist of more 1 leads to 3- than 1 leads to 2-linked mannose units.  相似文献   

5.
Proteins with internal repeats (Pir) belong to a minor group of covalently linked yeast cell wall proteins. They are not essential for viability but important for cell wall strength, reduced permeability against plant antifungal enzymes and maintenance of osmotic stability. Here we show the importance of Pir proteins of Saccharomyces cerevisiae for growth at low pH and in presence of various inhibitors. Cell wall analysis of Deltapir1,2,3,4 deletion strain revealed slightly increased chitin content and changes in relative proportion of alkali-soluble and insoluble glucan and chitin fractions. Activation of the cell wall integrity pathway was indicated by increased levels of double phosphorylated Mpk1p/Slt2p in the pir deletants.  相似文献   

6.
The nets produced by protoplasts of Saccharomyces cerevisiae in liquid culture media consisted of microfibrils about 20 nm wide, forming flat, fairly straight bundles of variable width and length, up to about 500 nm wide and 4 mum long. Ends of microfibrils were seldom found. They were not attacked by chitinase or dilute acids, but the net structure disappeared in 3% (w/v) NaOH, leaving about 60% dry wt of the nets as partly microfibrillar clusters. The X-ray powder pattern from the nets, in contrast to that from normal walls, exhibited a set of well-defined rings which identified two micro-crystalline constituents: chitin and unbranched chains of beta-(1 leads to 3)-linked D-glucose residues. These latter were the alkali-soluble fraction. The X-ray diagram of the glucan, corresponding to that of paramylon, indicated an in vivo crystal modification. Up to 15% dry wt was chitin which was found de novo by the protoplasts. A fine net structure of microfibrils about 7-5 to 10 nm thick with meshes about 20 to 60 nm wide was demonstrated in normal walls, forming the entire inner layer and consisting mainly of yeast glucan. This glucan and chitin were only slightly crystalline in these walls. The features of the glucan and chitin of the protoplast nets indicate that enzymes active in normal wall formation were differentially removed or inactivated by the liquid medium.  相似文献   

7.
Using the set of Saccharomyces cerevisiae mutants individually deleted for 5718 yeast genes, we screened for altered sensitivity to the antifungal protein, K1 killer toxin, that binds to a cell wall beta-glucan receptor and subsequently forms lethal pores in the plasma membrane. Mutations in 268 genes, including 42 in genes of unknown function, had a phenotype, often mild, with 186 showing resistance and 82 hypersensitivity compared to wild type. Only 15 of these genes were previously known to cause a toxin phenotype when mutated. Mutants for 144 genes were analyzed for alkali-soluble beta-glucan levels; 63 showed alterations. Further, mutants for 118 genes with altered toxin sensitivity were screened for SDS, hygromycin B, and calcofluor white sensitivity as indicators of cell surface defects; 88 showed some additional defect. There is a markedly nonrandom functional distribution of the mutants. Many genes affect specific areas of cellular activity, including cell wall glucan and mannoprotein synthesis, secretory pathway trafficking, lipid and sterol biosynthesis, and cell surface signal transduction, and offer new insights into these processes and their integration.  相似文献   

8.
2-Deoxy-d-glucose (2DG) acted as a competitive inhibitor of the synthesis of cell wall components in Saccharomyces cerevisiae protoplasts. The synthesis of fibrillar glucan cell wall component was inhibited at a glucose to 2DG ratio of 4:1 in the cultivating medium. The completion of the formation of cell wall by the synthesis of the amorphous mannan-protein cell wall component was inhibited at a glucose to 2DG ratio of about 20:1. The inhibition could be reversed by increasing the glucose to 2DG ratio in the nutrient medium. No incorporation of 2DG into fibrillar glucan cell wall component was observed.  相似文献   

9.
Composition of the cell walls of several yeast species   总被引:14,自引:0,他引:14  
Cell walls, representing 26%–32% of the cell dry weight, were prepared from several strains of the yeasts Kloeckera apiculata, Debaryomyces hansenii, Zygosaccharomyces bailii,Kluyveromyces marxianus and Saccharomyces cerevisiae. Extraction of the walls with potassium hydroxide at 4 °C, followed by saturation of the alkali-soluble extract with ammonium sulphate gave fractions of mannoprotein, alkali-soluble glucan and alkali-insoluble glucan. Chitin was associated with the alkali-insoluble glucan. The proportions of the different fractions within the walls varied with the species and strain. Mannoprotein comprised between 25% and 34% of the walls, the content of alkali-insoluble glucan ranged from 15% to 48%, and the content of alkali-soluble glucan ranged from 10% to 48%. There was significant variation in the physical appearance of the alkali-soluble glucans and the relative viscosity of suspensions of these glucans. The yeasts could represent novel sources of polysaccharides with industrial and medical applications. Received: 30 December 1997 / Received revision: 24 March 1998 / Accepted: 27 March 1998  相似文献   

10.
In the yeast Saccharomyces cerevisiae, the GTP-binding protein Rho1 is required for beta(1-->3)glucan synthase activity, for activation of protein kinase C and the cell integrity pathway and for progression in G1, cell polarization and exocytosis. A genetic screen for cells that become permeabilized at non-permissive temperature was used to isolate in vitro-generated mutants of Rho1p. After undergoing a battery of tests, several of them appeared to be specifically defective in the beta(1-->3) glucan synthesis function of Rho1p. At the non-permissive temperature (37 degrees C), the mutants developed defects in the cell wall, especially at the tip of new buds. In the yeast cell wall, beta(1-->6)glucan is linked to both beta(1-->3)glucan and mannoprotein, as well as occasionally to chitin. We have used the rho1 mutants to study the order of assembly of the cell wall components. The incorporation of [(14)C]-glucose into beta(1-->3)glucan at 37 degrees C was decreased or abolished in the mutants. Concomitantly, a partial defect in the incorporation of label into cell wall mannoproteins and beta(1-->6)glucan was observed. In contrast, YW3458, an inhibitor of glycosylphosphatidylinositol anchor formation, prevented mannoprotein incorporation, whereas the beta(1-->3)-beta(1-->6)glucan complex was synthesized at almost normal levels. As beta(1-->3)glucan can be synthesized in vitro or in vivo independently, we conclude that the order of addition in vivo is beta(1-->3)glucan, beta(1-->6)glucan, mannoprotein. Previous observations indicate that chitin is the last component to be incorporated into the complex.  相似文献   

11.
Congo red binds to the cell wall and inhibits the growth of yeast. In a screening for multicopy suppressor genes of Congo red hypersensitivity of erd1Delta mutant, we found that a previously uncharacterized gene, YBR005w, makes most of the Saccharomyces cerevisiae strains resistant to Congo red. This gene was named RCR1 (resistance to Congo red 1). An rcr1Delta null mutant showed an increased sensitivity to Congo red. RCR1 encodes a novel ER membrane protein with a single transmembrane domain. Molecular dissection suggested that the transmembrane domain and a part of the C-terminal polypeptide are sufficient for the activity. We examined the effect of RCR1 in various null mutants of genes related to the cell wall. The resistance of mutants to Congo red correlates with a reduction of chitin content. Multicopy RCR1 caused a significant decrease in the chitin content while the amount of alkali-soluble glucan did not change. The binding of Calcofluor white to the cell wall significantly decreased in these cells. Our results show that RCR1 regulates the chitin deposition and add firm genetic and biochemical evidences that the primary target of Congo red is chitin in S. cerevisiae.  相似文献   

12.
The yeast cell wall is a crucial extracellular organelle that protects the cell from lysis during environmental stress and morphogenesis. Here, we demonstrate that the yapsin family of five glycosylphosphatidylinositol-linked aspartyl proteases is required for cell wall integrity in Saccharomyces cerevisiae. Yapsin null mutants show hypersensitivity to cell wall perturbation, and both the yps1Delta2Delta mutant and the quintuple yapsin mutant (5ypsDelta) undergo osmoremedial cell lysis at 37 degrees C. The cell walls of both 5ypsDelta and yps1Delta2Delta mutants have decreased amounts of 1,3- and 1,6-beta-glucan. Although there is decreased incorporation of both 1,3- and 1,6-beta-glucan in the 5ypsDelta mutant in vivo, in vitro specific activity of both 1,3- and 1,6-beta-glucan synthesis is similar to wild type, indicating that the yapsins affect processes downstream of glucan synthesis and that the yapsins may be involved in the incorporation or retention of cell wall glucan. Presumably as a response to the significant alterations in cell wall composition, the cell wall integrity mitogen-activated kinase signaling cascade (PKC1-MPK pathway) is basally active in 5ypsDelta. YPS1 expression is induced during cell wall stress and remodeling in a PKC1-MPK1-dependent manner, indicating that Yps1p is a direct, and important, output of the cell wall integrity response. The Candida albicans (SAP9) and Candida glabrata (CgYPS1) homologues of YPS1 complement the phenotypes of the yps1Delta mutant. Taken together, these data indicate that the yapsins play an important role in glucan homeostasis in S. cerevisiae and that yapsin homologues may play a similar role in the pathogenic yeasts C. albicans and C. glabrata.  相似文献   

13.
Expression of the Saccharomyces cerevisiae DPM1 gene (coding for dolichylphosphate mannose synthase) in Trichoderma reesei (Hypocrea jecorina) increases the intensity of protein glycosylation and secretion and causes ultrastructural changes in the fungal cell wall. In the present work, we undertook further biochemical and morphological characterization of the DPM1-expressing T. reesei strains. We established that the carbohydrate composition of the fungal cell wall was altered with an increased amount of N-acetylglucosamine, suggesting an increase in chitin content. Calcofluor white staining followed by fluorescence microscopy indicated changes in chitin distribution. Moreover, we also observed a decreased concentration of mannose and alkali-soluble beta-(1,6) glucan. A comparison of protein secretion from protoplasts with that from mycelia showed that the cell wall created a barrier for secretion in the DPM1 transformants. We also discuss the relationships between the observed changes in the cell wall, increased protein glycosylation, and the greater secretory capacity of T. reesei strains expressing the yeast DPM1 gene.  相似文献   

14.
Cells of Saccharomyces cerevisiae and Hansenula anomala were digested with snail enzyme under conditions yielding prospheroplasts. Surrounding envelopes were isolated after lysis of prospheroplasts in distilled water. The envelope material was embedded and sectioned for electron microscopy, and thin, hollow structures still retaining the elongated form of the original cells were seen. The envelopes were of low electron density in sections stained with uranyl magnesium acetate and lead citrate, but were more electron-dense when stained with phosphotungstic acid. Shadowed preparations of prospheroplast envelopes revealed structures resembling ghosts. These "ghosts" were similar to the original cells in form and size but seemed to be very thin. Varying numbers of anular structures (bud scars) were found on them. Chemical analyses of the envelope indicated that an alkali-soluble glucan was a major constituent. The results show that the prospheroplast envelope is part of the original cell wall of the yeast and is located in close apposition to the cytoplasmic membrane.  相似文献   

15.
A mutant of Saccharomyces cerevisiae defective in the cell wall beta-glucan structure was obtained. The mutant cells are extremely sensitive to (beta 1-3)-glucanase digestion and mild alkali treatment. Structural analysis revealed that the alkali-insoluble, skeletal glucan from wild type cells contains two components, a (beta 1-3) linked glucan with a laminated structure, and a highly branched glucan containing predominantly (beta 1-6) linkages. The mutant cells lack the latter component.  相似文献   

16.
The linear (1 --> 6)-beta-d-glucans pustulan and luteose were effective competitive inhibitors of killer toxin action. Affinity chromatography of killer toxin on a pustulan-Sepharose column showed that toxin bound directly to a (1 --> 6)-beta-linked polysaccharide. Other polysaccharides found in yeast cell walls, including (1 --> 3)-beta-d-glucan, mannan, chitin, and glycogen, were not effective as inhibitors of toxin. Fractionation of yeast cell walls was attempted to identify the toxin receptor in sensitive Saccharomyces cerevisiae. The receptor activity was retained among the insoluble glucans in alkali-washed cells; yeast mannan and alkali-soluble glucan had little receptor activity. A minor fraction of receptor activity was removed from alkali-washed cells by hot acetic acid extraction, a procedure which solubilized some (1 --> 6)-beta-d-glucan and glycogen. The major fraction (>70%) of receptor activity remained with the acid-insoluble (1 --> 6)-beta-and (1 --> 3)-beta-glucans. Zymolyase, an endo-(1 --> 3)-beta-d-glucanase, solubilized a substantial fraction of the receptor activity in the acid-insoluble glucans. The receptor activity in yeast cell walls was periodate and (1 --> 6)-beta-d-glucanase sensitive, but was resistant to (1 --> 3)-beta-d-glucanase and alpha-amylase. The acid-soluble glucan fractions of a sensitive strain and a krel-l receptor-defective toxin-resistant mutant were examined. The krel-l strain had a reduced amount (ca. 50%) of (1 --> 6)-beta-d-glucan compared with the sensitive parent strain. A sensitive revertant of the krel-l strain regained the parental level of glucan. These results implicate (1 --> 6)-beta-d-glucan as a component of the yeast cell wall receptor for killer toxin.  相似文献   

17.
Fungal cell wall assembly is a complicated process involving multiple enzymes and coordinated signaling pathways. The cell wall integrity MAPK pathway acts to stabilize the fungal cell wall during conditions of elevated temperature by regulation of glucan synthesis. The upstream kinase, BCK1, is a critical component of this pathway. Pneumonia is a significant cause of death from the fungal opportunistic pathogen Pneumocystis in immunocompromised states, especially with HIV infection. We have previously shown that PCBCK1 functions in the cell wall integrity pathway in yeast as a functional protein kinase. Kinases have specific requirements for enzymatic function which have not been investigated in fungi. Here we examine the biochemical requirements for PCBCK1 kinase activity expressed in Saccharomyces cerevisiae bck1Delta yeast. PCBCK1 requires 10 mM MgCl(2), pH 6, temperature 30 degrees C, and 10 microM ATP for kinase activity. Interference of the Pneumocystis cell wall integrity pathway is an attractive target for drug development since glucan synthesis machinery is not present in humans.  相似文献   

18.
Abstract Aculeacin A and papulacandin B block cell wall regeneration in Candida albicans protoplasts at an intermediate step in which the protoplasts have not yet synthesized the rigid structure of the cell wall and are therefore still osmotically sensitive. In the presence of the antibiotics, total synthesis of glucan is not significantly lowered with respect to control cells, although most of it appears either in the culture medium or in the regenerating wall as alkali-soluble glucan. Thus, it is proposed that echinocandins (such as aculeacin A) and papulacandins may not inhibit glucan synthesis per se but instead inhibit its incorporation into the supramolecular organization of the cell wall.  相似文献   

19.
Large-scale screening of genetic and chemical-genetic interactions was used to examine the assembly and regulation of beta-1,3-glucan in Saccharomyces cerevisiae. Using the set of deletion mutants in approximately 4600 nonessential genes, we scored synthetic interactions with genes encoding subunits of the beta-1,3-glucan synthase (FKS1, FKS2), the glucan synthesis regulator (SMI1/KNR4), and a beta-1,3-glucanosyltransferase (GAS1). In the resulting network, FKS1, FKS2, GAS1, and SMI1 are connected to 135 genes in 195 interactions, with 26 of these genes also interacting with CHS3 encoding chitin synthase III. A network core of 51 genes is multiply connected with 112 interactions. Thirty-two of these core genes are known to be involved in cell wall assembly and polarized growth, and 8 genes of unknown function are candidates for involvement in these processes. In parallel, we screened the yeast deletion mutant collection for altered sensitivity to the glucan synthase inhibitor, caspofungin. Deletions in 52 genes led to caspofungin hypersensitivity and those in 39 genes to resistance. Integration of the glucan interaction network with the caspofungin data indicates an overlapping set of genes involved in FKS2 regulation, compensatory chitin synthesis, protein mannosylation, and the PKC1-dependent cell integrity pathway.  相似文献   

20.
1. The activity of a particulate enzyme prepared from encysting cells of Acanthamoeba castellanii (Neff), previously shown to catalyze the incorporation of glucose from UDP-[14C]glucose into both alkali-soluble and alkali-insoluble beta-(1 leads to 4) glucans, was stimulated several fold by glucose-6-phosphate and several related compounds. 2. Incorporation was observed when [14C]glucose-6-P was incubated with the particles in the presence of UDP-glucose. The results of product analysis by partial acid hydrolysis indicated that glucose-6-P stimulates the formation of both alkali-soluble and alkali-insoluble beta-(1 leads to 4) glucans from UDP-[14C]glucose and was itself incorporated into an alkali-insoluble beta-(1 leads to 4)glucan. 3. When particles incubated with UDP-[14C]glucose and glucose-6-P were reisolated and then reincubated with unlabeled UDP-glucose and glucose-6-P, a loss of counts from the alkali-soluble fraction was detected along with a corresponding rise in the radioactivity of the alkali-insoluble fraction. This suggests that the alkali-soluble beta-glucan was converted to an alkali-insoluble product and possibly may be an intermediate stage in cellulose synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号