首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was designed to estimate the ability of chlorophyllin (CHL) to interact with two acridine mutagens, quinacrine mustard (QM) and acridine orange (AO), and with the antitumor anthracycline doxorubicin (Dox). To this end, aqueous solutions of QM, AO or Dox during titration with CHL were subjected to spectrophotometry and spectrofluorimetry to detect possible interactions between these reagents. The data indicate that CHL forms complexes with AO, QM or Dox in these solutions. The presence of the complexes was manifested by a bathochromic shift of the absorption spectra, as well as by strong quenching of the fluorescence of each of these mutagens in the presence of CHL. CHL, thus, may serve as an interceptor of these mutagenic acridines in different in vivo or in vitro applications. Its ability to interact with Dox may potentially be utilized to detoxify patients overdosed with this or similar drugs.  相似文献   

2.
A novel bridging ligand bdptb(2,2'-bis(5,6-diphenyl-1,2,4-triazin-3-yl)-4,4'-bipyridine) and it's chiral diruthenium(II) complex DeltaDelta- and LambdaLambda-[Ru(bpy)2(bdptb)Ru(bpy)2]4+ (Ru2) have been synthesized and characterized by electrospray mass spectra, 1H NMR, UV/visible and circular dichroism spectra. Binding behavior of these dimeric complexes with calf thymus DNA have been investigated by absorption spectra, viscosity measurements, equilibrium dialysis experiments. The electronic absorption spectra hypochromism at the metal-ligand charge transfer of the DeltaDelta- and LambdaLambda-enantiomer are 26.4%, and 40%, and bathochromism of 13.5, and 14 nm in sequence. Equilibrium dialysis experiments results show also the binding-DNA of LambdaLambda-enantiomer is stronger than DeltaDelta-enantiomer. The increasing amounts of the novel dimeric ruthenium(II) complexes on the relative viscosities of calf thymus DNA is smaller than that of the classic intercalators such as [Ru(bpy)2(dppz)]2+ and larger than that of the non-classic intercalators such as Delta-[Ru(phen)3]2+. The experiments suggest the dimeric ruthenium(II) complex may be bound to DNA by groove binder.  相似文献   

3.
We have investigated the ability of chlorophyllin (CHL) to interact with acridine mutagen ICR-191 (2-methoxy-6-chloro-9-(3-(2-chloroethyl)aminopropylamino)acridine) and also its ability to decrease binding of ICR-191 to DNA in a simple three-component competition system: CHL-ICR–DNA. Our data indicate a strong association of ICR-191 with CHL, stronger even than the association of ICR-191 with DNA. Calculations based on the measured affinity data show that a two- to three-fold excess of CHL reduces by about two-fold the concentration of the mutagen-DNA complex. We also exposed human leukemic HL-60 cells to ICR-191 in the absence and presence of CHL and measured the mutagen-induced DNA damage. The extent of DNA damage was assessed by analysis of histone H2AX phosphorylation. While ICR-191 induced significant increase in expression of phosphorylated H2AX (γH2AX), particularly in DNA replicating cells, this increase was totally abolished in the cells treated with ICR-191 in the presence of CHL.  相似文献   

4.
At low temperature and low salt concentration, both imino proton and 31p-nmr spectra of DNA complexes with the intercalators ethidium and propidium are in the slow-exchange region. Increasing temperature and/or increasing salt concentration results in an increase in the site exchange rate. Ring-current effects from the intercalated phenanthridinium ring of ethidium and propidium cause upfield shifts of the imino protons of A · T and G · C base pairs, which are quite similar for the two intercalators. The limiting induced chemical shifts for propidium and ethidium at saturation of DNA binding sites are approximately 0.9 ppm for A · T and 1.1 ppm for G · C base pairs. The similarity of the shifts for ethidium and propidium, in both the slow- and fast-exchange regions over the entire titration of DNA, shows that a binding model for propidium with neighbor-exclusion binding and negative ligand cooperativity is correct. The fact that a unique chemical shift is obtained for imino protons at intercalated sites over the entire titration and that no unshifted imino proton peaks remain at saturation binding of ethidium and propidium supports a neighbor-exclusion binding model with intercalators bound at alternating sites rather than in clusters on the double helix. Addition of ethidium and propidium to DNA results in downfield shifts in 31P-nmr spectra. At saturation ratios of intercalator to DNA base pairs in the titration, a downfield shoulder (approximately ?2.7 ppm) is apparent, which accounts for approximately 15% of the spectral area. The main peak is at ?3.9 to ?4.0 ppm relative to ?4.35 in uncomplexed DNA. The simplest neighbor-binding model predicts a downfield peak with approximately 50% of the spectral area and an upfield peak, near the chemical shift for uncomplexed DNA, with 50% of the area. This is definitely not the case with these intercalators. The observed chemical shifts and areas for the DNA complexes can be explained by models, for example, that involve spreading the intercalation-induced unwinding of the double helix over several base pairs and/or a DNA sequence- and conformation-dependent heterogeneity in intercalation-induced chemical shifts and resulting exchange rates.  相似文献   

5.
Chung WY  Lee JM  Lee WY  Surh YJ  Park KK 《Mutation research》2000,472(1-2):139-145
Porphyrins which are widespread in nature can interfere with the actions of certain carcinogens and mutagens, and have also been used clinically in photodynamic therapy (PDT) of tumors. Porphyrins such as chlorophyll, chlorophyllin (CHL) and hemin are known to inactivate various mutagens by forming complexes with them. Tetrakis(4-benzoic acid)porphyrin (TBAP) has been developed as a photosensitizer for PDT and its metal complex, MnTBAP has been shown to be efficacious in a variety of in vitro and in vivo oxidative stress models of human diseases. In the present study, we have found that TBAP and hemin exert concentration-related inhibition of his(+) reversion in Salmonella typhimurium TA100 induced by 7, 12-dimethylbenz[a]anthracene (DMBA), and significantly reduced both incidence and multiplicity of skin tumors when topically applied prior to treatment of 12-O-tetradecanoylphorbol-13-acetate in female ICR mice. Covalent DNA binding of DMBA in mouse skin was also significantly inhibited by topical application of TBAP or hemin as well as CHL. These results suggest the chemopreventive potential of compounds containing a porphyrin nucleus.  相似文献   

6.
The effect of chlorophyllin on micronucleated polychromatic erythrocytes (MN-PCE) induction by chromium trioxide (CrO(3)) exposure in peripheral blood of mice was studied. Animals were treated with a single intraperitoneal dose of chlorophyllin (CHL) (20mg/kg), CrO(3) (20mg/kg), and CHL (20mg/kg) 4h before (CHL-CrO(3)) or 4h before and 20h after chromium treatments (20mg/kg; CHL-CrO(3)-CHL). Peripheral blood samples were drawn from the caudal vein at 0, 12 and 48h, and analyzed by the acridine orange (AO) technique. The results obtained in present study shown that CHL injection did not modify the number of MN-PCE. CrO(3) treatment resulted in a significantly increases 12 and 48h after the injection, reaching a four-fold increase 48h after CrO(3) administration. Whereas treatment with 20mg/kg of CHL prior to chromium, decreased the MN frequency induced by chromium in the 12h samples. When the samples were analyzed 48h after CrO(3) injection, no significant differences between CHL-CrO(3) and CHL-CrO(3)-CHL in comparison with CrO(3) treatment, were observed. These results indicate that increase of MN-PCE by CrO(3) is CHL-blocked in both protocols used (CHL-CrO(3) and CHL-CrO(3)-CHL) at 12h after treatment, but it was unable to modify the frequency of MN-PCE measured 48h after CrO(3) injection. The absence of a protective effect by CHL in the MN-PCE induction by CrO(3) at 48h, show that CHL has action only on one of the times of MN induction and suggests the possible action of CrO(3) by two different mechanisms, and not by CHL time-limited in vivo.  相似文献   

7.
Chlorophyllin (CHL), a water-soluble, semi-synthetic derivative of chlorophyll and ellagic acid (EA), a naturally occurring polyphenolic compound in berries, grapes, and nuts have been reported to exert anticancer effects in various human cancer cell lines and in animal tumour models. The present study was undertaken to examine the mechanism underlying chemoprevention and changes in gene expression pattern induced by dietary supplementation of chlorophyllin and ellagic acid in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model by whole genome profiling using pangenomic microarrays. In hamsters painted with DMBA, the expression of 1,700 genes was found to be altered significantly relative to control. Dietary supplementation of chlorophyllin and ellagic acid modulated the expression profiles of 104 and 37 genes respectively. Microarray analysis also revealed changes in the expression of TGFβ receptors, NF-κB, cyclin D1, and matrix metalloproteinases (MMPs) that may play a crucial role in the transformation of the normal buccal pouch to a malignant phenotype. This gene expression signature was altered on treatment with chlorophyllin and ellagic acid. Our study has also revealed patterns of gene expression signature specific for chlorophyllin and ellagic acid exposure. Thus dietary chlorophyllin and ellagic acid that can reverse gene expression signature associated with carcinogenesis are novel candidates for cancer prevention and therapy.  相似文献   

8.
Reactive oxygen species (ROS) from both endogenous and exogenous sources can cause oxidative DNA damage and dysregulated cell signaling, which are involved in the multistage process of carcinogenesis such as tumor initiation, promotion and progression. A number of structurally different anticarcinogenic agents inhibit inflammation and tumor promotion as they reduce ROS production and oxidative DNA damage. Evidence suggests that porphyrins can interfere with the actions of various carcinogens and mutagens by forming face-to-face complexes and their antimutagenic or antigenotoxic effects may also be attributed to their antioxidant activities. However, little is known regarding the anti-tumor promoting potential and mechanism of the porphyrin compounds. Based on our previous results on the inhibitory effects of chlorophyllin (CHL), hemin and tetrakis(4-benzoic acid)porphyrin (TBAP) against two-stage mouse skin carcinogenesis, we have investigated their anti-tumor promoting mechanisms. In the present work, CHL, hemin and TBAP reduced superoxide anion generation by 12-O-tetradecanoylphorbol-13-acetate (TPA) in differentiated HL-60 cells and the production of hydroxyl radicals by Fenton reaction. Porphyrins exert a dose-related inhibition of his(+) reversion in Salmonella typhimurium TA102 induced by tert-butylhydroperoxide (t-BOOH). DNA strand breaks by ROS derived from H(2)O(2)/Cu(II) and the formation of 8-hydroxydeoxyguanosine (8-OH-dG) in calf thymus DNA treated with H(2)O(2)/UV also were inhibited markedly by porphyrins in a concentration-dependent manner. Furthermore, CHL, hemin and TBAP decreased myeloperoxidase (MPO) activity and H(2)O(2) formation as well as epidermal ornithine decarboxylase (ODC) activity in mouse skin treated with TPA. These results demonstrate that the antioxidative properties of porphyrins are important for inhibiting TPA-induced tumor promotion.  相似文献   

9.
Scavenging of reactive oxygen species by chlorophyllin: An ESR study   总被引:5,自引:0,他引:5  
The antioxidant effects of chlorophyllin (CHL), a water-soluble analog of the green plant pigment chlorophyll, on different reactive oxygen species (ROS) were investigated by electron spin resonance (ESR) spectroscopy. As a standard, we have used the ability of CHL to scavenge the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. CHL inhibits the formation of 5,5-dimethyl-1-pyrroline-N-oxide adduct with hydroxyl radical (DMPO-OH adduct) generated by γ-radiation in a dose-dependent manner. At a concentration of 1 mM, CHL caused more than 90% inhibition of ESR signal intensity of this adduct. However, the results obtained with the Fenton reaction were different. We also found evidence for the inhibition of 1O2-dependent formation of the 2,2,6,6-tetramethyl-piperidine oxide (TEMPO) radical during photosensitization of methylene blue with visible light. CHL was also able to inhibit hydrogen peroxide induced oxidation of phenol red. The rate constant of the reaction of CHL with H2O2 was found to be 2.7×106 M-1s-1. In conclusion, CHL has potent antioxidant ability involving scavenging of various physiologically important ROS.  相似文献   

10.
To increase the DNA cleavage activity and the cell delivery of the bis(phenanthroline) DNA cleaver "3-Clip-Phen", conjugates between 3-Clip-Phen and the intercalators acridine and 6-chloro-2-methoxyacridine, through amino acid linkers of various length, were prepared. After complexation with CuCl(2), the ability of these conjugates to cleave phiX 174 DNA in the presence of a reductant and air was compared. The results indicated that (i) the coupling of 3-Clip-Phen to an acridine derivative increased the DNA cleavage efficiency of the copper complexes, (ii) the acridine derivatives were more active than 6-chloro-2-methoxyacridine derivatives, (iii) the linker length influenced cleavage efficiency, the highest DNA cleavage activity being obtained for an aminocaproic spacer.  相似文献   

11.
12.
The design of new molecular "light switches" for DNA   总被引:6,自引:0,他引:6  
Two novel ruthenium(II) complexes, [Ru(pztp)2(phen)](ClO4)2 and [Ru(pztp)2(bpy)] (ClO4)2, have been synthesized and characterized by UV/Vis and 1H NMR spectroscopies and mass spectrometry. The MeCN solutions of both complexes display fluorescence that was found to be highly sensitive to the presence and concentration of water. The complexes behave like a "light switch" for DNA in that they do not luminesce in water but were "turned on" in the presence of DNA and show emission enhancement with the increase of DNA concentration. Their DNA binding behavior was also studied by absorption spectroscopy and viscosity measurements, which suggest that the DNA-complex interaction involves intercalation of the metal-bound pztp ligand into the base pairs of duplex DNA.  相似文献   

13.
The antioxidant effects of chlorophyllin (CHL), a water-soluble analog of the green plant pigment chlorophyll, on different reactive oxygen species (ROS) were investigated by electron spin resonance (ESR) spectroscopy. As a standard, we have used the ability of CHL to scavenge the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. CHL inhibits the formation of 5,5-dimethyl-1-pyrroline-N-oxide adduct with hydroxyl radical (DMPO-OH adduct) generated by γ-radiation in a dose-dependent manner. At a concentration of 1 mM, CHL caused more than 90% inhibition of ESR signal intensity of this adduct. However, the results obtained with the Fenton reaction were different. We also found evidence for the inhibition of 1O2-dependent formation of the 2,2,6,6-tetramethyl-piperidine oxide (TEMPO) radical during photosensitization of methylene blue with visible light. CHL was also able to inhibit hydrogen peroxide induced oxidation of phenol red. The rate constant of the reaction of CHL with H2O2 was found to be 2.7×106 M-1s-1. In conclusion, CHL has potent antioxidant ability involving scavenging of various physiologically important ROS.  相似文献   

14.
Previous studies on copper(II) complexes with oxindole-Schiff base ligands have shown their potential antitumor activity towards different cells, inducing apoptosis through a preferential attack to DNA and/or mitochondria. Herein, we better characterize the interactions between some of these copper(II) complexes and DNA. Investigations on its binding ability to DNA were carried out by fluorescence measurements in competitive experiments with ethidium bromide, using plasmidial or calf-thymus DNA. These results indicated an efficient binding process similar to that observed with copper(II)-phenanthroline species, [Cu(o-phen)2]2+, with binding constants in the range 3 to 9 × 102 M− 1. DNA cleavage experiments in the presence and absence of distamycin, a recognized binder of DNA, indicated that this binding probably occurs at major or minor groove, leading to double-strand DNA cleavage, and being modulated by the imine ligand. Corroborating these data, discrete changes in EPR spectra of the studied complexes were observed in the presence of DNA, while more remarkable changes were observed in the presence of nucleotides (AMP, GMP, CMP or UMP). Additional evidence for preferential coordination of the copper centers to the bases guanine or cytosine was obtained from titrations of these complexes with each nucleotide, monitored by absorption spectral changes. Therefore, the obtained data point out to their action as groove binders to DNA bases, rather than as intercalators or covalent cross-linkers. Further investigations by SDS PAGE using 32P-ATP or 32P-oligonucleotides attested that no hydrolysis of phosphate linkage in DNA or RNA occurs, in the presence of such complexes, confirming their main oxidative mechanism of action.  相似文献   

15.
Porphyrins and their metal derivatives are strong nucleic acids binders. Some of these compounds have been used for radiation sensitization therapy of cancer and are targeted to interact with cellular DNA. Chlorophyll (Chl) binds DNA via guanine N-7 atom (major groove) and the backbone phosphate group (Neault and Tajmir-Riahi. Biophys. J. 76, 2177, 1999), whereas chlorophyllin (Chln) intercalates into A-T and G-C regions (Neault and Tajmir-Riahi. J. Phys. Chem. B. 102, 1610, 1998). This study was designed to examine the interaction of RNA with chlorophyll a and chlorophyllin in aqueous solution at physiological pH with pigment/RNA(phosphate) ratios (r) of 1/80 to 1/2. Fourier transform infrared (FTIR) and UV-visible difference spectroscopic methods were used to characterize the nature of pigment-RNA interaction and to establish correlation between spectral changes and the pigment binding mode, binding constant, RNA secondary structure and structural variations of pigment-RNA complexes in aqueous solution. Spectroscopic results showed that Chl and Chln bind RNA through G-C and A-U bases and the backbone phosphate group with overall binding constants of KChl = 1.95 x 10(5) M(-1) and KChln = 1.61 x 10(5) M(-1). The larger K value obtained for Chl-RNA complexes is attributed to the formation of more stable five or six-coordinate Mg cation in the RNA adducts, while the four-coordination Cu(II) in Chln can be more stable than that of the five or six-coordinated copper ion in the Chln-RNA complexes. Aggregation of pigment-RNA complexes occurs at high metalloporphyrin concentrations. No biopolymer secondary structural changes were observed upon pigment interaction and RNA remains in the A-family structure in these pigment complexes.  相似文献   

16.
The spectral properties of the actinocin derivative ActII in complexes with DNA were studied by UV visible spectrophotometry. Two binding models with one and two binding sites for competitive binding with different values of parameters were considered. To choose an optimal model of complexation, the optimization program of spectrophotometric concentration dependencies DALSMOD was used. Using this program, it was concluded that at least three complexes with different absorption spectra are present in the system ActII-DNA. The logarithms of K2 and K3 for DNA-ActII mixtures, calculated for models I and II at different sodium ion concentrations, were in good agreement with predictions of the counterion condensation theory. The analysis of the absorption spectra of ActII-DNA mixtures at different temperatures made it possible to obtain the values of deltaH and deltaS for each type of complexes. The values of entropy deltaS were positive in the 0.02 M NaCl solution and negative in the 0.15 M NaCI solution.  相似文献   

17.
18.
Reactive oxygen species (ROS) from both endogenous and exogenous sources can cause oxidative DNA damage and dysregulated cell signaling, which are involved in the multistage process of carcinogenesis such as tumor initiation, promotion and progression. A number of structurally different anticarcinogenic agents inhibit inflammation and tumor promotion as they reduce ROS production and oxidative DNA damage. Evidence suggests that porphyrins can interfere with the actions of various carcinogens and mutagens by forming face-to-face complexes and their antimutagenic or antigenotoxic effects may also be attributed to their antioxidant activities. However, little is known regarding the anti-tumor promoting potential and mechanism of the porphyrin compounds. Based on our previous results on the inhibitory effects of chlorophyllin (CHL), hemin and tetrakis(4-benzoic acid)porphyrin (TBAP) against two-stage mouse skin carcinogenesis, we have investigated their anti-tumor promoting mechanisms. In the present work, CHL, hemin and TBAP reduced superoxide anion generation by 12-O-tetradecanoylphorbol-13-acetate (TPA) in differentiated HL-60 cells and the production of hydroxyl radicals by Fenton reaction. Porphyrins exert a dose-related inhibition of his+ reversion in Salmonella typhimurium TA102 induced by tert-butylhydroperoxide (t-BOOH). DNA strand breaks by ROS derived from H2O2/Cu(II) and the formation of 8-hydroxydeoxyguanosine (8-OH-dG) in calf thymus DNA treated with H2O2/UV also were inhibited markedly by porphyrins in a concentration-dependent manner. Furthermore, CHL, hemin and TBAP decreased myeloperoxidase (MPO) activity and H2O2 formation as well as epidermal ornithine decarboxylase (ODC) activity in mouse skin treated with TPA. These results demonstrate that the antioxidative properties of porphyrins are important for inhibiting TPA-induced tumor promotion.  相似文献   

19.
Formation of dispersed phases from complexes of (closed circular DNA (c.c. DNA)--antibiotics (drugs) in PEG-containing solutions has been studied. It is shown that under definite concentrations of bound antibiotics relatively intense bands in the CD spectra of dispersed phases in the absorption region of DNA and antibiotics chromophores appear. The properties of liquid crystalline phases formed from the complexes of linear DNA with antibiotics were compared to those of dispersed phases formed from c. c. DNA. Such comparison demonstrates existence of some differences in the optical properties of the phases formed from linear and c.c. DNA molecules. For example a change of the bands sign in the CD spectra of dispersed phases formed from the complexes (c.c. DNA--antibiotics), which is the case with all the substances studied, does not exist in the case of liquid crystalline phases formed from the complexes of (linear DNA--antibiotics). It was shown that a change of the bands sign in the CD spectra correlates with a change of the sign of superhelical twist of closed circular DNA molecules.  相似文献   

20.
Difference absorption spectra (complex-sum of the initial reagents) are obtained in the visible and longwave UV region for the system of actiflavine and DNA in a number of cases differing in initial and final degrees of DNA filling by the dye, in particular separately for two types of dye binding to DNA. For these binding types conventional absorption spectra are calculated. In the visible region for the first binding type ("strong" binding) red shift of the absorption band is observed; for the second type ("weak" binding) we observed splitting of the band, short wavelength component being highly prevailing, and hypochromism. In the UV region for both binding types the spectra changed in approximately similar way; a slight blue shift and a rather remarkable hypochromism are observed. It is shown that the dye brings the main contribution into the spectral changes in the UV region. If to take into account the spectral properties of molecular aggregates the data obtained are compatible with the intercalation model for "strong" binding and dye stacking on DNA for "weak" binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号