首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luck K  Charbonnier S  Travé G 《FEBS letters》2012,586(17):2648-2661
The canonical binding mode of PDZ domains to target motifs involves a small interface, unlikely to fully account for PDZ-target interaction specificities. Here, we review recent work on sequence context, defined as the regions surrounding not only the PDZ domains but also their target motifs. We also address the theoretical problem of defining the core of PDZ domains and the practical issue of designing PDZ constructs. Sequence context is found to introduce structural diversity, to impact the stability and solubility of constructs, and to deeply influence binding affinity and specificity, thereby increasing the difficulty of predicting PDZ-motif interactions. We expect that sequence context will have similar importance for other protein interactions mediated by globular domains binding to short linear motifs.  相似文献   

2.
3.
Short motifs are known to play diverse roles in proteins, such as in mediating the interactions with other molecules, binding to membranes, or conducting a specific biological function. Standard approaches currently employed to detect short motifs in proteins search for enrichment of amino acid motifs considering mostly the sequence information. Here, we presented a new approach to search for common motifs (protein signatures) which share both physicochemical and structural properties, looking simultaneously at different features. Our method takes as an input an amino acid sequence and translates it to a new alphabet that reflects its intrinsic structural and chemical properties. Using the MEME search algorithm, we identified the proteins signatures within subsets of protein which encompass common sequence and structural information. We demonstrated that we can detect enriched structural motifs, such as the amphipathic helix, from large datasets of linear sequences, as well as predicting common structural properties (such as disorder, surface accessibility, or secondary structures) of known functional‐motifs. Finally, we applied the method to the yeast protein interactome and identified novel putative interacting motifs. We propose that our approach can be applied for de novo protein function prediction given either sequence or structural information. Proteins 2013; © 2012 Wiley Periodicals, Inc.  相似文献   

4.
MOTIVATION: The detection of function-related local 3D-motifs in protein structures can provide insights towards protein function in absence of sequence or fold similarity. Protein loops are known to play important roles in protein function and several loop classifications have been described, but the automated identification of putative functional 3D-motifs in such classifications has not yet been addressed. This identification can be used on sequence annotations. RESULTS: We evaluated three different scoring methods for their ability to identify known motifs from the PROSITE database in ArchDB. More than 500 new putative function-related motifs not reported in PROSITE were identified. Sequence patterns derived from these motifs were especially useful at predicting precise annotations. The number of reliable sequence annotations could be increased up to 100% with respect to standard BLAST. CONTACT: boliva@imim.es SUPPLEMENTARY INFORMATION: Supplementary Data are available at Bioinformatics online.  相似文献   

5.
6.
7.
Elucidation of microRNA activity is a crucial step in understanding gene regulation. One key problem in this effort is how to model the pairwise interactions of microRNAs with their targets. As this interaction is strongly mediated by their sequences, it is desired to set-up a probabilistic model to explain the binding preferences between a microRNA sequence and the sequence of a putative target. To this end, we introduce a new model of microRNA-target binding, which transforms an aligned duplex to a new sequence and defines the likelihood of this sequence using a Variable Length Markov Chain. It offers a complementary representation of microRNA–mRNA pairs for microRNA target prediction tools or other probabilistic frameworks of integrative gene regulation analysis. The performance of present model is evaluated by its ability to predict microRNA–target mRNA interaction given a mature microRNA sequence and a putative mRNA binding site. In regard to classification accuracy, it outperforms two recent methods based on thermodynamic stability and sequence complementarity. The experiments can also unveil the effects of base pairing types and non-seed region in duplex formation.  相似文献   

8.
9.
Conserved network motifs allow protein-protein interaction prediction   总被引:5,自引:0,他引:5  
MOTIVATION: High-throughput protein interaction detection methods are strongly affected by false positive and false negative results. Focused experiments are needed to complement the large-scale methods by validating previously detected interactions but it is often difficult to decide which proteins to probe as interaction partners. Developing reliable computational methods assisting this decision process is a pressing need in bioinformatics. RESULTS: We show that we can use the conserved properties of the protein network to identify and validate interaction candidates. We apply a number of machine learning algorithms to the protein connectivity information and achieve a surprisingly good overall performance in predicting interacting proteins. Using a 'leave-one-out' approach we find average success rates between 20 and 40% for predicting the correct interaction partner of a protein. We demonstrate that the success of these methods is based on the presence of conserved interaction motifs within the network. AVAILABILITY: A reference implementation and a table with candidate interacting partners for each yeast protein are available at http://www.protsuggest.org.  相似文献   

10.
In Kellis et al. (2003), we reported the genome sequences of S. paradoxus, S. mikatae, and S. bayanus and compared these three yeast species to their close relative, S. cerevisiae. Genomewide comparative analysis allowed the identification of functionally important sequences, both coding and noncoding. In this companion paper we describe the mathematical and algorithmic results underpinning the analysis of these genomes. (1) We present methods for the automatic determination of genome correspondence. The algorithms enabled the automatic identification of orthologs for more than 90% of genes and intergenic regions across the four species despite the large number of duplicated genes in the yeast genome. The remaining ambiguities in the gene correspondence revealed recent gene family expansions in regions of rapid genomic change. (2) We present methods for the identification of protein-coding genes based on their patterns of nucleotide conservation across related species. We observed the pressure to conserve the reading frame of functional proteins and developed a test for gene identification with high sensitivity and specificity. We used this test to revisit the genome of S. cerevisiae, reducing the overall gene count by 500 genes (10% of previously annotated genes) and refining the gene structure of hundreds of genes. (3) We present novel methods for the systematic de novo identification of regulatory motifs. The methods do not rely on previous knowledge of gene function and in that way differ from the current literature on computational motif discovery. Based on genomewide conservation patterns of known motifs, we developed three conservation criteria that we used to discover novel motifs. We used an enumeration approach to select strongly conserved motif cores, which we extended and collapsed into a small number of candidate regulatory motifs. These include most previously known regulatory motifs as well as several noteworthy novel motifs. The majority of discovered motifs are enriched in functionally related genes, allowing us to infer a candidate function for novel motifs. Our results demonstrate the power of comparative genomics to further our understanding of any species. Our methods are validated by the extensive experimental knowledge in yeast and will be invaluable in the study of complex genomes like that of the human.  相似文献   

11.
Sequential behaviour is often compositional and organised across multiple time scales: a set of individual elements developing on short time scales (motifs) are combined to form longer functional sequences (syntax). Such organisation leads to a natural hierarchy that can be used advantageously for learning, since the motifs and the syntax can be acquired independently. Despite mounting experimental evidence for hierarchical structures in neuroscience, models for temporal learning based on neuronal networks have mostly focused on serial methods. Here, we introduce a network model of spiking neurons with a hierarchical organisation aimed at sequence learning on multiple time scales. Using biophysically motivated neuron dynamics and local plasticity rules, the model can learn motifs and syntax independently. Furthermore, the model can relearn sequences efficiently and store multiple sequences. Compared to serial learning, the hierarchical model displays faster learning, more flexible relearning, increased capacity, and higher robustness to perturbations. The hierarchical model redistributes the variability: it achieves high motif fidelity at the cost of higher variability in the between-motif timings.  相似文献   

12.
13.
The establishment of a landscape of enhancers across human cells is crucial to deciphering the mechanism of gene regulation, cell differentiation, and disease development. High-throughput experimental approaches, which contain successfully reported enhancers in typical cell lines, are still too costly and time-consuming to perform systematic identification of enhancers specific to different cell lines. Existing computational methods, capable of predicting regulatory elements purely relying on DNA sequences, lack the power of cell line-specific screening. Recent studies have suggested that chromatin accessibility of a DNA segment is closely related to its potential function in regulation, and thus may provide useful information in identifying regulatory elements. Motivated by the aforementioned understanding, we integrate DNA sequences and chromatin accessibility data to accurately predict enhancers in a cell line-specific manner. We proposed DeepCAPE, a deep convolutional neural network to predict enhancers via the integration of DNA sequences and DNase-seq data. Benefitting from the well-designed feature extraction mechanism and skip connection strategy, our model not only consistently outperforms existing methods in the imbalanced classification of cell line-specific enhancers against background sequences, but also has the ability to self-adapt to different sizes of datasets. Besides, with the adoption of auto-encoder, our model is capable of making cross-cell line predictions. We further visualize kernels of the first convolutional layer and show the match of identified sequence signatures and known motifs. We finally demonstrate the potential ability of our model to explain functional implications of putative disease-associated genetic variants and discriminate disease-related enhancers. The source code and detailed tutorial of DeepCAPE are freely available at https://github.com/ShengquanChen/DeepCAPE.  相似文献   

14.
15.
RNA-protein interactions play essential roles in regulating gene expression. While some RNA-protein interactions are “specific”, that is, the RNA-binding proteins preferentially bind to particular RNA sequence or structural motifs, others are “non-RNA specific.” Deciphering the protein-RNA recognition code is essential for comprehending the functional implications of these interactions and for developing new therapies for many diseases. Because of the high cost of experimental determination of protein-RNA interfaces, there is a need for computational methods to identify RNA-binding residues in proteins. While most of the existing computational methods for predicting RNA-binding residues in RNA-binding proteins are oblivious to the characteristics of the partner RNA, there is growing interest in methods for partner-specific prediction of RNA binding sites in proteins. In this work, we assess the performance of two recently published partner-specific protein-RNA interface prediction tools, PS-PRIP, and PRIdictor, along with our own new tools. Specifically, we introduce a novel metric, RNA-specificity metric (RSM), for quantifying the RNA-specificity of the RNA binding residues predicted by such tools. Our results show that the RNA-binding residues predicted by previously published methods are oblivious to the characteristics of the putative RNA binding partner. Moreover, when evaluated using partner-agnostic metrics, RNA partner-specific methods are outperformed by the state-of-the-art partner-agnostic methods. We conjecture that either (a) the protein-RNA complexes in PDB are not representative of the protein-RNA interactions in nature, or (b) the current methods for partner-specific prediction of RNA-binding residues in proteins fail to account for the differences in RNA partner-specific versus partner-agnostic protein-RNA interactions, or both.  相似文献   

16.
MOTIVATION: The structural interaction of proteins and their domains in networks is one of the most basic molecular mechanisms for biological cells. Topological analysis of such networks can provide an understanding of and solutions for predicting properties of proteins and their evolution in terms of domains. A single paradigm for the analysis of interactions at different layers, such as domain and protein layers, is needed. RESULTS: Applying a colored vertex graph model, we integrated two basic interaction layers under a unified model: (1) structural domains and (2) their protein/complex networks. We identified four basic and distinct elements in the model that explains protein interactions at the domain level. We searched for motifs in the networks to detect their topological characteristics using a pruning strategy and a hash table for rapid detection. We obtained the following results: first, compared with a random distribution, a substantial part of the protein interactions could be explained by domain-level structural interaction information. Second, there were distinct kinds of protein interaction patterns classified by specific and distinguishable numbers of domains. The intermolecular domain interaction was the most dominant protein interaction pattern. Third, despite the coverage of the protein interaction information differing among species, the similarity of their networks indicated shared architectures of protein interaction network in living organisms. Remarkably, there were only a few basic architectures in the model (>10 for a 4-node network topology), and we propose that most biological combinations of domains into proteins and complexes can be explained by a small number of key topological motifs. CONTACT: doheon@kaist.ac.kr.  相似文献   

17.
18.
Systems biology is accumulating a wealth of understanding about the structure of genetic regulatory networks, leading to a more complete picture of the complex genotype–phenotype relationship. However, models of multivariate phenotypic evolution based on quantitative genetics have largely not incorporated a network‐based view of genetic variation. Here we model a set of two‐node, two‐phenotype genetic network motifs, covering a full range of regulatory interactions. We find that network interactions result in different patterns of mutational (co)variance at the phenotypic level (the M ‐matrix), not only across network motifs but also across phenotypic space within single motifs. This effect is due almost entirely to mutational input of additive genetic (co)variance. Variation in M has the effect of stretching and bending phenotypic space with respect to evolvability, analogous to the curvature of space–time under general relativity, and similar mathematical tools may apply in each case. We explored the consequences of curvature in mutational variation by simulating adaptation under divergent selection with gene flow. Both standing genetic variation (the G ‐matrix) and rate of adaptation are constrained by M , so that G and adaptive trajectories are curved across phenotypic space. Under weak selection the phenotypic mean at migration‐selection balance also depends on M .  相似文献   

19.
Information processing in social insect networks   总被引:1,自引:0,他引:1  
JS Waters  JH Fewell 《PloS one》2012,7(7):e40337
Investigating local-scale interactions within a network makes it possible to test hypotheses about the mechanisms of global network connectivity and to ask whether there are general rules underlying network function across systems. Here we use motif analysis to determine whether the interactions within social insect colonies resemble the patterns exhibited by other animal associations or if they exhibit characteristics of biological regulatory systems. Colonies exhibit a predominance of feed-forward interaction motifs, in contrast to the densely interconnected clique patterns that characterize human interaction and animal social networks. The regulatory motif signature supports the hypothesis that social insect colonies are shaped by selection for network patterns that integrate colony functionality at the group rather than individual level, and demonstrates the utility of this approach for analysis of selection effects on complex systems across biological levels of organization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号