首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin is released from the islets of Langerhans in discrete pulses that are linked to synchronized oscillations of intracellular free calcium ([Ca2+]i). Associated with each synchronized oscillation is a propagating calcium wave mediated by Connexin36 (Cx36) gap junctions. A computational islet model predicted that waves emerge due to heterogeneity in β-cell function throughout the islet. To test this, we applied defined patterns of glucose stimulation across the islet using a microfluidic device and measured how these perturbations affect calcium wave propagation. We further investigated how gap junction coupling regulates spatiotemporal [Ca2+]i dynamics in the face of heterogeneous glucose stimulation. Calcium waves were found to originate in regions of the islet having elevated excitability, and this heterogeneity is an intrinsic property of islet β-cells. The extent of [Ca2+]i elevation across the islet in the presence of heterogeneity is gap-junction dependent, which reveals a glucose dependence of gap junction coupling. To better describe these observations, we had to modify the computational islet model to consider the electrochemical gradient between neighboring β-cells. These results reveal how the spatiotemporal [Ca2+]i dynamics of the islet depend on β-cell heterogeneity and cell-cell coupling, and are important for understanding the regulation of coordinated insulin release across the islet.  相似文献   

2.
Ca2+ may trigger apoptosis in β-cells. Hence, the control of intracellular Ca2+ may represent a potential approach to prevent β-cell apoptosis in diabetes. Our objective was to investigate the effect and mechanism of action of plasma membrane Ca2+-ATPase (PMCA) overexpression on Ca2+-regulated apoptosis in clonal β-cells. Clonal β-cells (BRIN-BD11) were examined for the effect of PMCA overexpression on cytosolic and mitochondrial [Ca2+] using a combination of aequorins with different Ca2+ affinities and on the ER and mitochondrial pathways of apoptosis. β-cell stimulation generated microdomains of high [Ca2+] in the cytosol and subcellular heterogeneities in [Ca2+] among mitochondria. Overexpression of PMCA decreased [Ca2+] in the cytosol, the ER, and the mitochondria and activated the IRE1α-XBP1s but inhibited the PRKR-like ER kinase-eIF2α and the ATF6-BiP pathways of the ER-unfolded protein response. Increased Bax/Bcl-2 expression ratio was observed in PMCA overexpressing β-cells. This was followed by Bax translocation to the mitochondria with subsequent cytochrome c release, opening of the permeability transition pore, and apoptosis. In conclusion, clonal β-cell stimulation generates microdomains of high [Ca2+] in the cytosol and subcellular heterogeneities in [Ca2+] among mitochondria. PMCA overexpression depletes intracellular [Ca2+] stores and, despite a decrease in mitochondrial [Ca2+], induces apoptosis through the mitochondrial pathway. These data open the way to new strategies to control cellular Ca2+ homeostasis that could decrease β-cell apoptosis in diabetes.  相似文献   

3.
Pancreatic islets of Langerhans regulate blood glucose homeostasis by the secretion of the hormone insulin. Like many neuroendocrine cells, the coupling between insulin-secreting β-cells in the islet is critical for the dynamics of hormone secretion. We have examined how this coupling architecture regulates the electrical dynamics that underlie insulin secretion by utilizing a microwell-based aggregation method to generate clusters of a β-cell line with defined sizes and dimensions. We measured the dynamics of free-calcium activity ([Ca2+]i) and insulin secretion and compared these measurements with a percolating network model. We observed that the coupling dimension was critical for regulating [Ca2+]i dynamics and insulin secretion. Three-dimensional coupling led to size-invariant suppression of [Ca2+]i at low glucose and robust synchronized [Ca2+]i oscillations at elevated glucose, whereas two-dimensional coupling showed poor suppression and less robust synchronization, with significant size-dependence. The dimension- and size-scaling of [Ca2+]i at high and low glucose could be accurately described with the percolating network model, using similar network connectivity. As such this could explain the fundamentally different behavior and size-scaling observed under each coupling dimension. This study highlights the dependence of proper β-cell function on the coupling architecture that will be important for developing therapeutic treatments for diabetes such as islet transplantation techniques. Furthermore, this will be vital to gain a better understanding of the general features by which cellular interactions regulate coupled multicellular systems.  相似文献   

4.
Glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells requires an increase in intracellular free Ca2+ concentration ([Ca2+]). Glucose uptake into β-cells promotes Ca2+ influx and reactive oxygen species (ROS) generation. In other cell types, Ca2+ and ROS jointly induce Ca2+ release mediated by ryanodine receptor (RyR) channels. Therefore, we explored here if RyR-mediated Ca2+ release contributes to GSIS in β-cell islets isolated from male rats. Stimulatory glucose increased islet insulin secretion, and promoted ROS generation in islets and dissociated β-cells. Conventional PCR assays and immunostaining confirmed that β-cells express RyR2, the cardiac RyR isoform. Extended incubation of β-cell islets with inhibitory ryanodine suppressed GSIS; so did the antioxidant N-acetyl cysteine (NAC), which also decreased insulin secretion induced by glucose plus caffeine. Inhibitory ryanodine or NAC did not affect insulin secretion induced by glucose plus carbachol, which engages inositol 1,4,5-trisphosphate receptors. Incubation of islets with H2O2 in basal glucose increased insulin secretion 2-fold. Inhibitory ryanodine significantly decreased H2O2-stimulated insulin secretion and prevented the 4.5-fold increase of cytoplasmic [Ca2+] produced by incubation of dissociated β-cells with H2O2. Addition of stimulatory glucose or H2O2 (in basal glucose) to β-cells disaggregated from islets increased RyR2 S-glutathionylation to similar levels, measured by a proximity ligation assay; in contrast, NAC significantly reduced the RyR2 S-glutathionylation increase produced by stimulatory glucose. We propose that RyR2-mediated Ca2+ release, induced by the concomitant increases in [Ca2+] and ROS produced by stimulatory glucose, is an essential step in GSIS.  相似文献   

5.
Glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells is caused by Ca2+ entry via voltage-dependent Ca2+ channels. CaMKII is a key mediator and feedback regulator of Ca2+ signaling in many tissues, but its role in β-cells is poorly understood, especially in vivo. Here, we report that mice with conditional inhibition of CaMKII in β-cells show significantly impaired glucose tolerance due to decreased GSIS. Moreover, β-cell CaMKII inhibition dramatically exacerbates glucose intolerance following exposure to a high fat diet. The impairment of islet GSIS by β-cell CaMKII inhibition is not accompanied by changes in either glucose metabolism or the activities of KATP and voltage-gated potassium channels. However, glucose-stimulated Ca2+ entry via voltage-dependent Ca2+ channels is reduced in islet β-cells with CaMKII inhibition, as well as in primary wild-type β-cells treated with a peptide inhibitor of CaMKII. The levels of basal β-cell cytoplasmic Ca2+ and of endoplasmic reticulum Ca2+ stores are also decreased by CaMKII inhibition. In addition, CaMKII inhibition suppresses glucose-stimulated action potential firing frequency. These results reveal that CaMKII is a Ca2+ sensor with a key role as a feed-forward stimulator of β-cell Ca2+ signals that enhance GSIS under physiological and pathological conditions.  相似文献   

6.
The role of the free fatty acid (FFA) receptor and the intracellular metabolites of linoleic acid (LA) in LA-stimulated increase in cytosolic free calcium concentration ([Ca2+]i) was investigated. [Ca2+]i was measured using Fura-2 as indicator in rat pancreatic β-cells in primary culture. LA (20 µM for 2 min) stimulated a transient peak increase followed by a minor plateau increase in [Ca2+]i. Elongation of LA stimulation up to 10 min induced a strong and long-lasting elevation in [Ca2+]i. Activation of FFA receptors by the non-metabolic agonist GW9508 (40 µM for 10 min) resulted in an increase in [Ca2+]i similar to that of 2-min LA treatment. Inhibition of acyl-CoA synthetases by Triacsin C suppressed the strong and long-lasting increase in [Ca2+]i. The increase in [Ca2+]i induced by 2 min LA or GW9508 were fully eliminated by exhaustion of endoplasmic reticulum (ER) Ca2+ stores or by inhibition of phospholipase C (PLC). Removal of extracellular Ca2+ did not influence the transient peak increase in [Ca2+]i stimulated by 2 min LA or GW9508. The strong and long-lasting increase in [Ca2+]i induced by 10 min LA was only partially suppressed by extracellular Ca2+ removal or thapsigargin pretreatment, whereas remaining elevation in [Ca2+]i was eliminated after exhaustion of mitochondrial Ca2+ using triphenyltin. In conclusion, LA stimulates Ca2+ release from ER through activation of the FFA receptor coupled to PLC and mobilizes mitochondrial Ca2+ by intracellular metabolites in β-cells.  相似文献   

7.
β-cells in the pancreatic islet respond to elevated plasma glucose by secreting insulin to maintain glucose homeostasis. In addition to glucose stimulation, insulin secretion is modulated by numerous G-protein coupled receptors (GPCRs). The GPCR ligands Kisspeptin-10 (KP) and glucagon-like peptide-1 (GLP-1) potentiate insulin secretion through Gq and Gs-coupled receptors, respectively. Despite many studies, the signaling mechanisms by which KP and GLP-1 potentiate insulin release are not thoroughly understood. We investigated the downstream signaling pathways of these ligands and their affects on cellular redox potential, intracellular calcium activity ([Ca2+]i), and insulin secretion from β-cells within intact murine islets. In contrast to previous studies performed on single β-cells, neither KP nor GLP-1 affect [Ca2+]i upon stimulation with glucose. KP significantly increases the cellular redox potential, while no effect is observed with GLP-1, suggesting that KP and GLP-1 potentiate insulin secretion through different mechanisms. Co-treatment with KP and the Gβγ-subunit inhibitor gallein inhibits insulin secretion similar to that observed with gallein alone, while co-treatment with gallein and GLP-1 does not differ from GLP-1 alone. In contrast, co-treatment with the Gβγ activator mSIRK and either KP or GLP-1 stimulates insulin release similar to mSIRK alone. Neither gallein nor mSIRK alter [Ca2+]i activity in the presence of KP or GLP-1. These data suggest that KP likely alters insulin secretion through a Gβγ-dependent process that stimulates glucose metabolism without altering Ca2+ activity, while GLP-1 does so, at least partly, through a Gα-dependent pathway that is independent of both metabolism and Ca2+.  相似文献   

8.
The mechanisms of glucagon secretion and its suppression by glucose are presently unknown. This study investigates the relationship between intracellular calcium levels ([Ca2+]i) and hormone secretion under low and high glucose conditions. We examined the effects of modulating ion channel activities on [Ca2+]i and hormone secretion from ex vivo mouse pancreatic islets. Glucagon-secreting α-cells were unambiguously identified by cell specific expression of fluorescent proteins. We found that activation of L-type voltage-gated calcium channels is critical for α-cell calcium oscillations and glucagon secretion at low glucose levels. Calcium channel activation depends on KATP channel activity but not on tetrodotoxin-sensitive Na+ channels. The use of glucagon secretagogues reveals a positive correlation between α-cell [Ca2+]i and secretion at low glucose levels. Glucose elevation suppresses glucagon secretion even after treatment with secretagogues. Importantly, this inhibition is not mediated by KATP channel activity or reduction in α-cell [Ca2+]i. Our results demonstrate that glucose uncouples the positive relationship between [Ca2+]i and secretory activity. We conclude that glucose suppression of glucagon secretion is not mediated by inactivation of calcium channels, but instead, it requires a calcium-independent inhibitory pathway.  相似文献   

9.
Islet non-β-cells, the α- δ- and pancreatic polypeptide cells (PP-cells), are important components of islet architecture and intercellular communication. In α-cells, glucagon is found in electron-dense granules; granule exocytosis is calcium-dependent via P/Q-type Ca2+-channels, which may be clustered at designated cell membrane sites. Somatostatin-containing δ-cells are neuron-like, creating a network for intra-islet communication. Somatostatin 1-28 and 1-14 have a short bioactive half-life, suggesting inhibitory action via paracrine signaling. PP-cells are the most infrequent islet cell type. The embryologically separate ventral pancreas anlage contains PP-rich islets that are morphologically diffuse and α-cell deficient. Tissue samples taken from the head region are unlikely to be representative of the whole pancreas. PP has anorexic effects on gastro-intestinal function and alters insulin and glucagon secretion. Islet architecture is disrupted in rodent diabetic models, diabetic primates and human Type 1 and Type 2 diabetes, with an increased α-cell population and relocation of non-β-cells to central areas of the islet. In diabetes, the transdifferentiation of non-β-cells, with changes in hormone content, suggests plasticity of islet cells but cellular function may be compromised. Understanding how diabetes-related disordered islet structure influences intra-islet cellular communication could clarify how non-β-cells contribute to the control of islet function.  相似文献   

10.
The cytoplasmic concentrations of Cl([Cl]i) and Ca2+ ([Ca2+]i) were measured with the fluorescent indicators N-(ethoxycarbonylmethyl)-6-methoxyquinilinum bromide (MQAE) and fura-2 in pancreatic β-cells isolated from ob/ob mice. Steady-state [Cl]i in unstimulated β-cells was 34 mM, which is higher than expected from a passive distribution. Increase of the glucose concentration from 3 to 20 mM resulted in an accelerated entry of Cl into β-cells depleted of this ion. The exposure to 20 mM glucose did not affect steady-state [Cl]i either in the absence or presence of furosemide inhibition of Na+, K+, 2 Cl co-transport. Glucose-induced oscillations of [Ca2+]i were transformed into sustained elevation in the presence of 4,4′ diisothiocyanato-dihydrostilbene-2,2′-disulfonic acid (H2DIDS). A similar effect was noted when replacing 25% of extracellular Cl with the more easily permeating anions SCN, I, NO3 or Br. It is concluded that glucose stimulation of the β-cells is coupled to an increase in their Cl permeability and that the oscillatory Ca2+ signalling is critically dependent on transmembrane Cl fluxes.  相似文献   

11.
A novel calcium-dependent potassium current (Kslow) that slowly activates in response to a simulated islet burst was identified recently in mouse pancreatic β-cells (Göpel, S.O., T. Kanno, S. Barg, L. Eliasson, J. Galvanovskis, E. Renström, and P. Rorsman. 1999. J. Gen. Physiol. 114:759–769). Kslow activation may help terminate the cyclic bursts of Ca2+-dependent action potentials that drive Ca2+ influx and insulin secretion in β-cells. Here, we report that when [Ca2+]i handling was disrupted by blocking Ca2+ uptake into the ER with two separate agents reported to block the sarco/endoplasmic calcium ATPase (SERCA), thapsigargin (1–5 μM) or insulin (200 nM), Kslow was transiently potentiated and then inhibited. Kslow amplitude could also be inhibited by increasing extracellular glucose concentration from 5 to 10 mM. The biphasic modulation of Kslow by SERCA blockers could not be explained by a minimal mathematical model in which [Ca2+]i is divided between two compartments, the cytosol and the ER, and Kslow activation mirrors changes in cytosolic calcium induced by the burst protocol. However, the experimental findings were reproduced by a model in which Kslow activation is mediated by a localized pool of [Ca2+] in a subspace located between the ER and the plasma membrane. In this model, the subspace [Ca2+] follows changes in cytosolic [Ca2+] but with a gradient that reflects Ca2+ efflux from the ER. Slow modulation of this gradient as the ER empties and fills may enhance the role of Kslow and [Ca2+] handling in influencing β-cell electrical activity and insulin secretion.  相似文献   

12.
Nutrient-induced increases in intracellular free Ca2+ concentrations are the key trigger for insulin release from pancreatic islet β-cells. These Ca2+ changes are tightly regulated temporally, occurring as Ca2+ influx-dependent baseline oscillations. We explore here the concept that locally high [Ca2+] concentrations (i.e. Ca2+ microdomains) may control exocytosis via the recruitment of key effector proteins to sites of exocytosis. Importantly, recent advances in the development of organelle- and membrane-targeted green fluorescent protein (GFP-) or aequorin-based Ca2+ indicators, as well as in rapid imaging techniques, are providing new insights into the potential role of these Ca2+ microdomains in β-cells. We summarise here some of the evidence indicating that Ca2+ microdomains beneath the plasma membrane and at the surface of large dense core vesicles may be important in the normal regulation of insulin secretion, and may conceivably contribute to “ATP-sensitive K+-channel independent” effects of glucose. We also discuss evidence that, in contrast to certain non-excitable cells, direct transfer of Ca2+ from the ER to mitochondria via localised physical contacts between these organelles is relatively less important for efficient mitochondrial Ca2+ uptake in β-cells. Finally, we discuss evidence from single cell imaging that increases in cytosolic Ca2+ are not required for the upstroke of oscillations in mitochondrial redox state, but may underlie the reoxidation process.  相似文献   

13.
Glucose is a primary stimulator of insulin secretion in pancreatic β-cells. High concentration of glucose has been thought to exert its action solely through its metabolism. In this regard, we have recently reported that glucose also activates a cell-surface glucose-sensing receptor and facilitates its own metabolism. In the present study, we investigated whether glucose activates the glucose-sensing receptor and elicits receptor-mediated rapid actions. In MIN6 cells and isolated mouse β-cells, glucose induced triphasic changes in cytoplasmic Ca2+ concentration ([Ca2+]c); glucose evoked an immediate elevation of [Ca2+]c, which was followed by a decrease in [Ca2+]c, and after a certain lag period it induced large oscillatory elevations of [Ca2+]c. Initial rapid peak and subsequent reduction of [Ca2+]c were independent of glucose metabolism and reproduced by a nonmetabolizable glucose analogue. These signals were also blocked by an inhibitor of T1R3, a subunit of the glucose-sensing receptor, and by deletion of the T1R3 gene. Besides Ca2+, glucose also induced an immediate and sustained elevation of intracellular cAMP ([cAMP]c). The elevation of [cAMP]c was blocked by transduction of the dominant-negative Gs, and deletion of the T1R3 gene. These results indicate that glucose induces rapid changes in [Ca2+]c and [cAMP]c by activating the cell-surface glucose-sensing receptor. Hence, glucose generates rapid intracellular signals by activating the cell-surface receptor.  相似文献   

14.
Mitochondrial Ca2+ uptake exerts dual effects on mitochondria. Ca2+ accumulation in the mitochondrial matrix dissipates membrane potential (ΔΨm), but Ca2+ binding of the intramitochondrial enzymes accelerates oxidative phosphorylation, leading to mitochondrial hyperpolarization. The levels of matrix free Ca2+ ([Ca2+]m) that trigger these metabolic responses in mitochondria in nerve terminals have not been determined. Here, we estimated [Ca2+]m in motor neuron terminals of Drosophila larvae using two methods: the relative responses of two chemical Ca2+ indicators with a 20-fold difference in Ca2+ affinity (rhod-FF and rhod-5N), and the response of a low-affinity, genetically encoded ratiometric Ca2+ indicator (D4cpv) calibrated against known Ca2+ levels. Matrix pH (pHm) and ΔΨm were monitored using ratiometric pericam and tetramethylrhodamine ethyl ester probe, respectively, to determine when mitochondrial energy metabolism was elevated. At rest, [Ca2+]m was 0.22 ± 0.04 μM, but it rose to ∼26 μM (24.3 ± 3.4 μM with rhod-FF/rhod-5N and 27.0 ± 2.6 μM with D4cpv) when the axon fired close to its endogenous frequency for only 2 s. This elevation in [Ca2+]m coincided with a rapid elevation in pHm and was followed by an after-stimulus ΔΨm hyperpolarization. However, pHm decreased and no ΔΨm hyperpolarization was observed in response to lower levels of [Ca2+]m, up to 13.1 μM. These data indicate that surprisingly high levels of [Ca2+]m are required to stimulate presynaptic mitochondrial energy metabolism.  相似文献   

15.
Intracellular calcium concentration ([Ca2+]i) plays an important role in regulating most cellular processes, including apoptosis and survival, but its alterations are different and complicated under diverse conditions. In this study, we focused on the [Ca2+]i and its control mechanisms in process of hydrogen peroxide (H2O2)-induced apoptosis of primary cultured Sprague-Dawley (SD) rat retinal cells and 17β-estradiol (βE2) anti-apoptosis. Fluo-3AM was used as a Ca2+ indicator to detect [Ca2+]i through fluorescence-activated cell sorting (FACS), cell viability was assayed using MTT assay, and apoptosis was marked by Hoechst 33342 and annexin V/Propidium Iodide staining. Besides, PI3K activity was detected by Western blotting. Results showed: a) 100 μM H2O2-induced retinal cell apoptosis occurred at 4 h after H2O2 stress and increased in a time-dependent manner, but [Ca2+]i increased earlier at 2 h, sustained to 12 h, and then recovered at 24 h after H2O2 stress; b) 10 μM βE2 treatment for 0.5-24 hrs increased cell viability by transiently increasing [Ca2+]i, which appeared only at 0.5 h after βE2 application; c) increased [Ca2+]i under 100 µM H2O2 treatment for 2 hrs or 10 µM βE2 treatment for 0.5 hrs was, at least partly, due to extracellular Ca2+ stores; d) importantly, the transiently increased [Ca2+]i induced by 10 µM βE2 treatment for 0.5 hrs was mediated by the phosphatidylinositol-3-kinase (PI3K) and gated by the L-type voltage-gated Ca2+ channels (L-VGCC), but the increased [Ca2+]i induced by 100 µM H2O2 treatment for 2 hrs was not affected; and e) pretreatment with 10 µM βE2 for 0.5 hrs effectively protected retinal cells from apoptosis induced by 100 µM H2O2, which was also associated with its transient [Ca2+]i increase through L-VGCC and PI3K pathway. These findings will lead to better understanding of the mechanisms of βE2-mediated retinal protection and to exploration of the novel therapeutic strategies for retina degeneration.  相似文献   

16.
We reported previously that islets isolated from individual, outbred Swiss-Webster mice displayed oscillations in intracellular calcium ([Ca2+]i) that varied little between islets of a single mouse but considerably between mice, a phenomenon we termed “islet imprinting.” We have now confirmed and extended these findings in several respects. First, imprinting occurs in both inbred (C57BL/6J) as well as outbred mouse strains (Swiss-Webster; CD1). Second, imprinting was observed in NAD(P)H oscillations, indicating a metabolic component. Further, short-term exposure to a glucose-free solution, which transiently silenced [Ca2+]i oscillations, reset the oscillatory patterns to a higher frequency. This suggests a key role for glucose metabolism in maintaining imprinting, as transiently suppressing the oscillations with diazoxide, a KATP-channel opener that blocks [Ca2+]i influx downstream of glucose metabolism, did not change the imprinted patterns. Third, imprinting was not as readily observed at the level of single beta cells, as the [Ca2+]i oscillations of single cells isolated from imprinted islets exhibited highly variable, and typically slower [Ca2+]i oscillations. Lastly, to test whether the imprinted [Ca2+]i patterns were of functional significance, a novel microchip platform was used to monitor insulin release from multiple islets in real time. Insulin release patterns correlated closely with [Ca2+]i oscillations and showed significant mouse-to-mouse differences, indicating imprinting. These results indicate that islet imprinting is a general feature of islets and is likely to be of physiological significance. While islet imprinting did not depend on the genetic background of the mice, glucose metabolism and intact islet architecture may be important for the imprinting phenomenon.  相似文献   

17.
Interaction of the Alzheimer’s Aβ peptides with the plasma membrane of cells in culture results in chronic increases in cytosolic [Ca2+]. Such increases can cause a variety of secondary effects leading to impaired cell growth or cell degeneration. In this investigation, we made a comprehensive study of the changes in cytosolic [Ca2+] in single PC12 cells and human neurons stressed by continuous exposure to a medium containing Aβ42 for several days. The differential timing and magnitude of the Aβ42-induced increase in [Ca2+] reveal subpopulations of cells with differential sensitivity to Aβ42. These results suggest that the effect produced by Aβ on the level of cytosolic [Ca2+] depends on the type of cell being monitored. Moreover, the results obtained of using potent inhibitors of Aβ cation channels such as Zn2+ and the small peptide NA7 add further proof to the suggestion that the long-term increases in cytosolic [Ca2+] in cells stressed by continuous exposure to Aβ is the result of Aβ ion channel activity.  相似文献   

18.
 It is shown in this paper that electrical bursting and the oscillations in the intracellular calcium concentration, [Ca2+]i, observed in excitable cells such as pancreatic β-cells and R-15 cells of the mollusk Aplysia may be driven by a slow oscillation of the calcium concentration in the lumen of the endoplasmic reticulum, [Ca2+]lum. This hypothesis follows from the inclusion of the dynamic changes of [Ca2+]lum in the Chay bursting model. This extended model provides answers to some puzzling phenomena, such as why isolated single pancreatic β-cells burst with a low frequency while intact β-cells in an islet burst with a much higher frequency. Verification of the model prediction that [Ca2+]lum is a primary oscillator which drives electrical bursting and [Ca2+]i oscillations in these cells awaits experimental testing. Experiments using fluorescent dyes such as mag-fura-2-AM or aequorin could provide relevant information. Received: 17 August 1995/Accepted in revised form: 10 July 1996  相似文献   

19.
20.

Background

Glucagon like peptide-1 (GLP-1) and its analogue exendin-4 (Ex-4) enhance glucose stimulated insulin secretion (GSIS) and activate various signaling pathways in pancreatic β-cells, in particular cAMP, Ca2+ and protein kinase-B (PKB/Akt). In many cells these signals activate intermediary metabolism. However, it is not clear whether the acute amplification of GSIS by GLP-1 involves in part metabolic alterations and the production of metabolic coupling factors.

Methodology/Prinicipal Findings

GLP-1 or Ex-4 at high glucose caused release (∼20%) of the total rat islet insulin content over 1 h. While both GLP-1 and Ex-4 markedly potentiated GSIS in isolated rat and mouse islets, neither had an effect on β-cell fuel and energy metabolism over a 5 min to 3 h time period. GLP-1 activated PKB without changing glucose usage and oxidation, fatty acid oxidation, lipolysis or esterification into various lipids in rat islets. Ex-4 caused a rise in [Ca2+]i and cAMP but did not enhance energy utilization, as neither oxygen consumption nor mitochondrial ATP levels were altered.

Conclusions/Significance

The results indicate that GLP-1 barely affects β-cell intermediary metabolism and that metabolic signaling does not significantly contribute to GLP-1 potentiation of GSIS. The data also indicate that insulin secretion is a minor energy consuming process in the β-cell, and that the β-cell is different from most cell types in that its metabolic activation appears to be primarily governed by a “push” (fuel substrate driven) process, rather than a “pull” mechanism secondary to enhanced insulin release as well as to Ca2+, cAMP and PKB signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号