首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hexavalent chromium Cr(VI) is a well known human carcinogen. This genotoxic metal induces DNA strand breaks and chromosome damage. However, the relationship between these lesions is uncertain. Our study focused on examining the role of XRCC1 in sodium chromate-induced cytotoxicity and chromosomal aberrations in Chinese Hamster Ovary (CHO) cells. Three different cell lines were used: AA8 (parental), EM9 (XRCC1 mutant) and H9T3 (EM9 complemented with human XRCC1 gene). Results show that concentration-dependent decreases in relative survival are similar in all three cell lines, indicating that XRCC1 is not crucial for protecting cells from sodium chromate-induced cytotoxicity. Similarly the frequency of damaged metaphase cells was not affected by XRCC1 deficiency. However, the total number of Cr(VI)-induced chromosome aberrations was exacerbated by XRCC1 deficiency and the spectrum of chromosome damage changed dramatically. Specifically, chromatid and isochromatid lesions were the most prominent aberrations induced in the cell lines and XRCC1 was essential to reduce the formation of chromatid lesions. In addition, XRCC1 deficiency caused a dramatic increase in the number of chromatid exchanges indicating that it is involved in protection from Cr(VI)-induced chromosome instability.  相似文献   

2.
Particulate hexavalent chromium (Cr(VI)) is a known human lung carcinogen. Cr(VI)-induced tumors exhibit chromosome instability (CIN), but the mechanisms underlying these effects are unknown. We investigated a possible role for the Fanconi anemia (FA) pathway in particulate Cr(VI)-induced chromosomal damage by focusing on the Fancg gene, which plays an important role in cellular resistance to DNA interstrand crosslinks. We used the isogenic Chinese hamster ovary (CHO) KO40 fancg mutant compared with parental and gene-complemented cells. We found that fancg cells treated with lead chromate had lower intracellular Cr ion levels than control cell lines. Accounting for differences of Cr ion levels between cell lines, we discovered that fancg cells treated with lead chromate had increased cytotoxicity and chromosomal aberrations, which was not observed after restoring the Fancg gene. Chromosomal damage was manifest as increased total chromosome damage and percent metaphases with damage, specifically an increase in chromatid and isochromatid breaks. We conclude that Fancg protects cells from particulate Cr(VI)-induced cytotoxicity and chromosome damage, which is consistent with the known sensitivity of fancg cells to crosslinking damage and the ability of Cr(VI) to produce crosslinks.  相似文献   

3.
Bryant HE  Ying S  Helleday T 《Mutation research》2006,599(1-2):116-123
Chromium is a potent human carcinogen, probably because of its well-documented genotoxic effects. Chromate (Cr[VI]) causes a wide range of DNA lesions, including DNA crosslinks and strand breaks, presumably due to the direct and indirect effects of DNA oxidation. Homologous recombination repair (HRR) is important for error-free repair of lesions occurring at replication forks. Here, we show that HR deficient cell lines irs1SF and V-C8, deficient in XRCC3 and BRCA2, respectively, are hypersensitive to Cr[VI], implicating this repair pathway in repair of Cr[VI] damage. Furthermore, we find that Cr[VI] causes DNA double-strand breaks and triggers both Rad51 foci formation and induction of HRR. Collectively, these data suggest that HRR is important in repair of Cr[VI]-induced DNA damage. In addition, we find that ERCC1, XRCC1 and DNA-PKcs defective cells are hypersensitive to Cr[VI], indicating that several repair pathways cooperate in repairing Cr[VI]-induced DNA damage.  相似文献   

4.
Griffin CS 《Mutation research》2002,504(1-2):149-155
Chromosome instability and loss or gain of chromosomes are changes characteristic of many tumour cells and human disorders. However, the mechanism of these changes has not yet been fully determined. We have recently shown that hamster cell lines deficient in homologous recombination repair (HRR) genes XRCC2 and XRCC3 have an elevated frequency of aneuploidy compared with wild-type cells and mutant cells transfected with the appropriate human gene. In addition, XRCC2 and XRCC3 deficient hamster cell lines show a high frequency of multiple centrosomes and abnormal spindle formation. Cells deficient in HRR show a high frequency of both chromosome-type and chromatid-type aberrations, which could potentially lead to mis-segregation. The role of chromosome aberrations and other factors, including chromosome lagging, premature chromatid separation, and centrosome malfunctioning on chromosome mis-segregation in irs1 and irs1SF cells have been investigated. In particular, the linkage of DNA repair proteins with centrosomes suggests a key role for the centrosome in controlling cellular repair processes.  相似文献   

5.
The induction of chromosomal aberrations and sister chromatid exchanges by BPDE was evaluated in parental and different DNA repair deficient Chinese hamster ovary cell lines in order to elucidate the mechanisms involved in their induction. These included the parental line (AA8), nucleotide excision repair (UV4, UV5, UV61), base excision repair (EM9), homologous recombination repair (Irs1SF) and non-homologous end joining (V3-3) deficient ones. The ranking of different cell lines for BPDE-induced chromosome aberrations was: UV4, Irs1SF, UV5, UV 61, EM9, V3-3, and AA8 in a descending order. Cells deficient in NER and HRR were found to be very sensitive, indicating the importance of these pathways in the repair of lesions induced by BPDE. For induction of SCEs, HRR and BER deficient cells were refractory, whereas the other cell lines responded with a dose-dependent increase. The possible mechanisms involved in BPDE-induced chromosomal alterations are discussed.  相似文献   

6.
Telomeres protect the chromosome ends and consist of guanine-rich repeats coated by specialized proteins. Critically short telomeres are associated with disease, aging and cancer. Defects in telomere replication can lead to telomere loss, which can be prevented by telomerase-mediated telomere elongation or activities of the Werner syndrome helicase/exonuclease protein (WRN). Both telomerase and WRN attenuate cytotoxicity induced by the environmental carcinogen hexavalent chromium (Cr(VI)), which promotes replication stress and DNA polymerase arrest. However, it is not known whether Cr(VI)-induced replication stress impacts telomere integrity. Here we report that Cr(VI) exposure of human fibroblasts induced telomeric damage as indicated by phosphorylated H2AX (γH2AX) at telomeric foci. The induced γH2AX foci occurred in S-phase cells, which is indicative of replication fork stalling or collapse. Telomere fluorescence in situ hybridization (FISH) of metaphase chromosomes revealed that Cr(VI) exposure induced an increase in telomere loss and sister chromatid fusions that were rescued by telomerase activity. Human cells depleted for WRN protein exhibited a delayed reduction in telomeric and non-telomeric damage, indicated by γH2AX foci, during recovery from Cr(VI) exposure, consistent with WRN roles in repairing damaged replication forks. Telomere FISH of chromosome spreads revealed that WRN protects against Cr(VI)-induced telomere loss and downstream chromosome fusions, but does not prevent chromosome fusions that retain telomere sequence at the fusion point. Our studies indicate that environmentally induced replication stress leads to telomere loss and aberrations that are suppressed by telomerase-mediated telomere elongation or WRN functions in replication fork restoration.  相似文献   

7.
Hexavalent chromium (Cr(VI)) is a widespread environmental contaminant and a known human carcinogen, generally causing bronchial cancer. Recent studies have shown that the particulate forms of Cr(VI) are the potent carcinogens. Particulate Cr(VI) is known to induce a spectrum of DNA damage such as DNA single strand breaks, Cr-DNA adducts, DNA-protein crosslinks and chromosomal aberrations. However, particulate Cr(VI)-induced DNA double strand breaks (DSBs) have not been reported. Thus, the aim of this study was to determine if particulate Cr(VI)-induces DSBs in human bronchial cells. Using the single cell gel electrophoresis assay (comet assay), showed that lead chromate-induced concentration dependent increases in DSBs with 0.1, 0.5, 1 and 5 microg/cm2 lead chromate inducing a 20, 50, 67 and 109% relative increase in the tail integrated intensity ratio, respectively. Sodium chromate at concentrations of 1, 2.5 and 5 microM induced 38, 78 and 107% relative increase in the tail integrated intensity ratio, respectively. We also show that genotoxic concentrations of lead chromate activate the ataxia telangiectasia mutated (ATM) protein, which is thought to play a central role in the early stages of DSB detection and controls cellular responses to this damage. The H2A.X protein becomes rapidly phosphorylated on residue serine 139 in cells when DSBs are introduced into the DNA by ionizing radiation. By using immunofluorescence, we found that lead chromate-induced concentration-dependent increases in phosphorylated H2A.X (r-H2A.X) foci formation with 0.1, 0.5, 1, 5 and 10 microg/cm2 lead chromate inducing a relative increase in the number of cells with r-H2A.X foci formation of 43, 51, 115 and 129%, respectively.  相似文献   

8.
Carcinogenic chromates induce DNA single-strand breaks (SSB) that are detectable by conventional alkali-based assays. However, the extent of direct breakage has been uncertain because excision repair and hydrolysis of Cr-DNA adducts at alkaline pH also generate SSB. We examined mechanisms of SSB production during chromate reduction by glutathione (GSH) and assessed the significance of these lesions in cells using genetic approaches. Cr(VI) reduction was biphasic and the formation of SSB occurred exclusively during the slow reaction phase. Catalase or iron chelators completely blocked DNA breakage, as did the use of GSH purified by a modified Chelex procedure. Thus, the direct intermediates of GSH-chromate reactions were unable to cause SSB unless activated by H2O2. SSB repair-deficient XRCC1(-/-) and proficient XRCC1+ EM9 cells had identical survival at doses causing up to 60% clonogenic death and accumulation of 1 mM Cr(VI). However, XRCC1(-/-) cells displayed higher lethality in the more toxic range and the depletion of GSH made them hypersensitive even to moderate doses. Elevation of cellular catalase or GSH levels eliminated survival differences between XRCC1(-/-) and XRCC1+ cells. In summary, formation of toxic SSB in cells occurs at relatively high chromate doses, requires H2O2, and is suppressed by high GSH concentrations.  相似文献   

9.
The human gene that corrects the DNA repair defect of the CHO cell mutant EM9 is designated XRCC1 and is the first human gene to be cloned that has an established role in DNA strand-break repair. In this study, either an XRCC1 cosmid genomic fragment or synthetic oligonucleotides were ligated to an incomplete XRCC1 cDNA to generate two full-length XRCC1 cDNA constructs. The ability of these minigene constructs to restore normal levels of sister chromatid exchange (SCE) to EM9 upon transfection was demonstrated, and the transfectants grew at normal rates in selective medium that is fully toxic to EM9 cells. Constructs in which the XRCC1 open reading frame (ORF) was transcribed from the SV40 early promoter or the genomic XRCC1 native promoter were compared in their efficiency of correction. EM9 transfectants derived from the SV40 promoter displayed fewer SCEs and lower sensitivity to CldUrd than either AA8 wild-type cells or transfectants containing the ORF transcribed from the native promoter.  相似文献   

10.
We evaluated the genotoxicity of the food-flavouring agent estragole in V79 cells using the sister chromatid exchange (SCE) assay and the alkaline comet assay. Unexpectedly, we observed an increase in SCE without an exogenous biotransformation system (S9) and a decrease in its presence. Positive results were also observed in the alkaline comet assay without S9, indicating DNA strand breakage. To ascertain repair of damage, we performed the comet assay in V79 cells after two hours of recovery, and observed a reduction of the genotoxic response. Estragole did not produce strand breaks in plasmid DNA in vitro. We then evaluated the formation of DNA adducts in V79 cells by use of the (32)P-postlabelling assay and detected a dose-dependent formation of DNA adducts, which may be responsible for its genotoxicity. We then assayed estragole in the comet assay with two CHO cell lines, a parental AA8 cell line, and an XRCC1-deficient cell line, EM9. Results confirmed the genotoxicity of estragole without biotransformation in both cell lines, although the genotoxicity in EM9 cells compared with that in AA8 cells was not significantly different, suggesting that the XRCC1 protein is not involved in the repair of estragole-induced lesions. Estragole induces apoptosis, but only with high doses (2000μM), and after long treatment periods (24h). Overall, our results suggest that estragole, besides being metabolized to genotoxic metabolites, is a weak direct-acting genotoxin that forms DNA adducts.  相似文献   

11.
The contribution of three single nucleotide polymorphisms (SNPs) that substitute amino acids in the X-ray repair cross-complementing gene 1 (XRCC1) protein, Arg194Trp (R194W), Arg280His (R280H), and Arg399Gln (R399Q), to the risk of various types of cancers has been extensively investigated by epidemiological researches. To investigate whether two of these polymorphisms directly influence their repair ability, we established Chinese hamster ovary (CHO) EM9 cell lines transfected with XRCC1(WT), XRCC1(R194W), or XRCC1(R280H) genes and analyzed the DNA repair ability of these cells. The EM9 cells that lack functional XRCC1 proteins exhibit severe sensitivity to methyl methanesulfonate (MMS). Introduction of the human XRCC1(WT) and XRCC1(R194W) gene to EM9 cells restored the MMS sensitivity to the same level as the AA8 cells, a parental cell line. However, introduction of the XRCC1(R280H) gene partially restored the MMS sensitivity, resulting in a 1.7- to 1.9-fold higher sensitivity to MMS compared with XRCC1(WT) and XRCC1(R194W) cells at the LD(50) value. The alkaline comet assay determined diminished base excision repair/single strand break repair (BER/SSBR) efficiency in XRCC1(R280H) cells as observed in EM9 cells. In addition, the amount of intracellular NAD(P)H decreased in XRCC1(R280H) cells after MMS treatment. Indirect immunofluorescence staining of the XRCC1 protein showed an intense increase in the signals and clear foci of XRCC1 in the nuclei of the XRCC1(WT) cells, but a faint increase in the XRCC1(R280H) cells, after MMS exposure. These results suggest that the XRCC1(R280H) variant protein is defective in its efficient localization to a damaged site in the chromosome, thereby reducing the cellular BER/SSBR efficiency.  相似文献   

12.
XRCC1, the human gene that fully corrects the Chinese hamster ovary DNA repair mutant EM9, encodes a protein involved in the rejoining of DNA single-strand breaks that arise following treatment with alkylating agents or ionizing radiation. In this study, a cDNA minigene encoding oligohistidine-tagged XRCC1 was constructed to facilitate affinity purification of the recombinant protein. This construct, designated pcD2EHX, fully corrected the EM9 phenotype of high sister chromatid exchange, indicating that the histidine tag was not detrimental to XRCC1 activity. Affinity chromatography of extract from EM9 cells transfected with pcD2EHX resulted in the copurification of histidine-tagged XRCC1 and DNA ligase III activity. Neither XRCC1 or DNA ligase III activity was purified during affinity chromatography of extract from EM9 cells transfected with pcD2EX, a cDNA minigene that encodes untagged XRCC1, or extract from wild-type AA8 or untransfected EM9 cells. The copurification of DNA ligase III activity with histidine-tagged XRCC1 suggests that the two proteins are present in the cell as a complex. Furthermore, DNA ligase III activity was present at lower levels in EM9 cells than in AA8 cells and was returned to normal levels in EM9 cells transfected with pcD2EHX or pcD2EX. These findings indicate that XRCC1 is required for normal levels of DNA ligase III activity, and they implicate a major role for this DNA ligase in DNA base excision repair in mammalian cells.  相似文献   

13.
In this study we directly compared soluble and particulate chromate cytotoxicity and genotoxicity in human (Homo sapiens) and sea lion (Eumetopias jubatus) lung fibroblasts. Our results show that hexavalent chromium induces increased cell death and chromosome damage in both human and sea lion cells with increasing intracellular chromium ion levels. The data further indicate that both sodium chromate and lead chromate are less cytotoxic and genotoxic to sea lion cells than human cells, based on an administered dose. Differences in chromium ion uptake explained some but not all of the reduced amounts of sodium chromate-induced cell death. By contrast, uptake differences could explain the differences in sodium chromate-induced chromosome damage and particulate chromate-induced toxicity. Altogether they indicate that while hexavalent chromium induces similar toxic effects in sea lion and human cells, there are different mechanisms underlying the toxic outcomes.  相似文献   

14.
Several studies have demonstrated that zinc is required for the optimal functioning of the skin. Changes in intracellular zinc concentrations have been associated with both improved protection of skin cells against various noxious factors as well as with increased susceptibility to external stress. Still, little is known about the role of intracellular zinc in hexavalent chromium (Cr(VI))-induced skin injury. To address this question, the effects of zinc deficiency or supplementation on Cr(VI)-induced cytotoxicity, oxidative stress, DNA injury and cell death were investigated in human diploid dermal fibroblasts during 48 h. Zinc levels in fibroblasts were manipulated by pretreatment of cells with 100 microM ZnSO4 and 4 or 25 microM zinc chelator TPEN. Cr(VI) (50, 10 and 1 microM) was found to produce time- and dose-dependent cytotoxicity resulting in oxidative stress, suppression of antioxidant systems and activation of p53-dependent apoptosis which is reported for the first time in this model in relation to environmental Cr(VI). Increased intracellular zinc partially attenuated Cr(VI)-induced cytotoxicity, oxidative stress and apoptosis by enhancing cellular antioxidant systems while inhibiting Cr(VI)-dependent apoptosis by preventing the activation of caspase-3. Decreased intracellular zinc enhanced cytotoxic effects of all the tested Cr(VI) concentrations, leading to rapid loss of cell membrane integrity and nuclear dispersion--hallmarks of necrosis. These new findings suggest that Cr(VI) as a model environmental toxin may damage in deeper regions residing skin fibroblasts whose susceptibility to such toxin depends among others on their intracellular Zn levels. Further investigation of the impact of Zn status on skin cells as well as any other cell populations exposed to Cr(VI) or other heavy metals is warranted.  相似文献   

15.
Bloom's syndrome (BS) and EM9 cells both display elevated frequencies of sister chromatid exchange (SCE) following growth for two rounds of DNA replication in bromodeoxyuridine (BrdU)-containing medium. To learn whether hyperresponsiveness to BrdU itself might play a role in causing the SCE elevation, the effects of BrdU on two other parameters, cellular proliferation and chromosome disruption, were examined, comparing the responses of BS and normal lymphoblastoid cells and of EM9 and CHO cells. BS and normal cells responded similarly with respect to growth for 4 days in BrdU-containing medium (0, 1, 3, and 5 g/ml). Chromosome aberrrations were increased only slightly in the BS and normal cells after 2 days in BrdU. CHO cells responded to growth in BrdU-containing medium like BS and normal cells; however, little growth of EM9 was detected at any of the BrdU concentrations employed. CHO and EM9 cells also exhibited strikingly different amounts of chromosome damage following growth in BrdU. After 2 days in 1, 3, and 5 g/ml BrdU 21%, 46%, and 50%, respectively, of the CHO cells had chromosome aberrations in contrast to 92%, 96%, and 98% of the EM9 cells. Most of the aberrations in the BrdU-treated CHO cells consisted of what appeared to be polycentric and ring chromosomes or chromosomes exhibiting telomere association. Acentric fragments were absent from most cells with polycentric and ring chromosomes, indicating either that the abnormal chromosomes were formed during an earlier cell cycle or that the abnormal chromosomes represent a form of association in which the telomeres are apposed so tightly that the juncture between chromosomes cannot be identified microscopically. EM9 cells treated with BrdU exhibited many chromatid and isochromatid gaps and breaks as well as numerous quadriradial, triradial, and complex interchange configurations. In addition, the types of aberrations present in CHO cells also were increased greatly in number. The different responses of BS and EM9 cells to growth in BrdU suggest that the molecular defects in the two cell types are different.  相似文献   

16.
Wise JP  Wise SS  Little JE 《Mutation research》2002,517(1-2):221-229
Hexavalent chromium (Cr(VI)) is a human lung carcinogen. Cr(VI) is a particularly important and dangerous carcinogen, because there is widespread exposure to it both occupationally and to the general public. However, despite the potential for widespread exposure and the fact that the lung is its target organ, there are few reports of the genotoxicity of Cr(VI) in human lung cells. Clearly, in order to better understand this carcinogen, its effects in its target cells need to be evaluated. Accordingly, we determined the cytotoxicity and clastogenicity of both particulate (water-insoluble) and soluble Cr(VI) in primary human bronchial fibroblasts (PHBFs). We used lead chromate (PbCrO(4)) and sodium chromate (Na(2)CrO(4)) as prototypical particulate and soluble Cr(VI) salts, respectively. Both compounds induced concentration-dependent cytotoxicity after a 24h exposure in PHBFs. The relative survival was 87, 46, 26 and 2% after exposure to 0.1, 0.5, 1 and 5 microg/cm(2) PbCrO(4), respectively, and 74, 57, 13 and 0% after exposure to 1, 2.5, 5 and 10 microM Na(2)CrO(4), respectively. Similarly, the amount of chromosome damage increased with concentration after 24h exposure to both compounds. Specifically, 0.1, 0.5 and 1 microg/cm(2) PbCrO(4) damaged 15, 34 and 42% of metaphase cells with the total amount of damage reaching 18, 40 and 66 aberrations per 100 metaphases, respectively. PbCrO(4) (5 microg/cm(2)) induced such profound cell cycle delay that no metaphases were found. Na(2)CrO(4) (1 and 2.5 microM) damaged 18 and 33% of metaphase cells with the total amount of damage reaching 19 and 43 aberrations per 100 metaphases, respectively. Na(2)CrO(4) (5 and 10 microM) induced such profound cell cycle delay that no metaphases were found. Overall the data clearly indicate that Cr(VI) compounds are cytotoxic and genotoxic to human lung cells.  相似文献   

17.
DNA topoisomerase I (Top1) is converted into a cellular poison by camptothecin (CPT) and various endogenous and exogenous DNA lesions. In this study, we used X-ray repair complementation group 1 (XRCC1)-deficient and XRCC1-complemented EM9 cells to investigate the mechanism by which XRCC1 affects the cellular responses to Top1 cleavage complexes induced by CPT. XRCC1 complementation enhanced survival to CPT-induced DNA lesions produced independently of DNA replication. CPT-induced comparable levels of Top1 cleavage complexes (single-strand break (SSB) and DNA-protein cross-links (DPC)) in both XRCC1-deficient and XRCC1-complemented cells. However, XRCC1-complemented cells repaired Top1-induced DNA breaks faster than XRCC1-deficient cells, and exhibited enhanced tyrosyl DNA phosphodiesterase (Tdp1) and polynucleotide kinase phosphatase (PNKP) activities. XRCC1 immunoprecipitates contained Tdp1 polypeptide, and both Tdp1 and PNKP activities, indicating a functional connection between the XRCC1 single-strand break repair pathway and the repair of Top1 covalent complexes by Tdp1 and PNKP.  相似文献   

18.
Particulate hexavalent chromium (Cr(VI)) is a well-established human lung carcinogen. It is currently a major public health concern, there is widespread exposure to it in occupational settings and to the general public. However, despite the potential widespread exposure and the fact that the lung is its target organ, few studies have considered the toxic effects of particulate Cr(VI) in human lung cells. Accordingly, we used lead chromate as a model particulate Cr(VI) compound and determined its cytotoxicity and genotoxicity in cultured human bronchial epithelial cells, using BEP2D cells as a model cell line. We found that lead chromate induced concentration-dependent cytotoxicity in BEP2D cells after a 24 h exposure. Specifically, the relative survival was 78, 59, 53, 46 and 0% after exposure to 0.5, 1, 5, 10 and 50 μg/cm2 lead chromate, respectively. Similarly, the amount of chromosome damage increased with concentration after 24 h exposure to lead chromate. Specifically, 0.5, 1, 5 and 10 μg/cm2 damaged 10, 13, 20 and 28% of metaphase cells with the total amount of damage reaching 11, 15, 24 and 36 aberrations per 100 metaphases, respectively. Lead chromate (50 μg/cm2 lead chromate) induced profound cell cycle delay and no metaphases were found. In addition we investigated the effects of soluble hexavalent chromium, sodium chromate, in this cell line. We found that 1, 2.5, 5 and 10 μM sodium chromate induced 66, 35, 0 and 0% relative survival, respectively. The amount of chromosome damage increased with concentration after 24 h exposure to sodium chromate. Specifically, 1, 2.5 and 5 μM damaged 25, 34 and 41% of metaphase cells with the total amount of damage reaching 33, 59 and 70 aberrations per 100 metaphases, respectively. Ten micromolar sodium chromate induced profound cell cycle delay and no metaphases were found. Overall the data clearly indicate that hexavalent Cr(VI) is cytotoxic and genotoxic to human lung epithelial cells.  相似文献   

19.
The irs1 and irs1SF hamster cell lines are mutated for the XRCC2 and XRCC3 genes, respectively. Both show heightened sensitivity to ionizing radiation and particularly to the DNA cross-linking chemical mitomycin C (MMC). Frequencies of spontaneous chromosomal aberration have previously been reported to be higher in these two cell lines than in parental, wild-type cell lines. Microcell-mediated chromosome transfer was used to introduce complementing or non-complementing human chromosomes into each cell line. irs1 cells received human chromosome 7 (which contains the human XRCC2 gene) or, as a control, human chromosome 4. irs1SF cells received human chromosome 14 (which contains the XRCC3 gene) or human chromosome 7. For each set of hybrid cell lines, clones carrying the complementing human chromosome recovered MMC resistance to near-wild-type levels, while control clones carrying noncomplementing chromosomes remained sensitive to MMC. Fluorescence in situ hybridization with a human-specific probe revealed that the human chromosome in complemented clones remained intact in almost all cells even after extended passage. However, the human chromosome in noncomplemented clones frequently underwent chromosome rearrangements including breaks, deletions, and translocations. Chromosome aberrations accumulated slowly in the noncomplemented clones over subsequent passages, with some particular deletions and unbalanced translocations persistently transmitted throughout individual subclones. Our results indicate that the XRCC2 and XRCC3 genes, which are now considered members of the RAD51 gene family, play essential roles in maintaining chromosome stability during cell division. This may reflect roles in DNA repair, possibly via homologous recombination.  相似文献   

20.
Disruption of cell cycle checkpoints and interference with the normal cell cycle progression frequently result in cell death or malignant transformation. Hexavalent chromium [Cr(VI)] is a well-known carcinogen that has been implicated in the occurrence of many types of human malignancies, including lung cancer. However, the exact mechanism by which Cr(VI) causes malignant transformation in the lung remains unknown. We have demonstrated that chronic exposure to a noncytotoxic concentration of Cr(VI) induced a variety of chromosomal abnormalities, including premature sister chromatid separation, chromosomal breakage and the presence of lagging/misaligned chromosomes. After treatment with nocodazole, both HeLa and normal lung bronchial epithelial cells were arrested at mitosis. However, Cr(VI) significantly compromised M-phase arrest induced by nocodazole. Cr(VI) suppressed BubR1 activation and reduced expression of Emi1, leading to an unscheduled activation of APC/C. Consistent with this observation, Cr(VI) treatment caused enhanced polyubiquitination of geminin during mitotic release, while it deregulated the activity of Cdt1, a DNA replication licensing factor. Combined, these results suggest that Cr(VI)-induced chromosomal instability is partly due to a perturbation of APC/C activities, leading to chromosomal instability.Key words: chromium, checkpoint, chromosome instability, APC/C, BubR1, Emi1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号