首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xenopus egg extract provides an extremely powerful approach in the study of cell cycle regulated aspects of nuclear form and function. Each egg contains enough membrane and protein components to support multiple rounds of cell division. Remarkably, incubation of egg extract with DNA in the presence of an energy regeneration system is sufficient to induce formation of a nuclear envelope around DNA. In addition, these in vitro nuclei contain functional nuclear pore complexes, which form de novo and are capable of supporting nucleocytoplasmic transport. Mitotic entry can be induced by the addition of recombinant cyclin to an interphase extract. This initiates signaling that leads to disassembly of the nuclei. Thus, this cell-free system can be used to decipher events involved in mitotic remodeling of the nuclear envelope such as changes in nuclear pore permeability, dispersal of membrane, and disassembly of the lamina. Both general mechanisms and individual players required for orchestrating these events can be identified via biochemical manipulation of the egg extract. Here, we describe a procedure for the assembly and disassembly of in vitro nuclei, including the production of Xenopus egg extract and sperm chromatin DNA.  相似文献   

2.
Xenopus egg extract provides an extremely powerful approach in the study of cell cycle regulated aspects of nuclear form and function. Each egg contains enough membrane and protein components to support multiple rounds of cell division. Remarkably, incubation of egg extract with DNA in the presence of an energy regeneration system is sufficient to induce formation of a nuclear envelope around DNA. In addition, these in vitro nuclei contain functional nuclear pore complexes, which form de novo and are capable of supporting nucleocytoplasmic transport. Mitotic entry can be induced by the addition of recombinant cyclin to an interphase extract. This initiates signaling that leads to disassembly of the nuclei. Thus, this cell-free system can be used to decipher events involved in mitotic remodeling of the nuclear envelope such as changes in nuclear pore permeability, dispersal of membrane, and disassembly of the lamina. Both general mechanisms and individual players required for orchestrating these events can be identified via biochemical manipulation of the egg extract. Here, we describe a procedure for the assembly and disassembly of in vitro nuclei, including the production of Xenopus egg extract and sperm chromatin DNA.  相似文献   

3.
We describe a cell-free system in which a postribosomal supernatant from metaphase HeLa cells induces prophase-like changes in permeabilized HeLa cell populations as evidenced by the nuclear lamin disassembly and chromatin condensation. We have attempted to characterize the cell-free system with permeabilized HeLa cells. First, by extracting lamins with agents known to disrupt the noncovalent interactions in the supramolecular lamin aggregate in interphase using polyclonal and a newly established monoclonal anti-lamin Ab 2E3, uniform extraction of lamins was achieved with urea and deoxycholate whereas the cation Mg2+ and 2-mercaptoethanol had little effect on the disassembly of interphase lamins. Second, cytoplasmic extract from mitotic HeLa cells, synchronized by a nitrous oxide metaphase arrest, was tested. It had a differential effect on interphase lamin depolymerization. Nuclei in G1 phase of the cell cycle were more resistant against the mitotic extracts than cells in S and G2 phase. The results are discussed in terms of a possible inactivation of mitotic extracts by factors present in nuclei in early interphase.  相似文献   

4.
M Peter  J Nakagawa  M Dorée  J C Labbé  E A Nigg 《Cell》1990,61(4):591-602
The nuclear lamina is an intermediate filament-type network underlying the inner nuclear membrane. Phosphorylation of lamin proteins is believed to cause lamina disassembly during meiotic and mitotic M phase, but the M phase-specific lamin kinase has not been identified. Here we show that the cdc2 kinase, a major element implicated in controlling the eukaryotic cell cycle, phosphorylates chicken B-type lamins in vitro on sites that are specifically phosphorylated during M phase in vivo. Concomitantly, cdc2 kinase is capable of inducing lamina depolymerization upon incubation with isolated nuclei. One of the target sites of cdc2 kinase is identified as a motif (SPTR) conserved in the N-terminal domain of all lamin proteins. These results lead us to propose that mitotic disassembly of the nuclear lamina results from direct phosphorylation of lamins by cdc2 kinase.  相似文献   

5.
Nuclear envelope assembly after mitosis   总被引:8,自引:0,他引:8  
In higher eukaryotes, the entire nucleus disassembles during prometaphase of the cell cycle and later reassembles around daughter chromosomes. Remarkably, the complex events that occur to create a functional nucleus in vivo can be duplicated in vitro by using cell-free extracts. Current experiments are aimed at understanding the molecular mechanisms of assembly and disassembly of the nuclear pore complexes and nuclear membranes, and the functional roles of four identified inner membrane proteins, two of which bind to both chromatin and the nuclear lamina.  相似文献   

6.
Dystrophin is an essential component in the assembly and maintenance of the dystrophin-associated protein complex (DAPC), which includes members of the dystroglycan, syntrophin, sarcoglycan and dystrobrevin protein families. Distinctive complexes have been described in the cell membrane of different tissues and cultured cells. In this work, we report the identification and characterization of a novel DAPC present in the nuclei of HeLa cells, which contains dystrophin Dp71 as a key component. Using confocal microscopy and cell fractionation analyses, we found the presence of Dp71, beta-sarcoglycan, beta-dystroglycan, alpha- and beta-syntrophin, alpha1- and beta-dystrobrevin and nNOS in the nuclei of HeLa cells. Furthermore, we demonstrated by co-immunoprecipitation experiments that most of these proteins form a complex in the nuclear compartment. Next, we analyze the possible association of the nuclear DAPC with the nuclear matrix. We found the presence of Dp71, beta-dystroglycan, nNOS, beta-sarcoglycan, alpha/beta syntrophin, alpha1-dystrobrevin and beta-dystrobrevin in the nuclear matrix protein fractions and in situ nuclear matrix preparations from HeLa cells. Moreover, we found that Dp71, beta-dystroglycan and beta-dystrobrevin co-immunoprecipitated with the nuclear matrix proteins lamin B1 and actin. The association of members of the nuclear DAPC with the nuclear matrix indicates that they may work as scaffolding proteins involved in nuclear architecture.  相似文献   

7.
The treatment of isolated cell nuclei with citric acid was described as a method for separating inner and outer nuclear membrane. Using cell nuclei from bovine cerebral cortex, we can show that citric acid does not cause a separation of the two nuclear membranes, but extracts a specific set of proteins from the nuclei. The extraction of proteins is not just an effect of damaging the nuclear membrane or destructing the cytoskeleton, but rather a specific effect of citric acid treatment. One of the extracted proteins, chosen as a marker for the putative outer nuclear membrane fraction, has an apparent molecular weight of 145 kDa and is located in the nucleoplasm as shown by immunofluorescence microscopy. By sequencing tryptic peptides it was identified as RNA helicase A, an abundant nuclear protein assumed to participate in the processing of mRNA. © 1995 Wiley-Liss, Inc.  相似文献   

8.
Ulbert S  Antonin W  Platani M  Mattaj IW 《FEBS letters》2006,580(27):6435-6441
The inner nuclear membrane (INM) of eukaryotic cells is characterized by a unique set of transmembrane proteins which interact with chromatin and/or the nuclear lamina. The number of identified INM proteins is steadily increasing, mainly as a result of proteomic and computational approaches. However, despite a link between mutation of several of these proteins and disease, the function of most transmembrane proteins of the INM remains unknown and depletion of many of these proteins from a variety of systems did not produce an obvious phenotype in the affected cells. Here, we report that depletion of the conserved INM protein Lem2 from human cell lines leads to abnormally shaped nuclei and severely reduces cell survival. We suggest that interactions of Lem2 with lamins or chromatin are critical for maintaining the integrity of the nuclear envelope.  相似文献   

9.
p34cdc2 acts as a lamin kinase in fission yeast   总被引:10,自引:3,他引:7  
The nuclear lamina is an intermediate filament network that underlies the nuclear membrane in higher eukaryotic cells. During mitosis in higher eukaryotes, nuclear lamins are phosphorylated by a mitosis-specific kinase and this induces disassembly of the lamina structure. Recently, p34cdc2 protein kinase purified from starfish has been shown to induce phosphorylation of lamin proteins and disassembly of the nuclear lamina when incubated with isolated chick nuclei suggesting that p34cdc2 is likely to be the mitotic lamin kinase (Peter, M., J. Nakagawa, M. Dorée, J.C. Labbe, and E.A. Nigg. 1990b. Cell. 45:145-153). To confirm and extend these studies using genetic techniques, we have investigated the role of p34cdc2 in lamin phosphorylation in the fission yeast. As fission yeast lamins have not been identified, we have introduced a cDNA encoding the chicken lamin B2 protein into fission yeast. We report here that the chicken lamin B2 protein expressed in fission yeast is assembled into a structure that associates with the nucleus during interphase and becomes dispersed throughout the cytoplasm when cells enter mitosis. Mitotic reorganization correlates with phosphorylation of the chicken lamin B2 protein by a mitosis-specific yeast lamin kinase with similarities to the mitotic lamin kinase of higher eukaryotes. We show that a lamin kinase activity can be detected in cell-free yeast extracts and in p34cdc2 immunoprecipitates prepared from yeast cells arrested in mitosis. The fission yeast lamin kinase activity is temperature sensitive in extracts and immunoprecipitates prepared from strains bearing temperature-sensitive mutations in the cdc2 gene. These results in conjunction with the previously reported biochemical studies strongly suggest that disassembly of the nuclear lamina at mitosis in higher eukaryotic cells is a consequence of direct phosphorylation of nuclear lamins by p34cdc2.  相似文献   

10.
We have developed a cell-free system that induces the morphological transformations characteristic of apoptosis in isolated nuclei. The system uses extracts prepared from mitotic chicken hepatoma cells following a sequential S phase/M phase synchronization. When nuclei are added to these extracts, the chromatin becomes highly condensed into spherical domains that ultimately extrude through the nuclear envelope, forming apoptotic bodies. The process is highly synchronous, and the structural changes are completed within 60 min. Coincident with these morphological changes, the nuclear DNA is cleaved into a nucleosomal ladder. Both processes are inhibited by Zn2+, an inhibitor of apoptosis in intact cells. Nuclear lamina disassembly accompanies these structural changes in added nuclei, and we show that lamina disassembly is a characteristic feature of apoptosis in intact cells of mouse, human and chicken. This system may provide a powerful means of dissecting the biochemical mechanisms underlying the final stages of apoptosis.  相似文献   

11.
Disassembly of the nuclear lamina is essential in mitosis and apoptosis requiring multiple coordinated enzymatic activities in nucleus and cytoplasm. Activation and coordination of the different activities is poorly understood and moreover complicated as some factors translocate between cytoplasm and nucleus in preparatory phases. Here we used the ability of parvoviruses to induce nuclear membrane breakdown to understand the triggers of key mitotic enzymes. Nuclear envelope disintegration was shown upon infection, microinjection but also upon their application to permeabilized cells. The latter technique also showed that nuclear envelope disintegration was independent upon soluble cytoplasmic factors. Using time-lapse microscopy, we observed that nuclear disassembly exhibited mitosis-like kinetics and occurred suddenly, implying a catastrophic event irrespective of cell- or type of parvovirus used. Analyzing the order of the processes allowed us to propose a model starting with direct binding of parvoviruses to distinct proteins of the nuclear pore causing structural rearrangement of the parvoviruses. The resulting exposure of domains comprising amphipathic helices was required for nuclear envelope disintegration, which comprised disruption of inner and outer nuclear membrane as shown by electron microscopy. Consistent with Ca++ efflux from the lumen between inner and outer nuclear membrane we found that Ca++ was essential for nuclear disassembly by activating PKC. PKC activation then triggered activation of cdk-2, which became further activated by caspase-3. Collectively our study shows a unique interaction of a virus with the nuclear envelope, provides evidence that a nuclear pool of executing enzymes is sufficient for nuclear disassembly in quiescent cells, and demonstrates that nuclear disassembly can be uncoupled from initial phases of mitosis.  相似文献   

12.
Xenopus laevis egg extracts cell-free nuclear assembly system was used as an experimental model to study the process of nuclear lamina assembly in nuclear reconstitution in vitro. The experimental results showed that lamin was involved in the nuclear assembly in vitro. The assembly of nuclear lamina was preceded by the assembly of nuclear matrix, and probably, inner nuclear matrix assembly provided the basis for nuclear lamina assembly. Inhibition of normal assembly of nuclear lamina, by preincubating egg extracts cell-free system with anti-lamin antibodies, resulted in abnormal assembly of nuclear envelope, suggesting that nuclear envelope assembly is closely associated with nuclear lamina assembly.  相似文献   

13.
Nuclear pore complexes (NPCs) are large macromolecular structures embedded in the nuclear envelope (NE), where they facilitate exchange of molecules between the cytoplasm and the nucleoplasm. In most cell types, NPCs are evenly distributed around the NE. However, the mechanisms dictating NPC distribution are largely unknown. Here, we used the model organism Caenorhabditis elegans to identify genes that affect NPC distribution during early embryonic divisions. We found that down-regulation of the Sm proteins, which are core components of the spliceosome, but not down-regulation of other splicing factors, led to clustering of NPCs. Down-regulation of Sm proteins also led to incomplete disassembly of NPCs during mitosis, but had no effect on lamina disassembly, suggesting that the defect in NPC disassembly was not due to a general defect in nuclear envelope breakdown. We further found that these mitotic NPC remnants persisted on an ER membrane that juxtaposes the mitotic spindle. At the end of mitosis, the remnant NPCs moved toward the chromatin and the reforming NE, where they ultimately clustered by forming membrane stacks perforated by NPCs. Our results suggest a novel, splicing-independent, role for Sm proteins in NPC disassembly, and point to a possible link between NPC disassembly in mitosis and NPC distribution in the subsequent interphase.  相似文献   

14.
《The Journal of cell biology》1993,123(6):1491-1505
During mitosis, several types of intermediate-sized filaments (IFs) undergo an extensive remodelling in response to phosphorylation by cdc 2 and other protein kinases. However, unlike the nuclear lamins, the cytoplasmic IFs do not seem to follow a fixed disassembly stereotype and often retain their physical continuity without depolymerizing into soluble subunits. To investigate potential interactions between mitotically modified IFs and other cellular structures, we have examined prometaphase-arrested cells expressing the IF protein vimentin. We demonstrate here that vimentin filaments associate in situ and co-fractionate with a distinct population of mitotic vesicles. These vesicles carry on their surfaces nuclear lamin B, the inner nuclear membrane protein p58, and wheat germ agglutinin (WGA)-binding proteins. Consistent with a tight interaction between the IFs and the mitotic membranes, vimentin, nuclear lamin B, and a 180-kD WGA-binding protein are co-isolated when whole mitotic homogenates are incubated with anti-vimentin or anti-lamin B antibodies immobilized on magnetic beads. The vimentin-associated vesicles are essentially depleted of ER, Golgi and endosomal membrane proteins. The interaction of vimentin with lamin B-carrying membranes depends on phosphorylation and is weakened by dephosphorylation during nuclear reassembly in vitro. These observations reveal a novel interaction between IFs and cellular membranes and further suggest that the vimentin filaments may serve as a transient docking site for inner nuclear membrane vesicles during mitosis.  相似文献   

15.
In chicken, three structurally distinct nuclear lamin proteins have been described. According to their migration on two-dimensional gels, these proteins have been designated as lamins A, B1, and B2. To investigate the functional relationship between chicken lamins and their mammalian counterparts, we have examined here the state of individual chicken lamin proteins during mitosis. Current models proposing functional specializations of mammalian lamin subtypes are in fact largely based on the observation that during mitosis mammalian lamin B remains associated with membrane vesicles, whereas lamins A and C become freely soluble. Cell fractionation experiments combined with immunoblotting show that during mitosis both chicken lamins B1 and B2 remain associated with membranes, whereas lamin A exists in a soluble form. In situ immunoelectron microscopy carried out on mitotic cells also reveals membrane association of lamin B2, whereas the distribution of lamin A is random. From these results we conclude that both chicken lamins B1 and B2 may functionally resemble mammalian lamin B. Interestingly, immunolabeling of mitotic cells revealed an association of lamin B2 with extended membrane cisternae that resembled elements of the endoplasmic reticulum. Quantitatively, we found that all large endoplasmic reticulum-like membranes present in metaphase cells were decorated with lamin B2-specific antibodies. Given that labeling of these mitotic membranes was lower than labeling of interphase nuclear envelopes, it appears likely that during mitotic disassembly and reassembly of the nuclear envelope lamin B2 may reversibly distribute between the inner nuclear membrane and the endoplasmic reticulum.  相似文献   

16.
Stepwise reassembly of the nuclear envelope at the end of mitosis   总被引:23,自引:8,他引:15       下载免费PDF全文
The nuclear envelope consists of three distinct membrane domains: the outer membrane with the bound ribosomes, the inner membrane with the bound lamina, and the pore membrane with the bound pore complexes. Using biochemical and morphological methods, we observed that the nuclear membranes of HeLa cells undergoing mitosis are disassembled in a domain-specific manner, i.e., integral membrane proteins representing the inner nuclear membrane (the lamin B receptor) and the nuclear pore membrane (gp210) are segregated into different populations of mitotic vesicles. At the completion of mitosis, the inner nuclear membrane- derived vesicles associate with chromatin first, beginning in anaphase, whereas the pore membranes and the lamina assemble later, during telophase and cytokinesis. Our data suggest that the ordered reassembly of the nuclear envelope is triggered by the early attachment of inner nuclear membrane-derived vesicles to the chromatin.  相似文献   

17.
Accurate chromosome segregation requires assembly of the multiprotein kinetochore complex. Prior work has identified more than 100 different kinetochore components in human cells. However, little is known about the regulatory processes that specify their assembly upon mitotic entry and disassembly at mitotic exit. In this paper, we used a live-cell imaging–based assay to quantify kinetochore disassembly kinetics and systematically analyze the role of potential regulatory mechanisms in controlling kinetochore assembly state. We find that kinetochore assembly and disassembly was driven primarily by mitotic phosphorylation downstream of cyclin-dependent kinase (CDK). In addition, we demonstrate that nuclear exclusion of the Ndc80 complex helped restrict kinetochore formation to mitosis. Combining constitutive CDK-dependent phosphorylation of CENP-T and forced nuclear localization of the Ndc80 complex partially prevented kinetochore disassembly at mitotic exit and led to chromosome segregation defects in subsequent divisions. In total, we find that the coordinated temporal regulation of outer kinetochore assembly is essential for accurate cell division.  相似文献   

18.
Nuclear reconstitution in vitro: stages of assembly around protein-free DNA   总被引:96,自引:0,他引:96  
J Newport 《Cell》1987,48(2):205-217
We have developed a cell-free system derived from Xenopus eggs that reconstitutes nuclear structure around an added protein-free substrate (bacteriophage lambda DNA). Assembled nuclei are morphologically indistinguishable from normal eukaryotic nuclei: they are surrounded by a double membrane containing nuclear pores and are lined with a peripheral nuclear lamina. Nuclear assembly involves discrete intermediate steps, including nucleosome assembly, scaffold assembly, and nuclear membrane and lamina assembly, indicating that during reconstitution nuclear organization is assembled one level at a time. Topoisomerase II inhibitors block nuclear assembly. Lamin proteins and membrane vesicles bind to chromatin late in assembly, suggesting that these components do not interact with chromatin that is formed early in assembly. Reconstituted nuclei replicate their DNA; replication begins only after envelope formation has initiated, indicating that envelope attachment may be important for regulating replication.  相似文献   

19.
Xenopus laevis egg extracts cell-free nuclear assembly system was used as an experimental model to study the process of nuclear lamina assembly in nuclear reconstitutionin vitro. The experimental results showed that lamin was involved in the nuclear assemblyin vitro. The assembly of nuclear lamina was preceded by the assembly of nuclear matrix, and probably, inner nuclear matrix assembly provided the basis for nuclear lamina assembly. Inhibition of normal assembly of nuclear Iknina, by preincubating egg extracts cell-free system with anti-lamin antibodies, resulted in abnormal assembly of nuclear envelope, suggesting that nuclear envelope assembly is closely associated with nuclear lamina assembly. Project supported by the National Natural Science Foundation of China.  相似文献   

20.
《The Journal of cell biology》1986,103(6):2073-2081
We describe a cell-free system in which a postribosomal supernatant (s140) from metaphase Chinese hamster ovary (CHO) cells induces prophase-like changes in isolated CHO cell nuclei, including chromatin condensation, and nuclear envelope and lamina disassembly. These events are strongly promoted by gamma-S-ATP and an ATP-regenerating system, and do not take place with an s140 derived from G2-phase cells. The metaphase cell s140 also induces disassembly of an isolated nuclear lamina fraction that is depleted of membranes, chromatin, and nuclear pore complexes. Disassembly of the isolated lamina is accompanied by phosphorylation of the major lamina proteins (lamins A, B, and C) to levels characteristic of metaphase cells. Kinetic analysis of lamina depolymerization indicates that cooperativity may be involved in this process. The biochemical properties of in vitro lamina disassembly suggest that the activity that depolymerizes the lamina during mitosis is soluble in metaphase cells, and support the notion that this activity is a lamin protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号