首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
西洛他唑对人心房肌细胞瞬间外向钾电流的影响   总被引:2,自引:0,他引:2  
目的:观察西洛他唑对人心房肌细胞瞬间外向钾电流(Ito1)的影响,探讨该药抗心律失常作用的机制.方法:二步酶解法分离人单个右心房肌细胞,应用全细胞膜片钳技术记录人心房肌细胞Ito1.结果:在保持电位-50 mV和去极化脉冲为 50 mV条件下,30 μmol/L西洛他唑显著降低Ito1,使Ito1幅值由加药前(8.16±0.70)pA/pF降至(4.84±0.60)pA/pF(P<0.01).西洛他唑在1~50 μmol/L范围内呈浓度依赖性的抑制Ito1,1 μmol/L时即产生作用,50 μmol/L时达最大效应(降低51.09%±3.00%),IC50为(13.18±2.60)μmol/L.此外,该药对Ito1的电压依赖性激活和失活曲线以及恢复曲线均无显著影响.结论:本实验结果表明西洛他唑浓度依赖性地阻滞人心房肌细胞的Ito1.  相似文献   

2.
Currents through delayed rectifier-type K+ channels in Schwann cells cultured from rabbit sciatic nerve were studied with patch-clamp techniques. When the internal and external solutions contained physiological concentrations of sodium, the amplitude of these outward currents declined as the cell was depolarized to potentials above about +40 mV, despite the increased driving force. This reduction in the amplitude of outward K+ currents was observed in many cells before the subtraction of leakage currents; it was also observed for ensemble currents recorded in outside-out patches. It was therefore not the result of a leak-subtraction artefact nor of inadequate voltage-clamp control. Several lines of evidence also suggested that it was not the result of the extracellular accumulation of K+. By contrast, when the Na+ ion concentration of the internal solution was nominally zero, the reduction in the amplitude of outward K+ currents at positive membrane potentials was not observed. The apparent amplitude of single-channel currents through two types of K+ channel was reduced by 30 mM internal Na+, apparently as the result of a rapid 'flickery' block. The results suggest that channel block by internal Na+ is largely responsible for the negative slope conductance seen in current-voltage plots of whole-cell K+ currents at positive membrane potentials. In addition, our analysis of single-channel currents suggests that the current-voltage curve for a delayed rectifier channel in rabbit Schwann cells (in the absence of internal Na+) is roughly linear with internal and external K+ concentrations of 140 mM and 5.6 mM, respectively.  相似文献   

3.
4.
Atrial fibrosis is an important factor in the initiation and maintenance of atrial fibrillation (AF); therefore, understanding the pathogenesis of atrial fibrosis may reveal promising therapeutic targets for AF. In this study, we successfully established a rapid atrial pacing canine model and found that the inducibility and duration of AF were significantly reduced by the overexpression of c‐Ski, suggesting that this approach may have therapeutic effects. c‐Ski was found to be down‐regulated in the atrial tissues of the rapid atrial pacing canine model. We artificially up‐regulated c‐Ski expression with a c‐Ski–overexpressing adenovirus. Haematoxylin and eosin, Masson's trichrome and picrosirius red staining showed that c‐Ski overexpression alleviated atrial fibrosis. Furthermore, we found that the expression levels of collagen III and α‐SMA were higher in the groups of dogs subjected to right‐atrial pacing, and this increase was attenuated by c‐Ski overexpression. In addition, c‐Ski overexpression decreased the phosphorylation of smad2, smad3 and p38 MAPK (p38α and p38β) as well as the expression of TGF‐β1 in atrial tissues, as shown by a comparison of the right‐atrial pacing + c‐Ski‐overexpression group to the control group with right‐atrial pacing only. These results suggest that c‐Ski overexpression improves atrial remodelling in a rapid atrial pacing canine model by suppressing TGF‐β1–Smad signalling and p38 MAPK activation.  相似文献   

5.

Introduction

We examined the acute effects of neutral endopeptidase inhibitor on the hemodynamics and electrical properties of dogs subjected to rapid atrial pacing.

Methods

Ten beagle dogs were used and divided into two groups with and without candoxatril, a neutral endopeptidase inhibitor preadministration. Before and after the 6 hours rapid atrial pacing from the right atrial appendage, the hemodynamics, atrial effective refractory period, and monophasic action potential duration of the right atrial appendage were measured and blood samples were collected. Atrial tissue was also excised after the experiment.

Results

Candoxatril significantly increased plasma ANP levels (Control: 88.4 ± 50.25 vs. Candoxatril: 197.1 ± 32.09 pg/ml, p = 0.004) and prevented reductions in atrial effective refractory period and monophasic action potential duration. We further demonstrated that the treated animals exhibited significantly higher levels of atrial tissue cyclic GMP (Control: 28.1 ± 1.60 fmol/mg vs. Candoxatril: 44.5 ± 12.28 fmol/mg, p = 0.034) as well as that of plasma cyclic GMP (Control: 32 ± 5.5 vs. Candoxatril: 42 ± 7.1 pg/ml, p = 0.028).

Conclusion

Candoxatril suppressed the shortening of atrial effective refractory period and monophasic action potential duration in the rapid atrial pacing model. As plasma ANP and the atrial tissue levels of cyclic GMP were higher in the Candoxatril group than the control, this effect was considered to appear through the reduction of calcium overload caused by ANP and cyclic GMP.  相似文献   

6.
7.
Cardiac resynchronization therapy device (CRT-P and CRT-D) implantation has increased tremendously with increasing operator experience, eligible patients and expansion of indications. Refinements in devices and algorithms now aid physicians to improve biventricular pacing and optimize CRT. We report a case in which an interesting device program was used to achieve biventricular pacing after repeated dislodgement of the atrial lead in a patient implanted with CRT-D.  相似文献   

8.
Markus Hoth 《FEBS letters》1996,390(3):285-288
Highly Ca2+ selective Ca2+ channels activated by store depletion have been recently described in several cell types and have been termed CRAC channels (for calcium release-activated calcium). The present study shows that following store depletion in mast and RBL-1 cells, monovalent outward currents could be recorded if the internal solution contained K+ but not Cs+. The activation of the outward K+ current correlated with the activation of ICRAC, in both time and amplitude, suggesting that the K+ current might be carried by CRAC channels. The amplitude of the outward current was increased if external Ca2+ was reduced or replaced by external Ba2+. The outward K+ conductance might have a physiological role in maintaining the driving force for Ca2+ entry during the activation of CRAC channels.  相似文献   

9.
H Shi  H Wang  Z Wang 《Life sciences》1999,64(21):PL251-PL257
Growing body of evidence indicates that the functional responses of cells to muscarinic acetylcholine receptors (mAChRs) are mediated by multiple receptor subtypes. It is commonly thought that the M2 receptor is the only functional mAChR subtype in the heart and little data regarding the potential roles of other subtypes in cardiac tissues has been reported. In the present study, we provide functional evidence for the presence and physiological function of an M3 receptor in canine atrial myocytes. Using whole-cell patch-clamp techniques, we consistently found that pilocarpine, an mAChR agonist, induced a K+ current similar to but distinct from the classical delayed rectifier K+ current. Same observations were obtained when choline or tetramethylammonium (TMA) was applied to the bath. The currents were abolished by 1 microM atropine. Antagonists selective to M1 (pirenzepine, 100 nM), M2 (methoctramine 100 nM), or M4 (tropicamide 200 nM) receptors failed to alter the currents. Conversely, three different M3-selective inhibitors, p-F-HHSiD (20-200 nM), 4-DAMP methiodide (2-10 nM) and 4-DAMP mustard (4-20 nM), all produced concentration-dependent suppression of the currents. A cDNA fragment representing the M3 receptor was isolated from dog atrial RNA and the mRNA level of this construct was 0.7 +/- 0.1 pg/microg total RNA, as quantified by the competitive RT-PCR methods. Our data strongly suggested that an M3 receptor exists and is coupled to a K+ channel in the heart.  相似文献   

10.
Monitor lizards belong to the largest and the most sexually dimorphic lizards in terms of size, making this group an ideal model for studies analyzing ontogenetic causes of sexual dimorphism. Understanding of these ontogenetic factors is essential to the current discussion concerning patterns of sexual dimorphism in animals. We examined the ontogenetic trajectories of body weight and snout-vent length to analyze the emergence of sexual size dimorphism. Experimental animals were 22 males and 13 females of mangrove-dwelling monitors (Varanus indicus) hatched at the Prague Zoo. They were regularly weighed and measured up to the age of 33-40 months, and subsequently sexed by ultrasonographic imaging. The logistic growth equation was used to describe and analyze the observed growth patterns. Our results confirm considerable sexual size dimorphism in the mangrove monitor. The mean asymptotic body weight of males was nearly three times higher than that of females. As the body size of male and female hatchlings is almost equal, and the growth rate parameter (K) of the logistic growth equation as well as the absolute growth rate up to the age of 12 months do not differ between the sexes, size differences between fully grown males and females should be attributed to timing of the postnatal growth. Males continue to grow several months after they reach the age when the growth of females is already reduced. Therefore, the sexual size dimorphism emerges and sharply increases at this period.  相似文献   

11.
How adaptation of a postsynaptic transient outward current might affect the efficacy of sensorimotor transmission was investigated. The transmission signals that were studied were a 5 ms conditioned stimulus (CS) and a 60 ms US drawn from intracellularly recorded, depolarizing postsynaptic potentials (PSPs) elicited in pyramidal neurons of the cat motor cortex by a click CS and a glabella tap US, respectively. SPICE, a program used to analyze electrical circuits, was used to simulate the cortical neuron containing the adaptive outward current. Changes in the magnitude and latency of rise to firing threshold of the PSPs were compared i) after presynaptic augmentation of a CS input in the absence of an adaptive postsynaptic current and ii) after decreasing the magnitude of an adaptive postsynaptic current that was rapidly activated by depolarization. Effects of short (6 ms) and long (24 ms) inactivation time constants of the postsynaptic current were also studied. In both presynaptic adaptation and postsynaptic adaptation, the potentiation of the magnitude of the CS-induced PSP was similar, with the latency to threshold being reduced by < or = 1 ms in both cases. The effects on the US PSP differed. Presynaptic adaptation affecting the CS had no effect on the US. Adaptation of the CS by a postsynaptic outward current with a 6 ms inactivation time constant, reduced the latency to threshold of an EPSP from a nearby US synapse by up to 6 ms by augmenting the initial portion of the slowly rising US-induced PSP. Adaptation of a postsynaptic current with a 24 ms inactivation time constant reduced the latency of response to the US PSP by up to 16 ms. When the US synapse was relocated to the soma, the reduction in US latency caused by adaptation of the outward current at the CS synapse was reduced by up to one half. The latency of slowly rising components of integrated synaptic responses to compound CSs of > 5 ms duration from multiple synaptic inputs would be expected to show reductions corresponding to those of the US. We conclude that potentiation of synaptic transmission by adaptation of a postsynaptic outward current can result in reductions of latency of sensorimotor transmission that can significantly affect the timing and accuracy of controlled motor tasks. These effects depend significantly on the locations of the synaptic inputs within the cell.  相似文献   

12.
How adaptation of a postsynaptic transient outward current might affect the efficacy of sensorimotor transmission was investigated. The transmission signals that were studied were a 5 ms conditioned stimulus (CS) and a 60 ms US drawn from intracellularly recorded, depolarizing postsynaptic potentials (PSPs) elicited in pyramidal neurons of the cat motor cortex by a click CS and a glabella tap US, respectively. SPICE, a program used to analyze electrical circuits, was used to simulate the cortical neuron containing the adaptive outward current. Changes in the magnitude and latency of rise to firing threshold of the PSPs were compared i) after presynaptic augmentation of a CS input in the absence of an adaptive postsynaptic current and ii) after decreasing the magnitude of an adaptive postsynaptic current that was rapidly activated by depolarization. Effects of short (6 ms) and long (24 ms) inactivation time constants of the postsynaptic current were also studied. In both presynaptic adaptation and postsynaptic adaptation, the potentiation of the magnitude of the CS-induced PSP was similar, with the latency to threshold being reduced by " 1 ms in both cases. The effects on the US PSP differed. Presynaptic adaptation affecting the CS had no effect on the US. Adaptation of the CS by a postsynaptic outward current with a 6 ms inactivation time constant, reduced the latency to threshold of an EPSP from a nearby US synapse by up to 6 ms by augmenting the initial portion of the slowly rising US-induced PSP. Adaptation of a postsynaptic current with a 24 ms inactivation time constant reduced the latency of response to the US PSP by up to 16 ms. When the US synapse was relocated to the soma, the reduction in US latency caused by adaptation of the outward current at the CS synapse was reduced by up to one half. The latency of slowly rising components of integrated synaptic responses to compound CSs of > 5 ms duration from multiple synaptic inputs would be expected to show reductions corresponding to those of the US. We conclude that potentiation of synaptic transmission by adaptation of a postsynaptic outward current can result in reductions of latency of sensorimotor transmission that can significantly affect the timing and accuracy of controlled motor tasks. These effects depend significantly on the locations of the synaptic inputs within the cell.  相似文献   

13.
14.
The proportions of muscle fibers of different phenotype in the adult rabbit masseter differ greatly in different sexes. These sex differences are not apparent in young adults, but arise under the influence of testosterone in the males. We examined whether this switch occurred during a critical period of postnatal development. Testosterone was administered to young adults 1, 2, or 4 mo after castration, and also to adult females. Samples of masseter muscle were taken at four monthly intervals after the onset of treatment and examined for the expression of different myosin heavy chain (MyHC) isoforms by using a panel of monoclonal antibodies. Despite the length of androgen deprivation, treatment with testosterone produced a marked MyHC isoform switch from alpha-slow/beta to IIa. This male proportion of fibers of different phenotypes persisted well beyond the return of serum testosterone levels to pretreatment levels. Thus brief exposure to testosterone produces a permanent change in the proportions of masseter muscle fibers of different phenotypes, and the capacity for this change is not restricted to a critical period.  相似文献   

15.
Sarmesin, [Sar1, Tyr(Me)4]angiotensinII], has been reported to be a competitive angiotensin II (AII) receptor antagonist in rat smooth muscle preparations (Scanlon et al., (1984), Life Science 34, 317-321). In the present study, sarmesin displaced AII from its binding sites in rat aortic smooth muscle cells and in a rabbit aorta membrane preparation (IC50 5 and 6 nM resp.; Ki 4.1 and 5.3 resp.) In rabbit aortic rings, sarmesin (0.003-3 microM) produced concentration-dependent contractions (ED50 89 nM) and this effect was inhibited by saralasin. No contraction was observed in the rat aorta up to 100 microM. In rabbit aortic rings, sarmesin, at the same concentrations that produced contraction, inhibited contractions induced by AII in a competitive manner (pA2 7, 26). These results indicate that, in rabbit aortic rings sarmesin is a partial agonist of AII receptors.  相似文献   

16.
Sleep and Biological Rhythms - Individuals with chronic insomnia tend to increase their amount of time in bed (TIB) to secure more opportunity for sleep, which in turn, may aggravate and perpetuate...  相似文献   

17.
Summary Depolarization-activated outward currents ranging in amplitude from 100–1000 pA were studied in cultured, insulinsecreting HIT cells and mouse B-cells using the whole-cell patch clamp. Outward current was identified as a K current since it was blocked by K channel blockers and its tail current reversed nearE K. The K currents of HIT cells dialyzed with internal solutions containing 0.1–10mm EGTA with no added calcium (Ca), or 10mm EGTA with 2mm added Ca, activated rapidly with depolarization. However, the stronger Ca buffer BAPTA (5mm; no added Ca) blocked the rapidly activating current to reveal an underlying more slowly activating K current. With intracellular EGTA, application of the Ca channel blocker cadmium mimicked the effect of intracellular BAPTA. These data suggest that the rapid K current was mediated by low-voltage threshold, Ca-activated K channels while the slower K current was mediated by high threshold delayed rectifier K channels. Mouse B-cells also had both K current components. Dialyzing these cells with either BAPTA (5mm, no added Ca) or high EGTA (10mm with 2mm Ca) blocked the rapid Ca-activated K current observed when cells were filled with 0.1 to 1mm EGTA. It is concluded that the extent of Ca-activated K current activation in either HIT or adult mouse B-cells depends on the degree of intracellular Ca buffering.  相似文献   

18.
Plasma cholesteryl ester transfer protein (CETP) activity is high in rabbits, intermediate in humans, and nondetectable in rodents. Human apolipoprotein CI (apoCI) was found to be a potent inhibitor of CETP. The aim of this study was to compare the ability of rabbit and human apoCI to modulate the interaction of CETP with HDLs and to evaluate to which extent apoCI contributes to plasma cholesteryl ester transfer rate in normolipidemic humans and rabbits. Rabbit apoCI gene was cloned and sequenced, rabbit and human apoCI were purified to homogeneity, and their ability to modify the surface charge properties and the CETP inhibitory potential of HDL were compared. It is demonstrated that unlike human apoCI, rabbit apoCI does not modulate cholesteryl ester transfer rate in total plasma. Whereas both human and rabbit apoCI readily associate with HDL, only human apoCI was found to modify the electrostatic charge of HDL. In humans, both CETP and apoCI at normal, physiological levels contribute significantly to the plasma cholesteryl ester transfer rate. In contrast, CETP is the sole major determinant of cholesteryl ester transfer in normolipidemic rabbit plasma as a result of the inability of rabbit apoCI to change HDL electronegativity.  相似文献   

19.
The perennial C4 Miscanthus spp. is used in China for bio‐fuel production and its ecological functions. However, questions arise as to its economic and environmental sustainability in abandoned farmland where the costs should be very low. Little is known about its yield performance and effects on soil properties when it was harvested annually without any inputs in China. To address these questions, an experiment was implemented for 12 years on annually harvested Miscanthus sacchariflorus planted in 2006 and managed without fertilization, irrigation, or any other inputs. We determined biomass yields each year, biomass allocation, and soil properties before and after its cultivation. Biomass yields of M. sacchariflorus reached a peak value (29.67 t/ha) 3 years after cultivation and was maintained at a stable level (averaged 22.22 t/ha) during 2012–2017. Its root shoot ratio increased due to more biomass allocated below‐ground with time. Long‐term cultivation of M. sacchariflorus increased organic carbon contents, pH (for the absence of fertilization), microbial carbon, nitrogen and phosphorus contents, and soil carbon nitrogen ratios (0–100 cm). Soil bulk density was decreased significantly (p < .05) independent of soil depths. Annual harvest did not reduce total nitrogen and phosphorus, available nitrogen, and potassium, but total the potassium content of soil (0–100 cm). Cultivation of M. sacchariflorus increased available phosphorus contents in 40–100 cm soil and reduced that value in 20–40 cm soil. Biological nitrogen fixation provided ~218.74 kg ha?1 year?1 (1 m depth) nitrogen for the system offsetting nitrogen export by biomass harvest and stabilizing nitrogen levels of soil. In conclusion, M. sacchriflorus exhibited sustainable biomass yields and ameliorated soil properties but the decrease of total potassium contents after 12 years’ cultivation without any input. These conclusions could provide important information timely for the government and encourage farmers to promote large‐scale utilization of M. sacchriflorus on the abandoned farmland in China.  相似文献   

20.
Unlike the adjustable gastric banding procedure (AGB), Roux-en-Y gastric bypass surgery (RYGBP) in humans has an intriguing effect: a rapid and substantial control of type 2 diabetes mellitus (T2DM). We performed gastric lap-band (GLB) and entero-gastro anastomosis (EGA) procedures in C57Bl6 mice that were fed a high-fat diet. The EGA procedure specifically reduced food intake and increased insulin sensitivity as measured by endogenous glucose production. Intestinal gluconeogenesis increased after the EGA procedure, but not after gastric banding. All EGA effects were abolished in GLUT-2 knockout mice and in mice with portal vein denervation. We thus provide mechanistic evidence that the beneficial effects of the EGA procedure on food intake and glucose homeostasis involve intestinal gluconeogenesis and its detection via a GLUT-2 and hepatoportal sensor pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号