首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fossils recognized as early Homo were discovered first at Olduvai Gorge in 1959 and 1960. Teeth, skull parts and hand bones representing three individuals were found in Bed I, and more material followed from Bed I and lower Bed II. By 1964, L.S.B. Leakey, P.V. Tobias, and J.R. Napier were ready to name Homo habilis. But almost as soon as they had, there was confusion over the hypodigm of the new species. Tobias himself suggested that OH 13 resembles Homo erectus from Java, and he noted that OH 16 has teeth as large as those of Australopithecus. By the early 1970s, however, Tobias had put these thoughts behind him and returned to the opinion that all of the Olduvai remains are Homo habilis. At about this time, important discoveries began to flow from the Koobi Fora region in Kenya. To most observers, crania such as KNM-ER 1470 confirmed the presence of Homo in East Africa at an early date. Some of the other specimens were problematical. A.C. Walker and R.E. Leakey raised the possibility that larger skulls including KNM-ER 1470 differ significantly from smaller-brained, small-toothed individuals such as KNM-ER 1813. Other workers emphasized that there are differences of shape as well as size among the hominids from Koobi Fora. There is now substantial support for the view that in the Turkana and perhaps also in the Olduvai assemblages, there is more variation than would be expected among male and female conspecifics. One way to approach this question of sorting would be to compare all of the new fossils against the original material from Olduvai which was used to characterize Homo habilis in 1964. A problem is that the Olduvai remains are fragmentary, and none of them provides much information about vault form or facial structure. An alternative is to work first with the better crania, even if these are from other sites. I have elected to treat KNM-ER 1470 and KNM-ER 1813 as key individuals. Comparisons are based on discrete anatomy and measurements. Metric results are displayed with ratio diagrams, by which similarity in proportions for several skulls can be assessed in respect to a single specimen selected as a standard. Crania from Olduvai examined in this way are generally smaller than KNM-ER 1470, although OH 7 has a relatively long parietal. In the Koobi Fora assemblage, there is variation in brow thickness, frontal flattening and parietal shape relative to KNM-ER 1470. These comparisons are instructive, but vault proportions do not help much with the sorting process. Contrasts in the face are much more striking. Measurements treated in ratio diagrams show that both KNM-ER 1813 and OH 24 have relatively short faces with low cheek bones, small orbits and low nasal openings. Also, they display more projection of the midfacial region, just below the nose. This is not readily interpreted to be a female characteristic, since in most hominoid primates the females tend to have flatter lower faces than the males. The obvious size differences among these individuals have usually been interpreted as sex dimorphism, but, in fact, two taxa may be sampled at Olduvai and in the Turkana basin at the beginning of the Pleistocene. One large-brained group made up of KNM-ER 1470, several other Koobi Fora specimens, and probably OH 7, can be called Homo habilis. If these skulls go with femora such as KNM-ER 1481 and the KNM-ER3228 hip, then this species is close in postcranial anatomy to Homo erectus. The other taxon, including small-brained individuals such as KNM-ER 1813 and probably OH 13, seems also to be Homo rather than Australopithecus. If the OH 62 skeleton is part of this assemblage, then the small hominids have postcranial proportions unlike those of Homo erectus. However, it is too early to point unequivocally to one or the other of these groups as the ancestors of later humans. Both differ from Homo erectus in important ways, and both need to be better understood before we can map the earliest history of the Homo clade. © 1993 Wiley-Liss, Inc.  相似文献   

2.
Cranial remains of hominids 9 and 12 from Olduvai Gorge are described in detail. O.H. 9 consists of a heavily built braincase, partly damaged and lacking the face, while O.H. 12 is less complete. The Bed II specimen is about 1.2 million years in age and shows anatomical similarities to the cranium designated ER-3733 from Koobi Fora, east of Lake Turkana. Together these African fossils provide valuable information about Homo erectus in the later Lower Pleistocene. Comparisons of O.H. 9 with several of the Choukoutien crania are also carried out. These Chinese and other Asian remains of Homo erectus cannot be placed in a secure chronological framework, but all of the material should be studied systematically in order to assess relatedness among what must be several different populations.  相似文献   

3.
The cranial capacity of Olduvai Hominid 7 is estimated to be 690 cc, with a standard uncertainty range of 538 to 868 cc. The estimate is derived from a systematic consideration of the relationships between Bregma-Asterion chords and cranial capacities obtained from a large sample of Homo sapiens and Pan troglodytes and from available fossil hominids. The estimation technique is applicable to other characters and specimens.  相似文献   

4.
5.
6.
The distal half of a right human humerus (E.898), recovered ex situ in 1925 by Hrdli?ka at the Broken Hill Mine, Kabwe, Zambia, has figured prominently in assessments of Middle Pleistocene Homo postcranial variation and of the phylogenetic polarity and functional anatomy of Pleistocene Homo upper limb morphology. Reassessment of distal humeral features that distinguish modern human and some archaic Homo humeri, especially relative olecranon breadth and medial and lateral pillar thicknesses, confirm previous studies placing it morphologically close to recent humans, as well as possibly to Early Pleistocene Homo. However, it completely lacks stratigraphic context, and there is faunal and archeological evidence for human activity at Broken Hill from the Middle Pleistocene to the Holocene. Given its uncertain geological age and modern human morphology, the Broken Hill E.898 humerus should not be used in analyses of Pleistocene humans until it is securely dated. Am J Phys Anthropol 149:312–317, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
A very limiting factor for paleoanthropological studies is the poor state of preservation of the human fossil record, where fragmentation and deformation are considered normal. Although anatomical information can still be gathered from a distorted fossil, such specimens must typically be excluded from advanced morphological and morphometric analyses, thus reducing the fossil sample size and, ultimately, our knowledge of human evolution. In this contribution we provide the first digital reconstruction of the KNM‐ER 1813 Homo habilis cranium. Based on state of‐the‐art three‐dimensional digital modeling and geometric morphometric (GM) methods, the facial portion was aligned to the neurocranium, the overall distortion was removed, and the missing regions were restored. The reconstructed KNM‐ER 1813 allows for an adjustment of the anthropometric measurements gathered on the original fossil. It is suitable for further quantitative studies, such as GM analyses focused on skull morphology or for finite element analysis to explore the mechanics of early Homo feeding behavior and diet. Am J Phys Anthropol 153:154–160, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
9.
10.
Study of the O.H. 7 hand was based primarily on morphological comparisons with a large series of hand skeletons of extant hominoid primates. Most of the hand elements are fragmentary or have missing epiphyses and only comparisons based on qualitative morphological observations are possible. The distal phalanges are complete, however, and were analyzed metrically utilizing univariate and multivariate statistical techniques. To compensate for size differences among the Hominoidea a number of size adjustments were employed. None of the adjustments were totally satisfactory from theoretical and practical standpoints and none completely eliminated the influence of size. There is no entirely satisfactory procedure to eliminate size and it is advisable to use several techniques that are not closely related, to compare the results and interpret them with caution. In certain features the wrist and fingers resemble those of African apes; in others they are more like modern human hands; in still others they are unique. The scaphoid and the proximal articular surface of the trapezium retain ape-like features, as do the proximal and middle phalanges. The pollical carpometacarpal joint and the distal phalanges are closer in morphology to those of modern humans. The scaphoid, proximal phalanges and middle phalanges of rays II-V indicate a hand capable of a strong power grip. A number of features of the thumb and the distal phalanges suggest that the O.H. 7 individual was capable of more precise manipulation that extant apes. FLK NN-A, a first distal phalanx, does not closely resemble the first distal phalanx of any of the living Hominoidea. Multivariate distance analysis indicates, however, that it is closest in overall morphology to the pollical distal phalanx of modern humans. In some features not included in the metric analysis, FLK NN-A also resembles the hallucial distal phalanx of modern humans.  相似文献   

11.
The Kiik-Koba 1 Neandertal partial skeleton (canine, partial hands, partial leg, and feet), of a approximately 40-year-old probable male, exhibits a suite of pathological lesions, including hypercementosis, minor fibrous ossifications, pedal phalangeal fracture, and pronounced enthesopathies on the patella and calcanei in the context of no articular degenerations. The first two sets of lesions are related to age in the context of advanced dental attrition and physical strains. The third lesion joins a series of healed minor traumatic lesions among the Neandertals. The last represents either pronounced tendinous inflammation, albeit in the context of no articular degenerations, or a case of diffuse idiopathic skeletal hyperostosis (DISH) in the Late Pleistocene. Kiik-Koba 1 therefore adds to the high incidence of pathological lesions among the Neandertals and, if a diagnosis of DISH is correct, to a high frequency of this disorder among older Neandertals.  相似文献   

12.
13.
This study examines radiographs of first metatarsals of 131 individuals from age 17-88 years to determine whether internal basal epiphyseal lines may be visible past the age of metatarsal fusion, which usually occurs between 14 and 16 years of age (Scheuer and Black: The juvenile skeleton. San Diego: Elsevier Academic Press,2004). In 29% (38 out of 131) of the radiographed first metatarsals (MT1s) the basal epiphyseal scar is visible, including in one individual who was 80 years old. Statistically, there was no relationship between the loss of the epiphyseal scar and age. Thus, the presence of the epiphyseal scar does not necessarily indicate subadult age. These data suggest that OH 8's radiographically visible basal epiphyseal line has no bearing on whether it is a subadult or not.  相似文献   

14.
15.
The morphology of the Olduvai Hominid (OH) 8 foot and the sequence of metatarsal epiphyseal fusion in modern humans and chimpanzees support the hypothesis that OH 8 belonged to an individual of approximately the same relative age as the OH 7 subadult, the holotype of Homo habilis. Modern humans and chimpanzees exhibit a variety of metatarsal epiphyseal fusion patterns, including one identical to that observed in OH 8 in which metatarsal 1 fuses before metatarsals 2-5. More than the metatarsal fusion sequence, however, the principal evidence of the youthful age of OH 8 lies in the morphology of metatarsals 1, 2, and 3. Because both OH 8 and OH 7 come from the same stratum at the FLK NN type site, the most parsimonious explanation of the OH 8 and OH 7 data is that this material belonged to the same individual, as originally proposed by Louis Leakey. The proposition that OH 8 belonged to an adult is unsupported by morphology, including radiographic evidence, and the fusion sequences in human and chimpanzee skeletal material reported here and in the literature.  相似文献   

16.
Previous studies comparing bony labyrinth morphology in geographically‐dispersed samples of Neandertals and modern Homo sapiens (H. sapiens) showed that Neandertals generally have smaller semicircular canals than modern H. sapiens (Hublin et al., 1996 ; Spoor et al., 2003 ; Glantz et al., 2008 ). Here we analyze the morphology of a single group of Neandertal specimens from one locale, the Krapina site, to determine the intraspecific variation in Neandertal semicircular canal sizes. Dimensions of the semicircular canals were collected from computed tomography scans of nine temporal bones. With the rare exception, the dimensions of the semicircular canals in the Krapina sample are similar to those previously reported across a geographically‐dispersed sample of Neandertals, further supporting previous studies that suggest low levels of variation in the semicircular canals for Neandertals. Am J Phys Anthropol 154:302–306, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
In this issue of the Journal, McGraw et al. ([2006] Am. J. Phys. Anthropol. 000:00-00) present new data on the taphonomic signature of bone assemblages accumulated by crowned hawk eagles (Stephanoaetus coronatus), including characteristic talon damage to the inferior orbits of primates preyed upon by these birds. Reexamination of the Taung juvenile hominin specimen (the type specimen of Australopithecus africanus Dart 1925) reveals previously undescribed damage to the orbital floors that is nearly identical to that seen in the crania of monkeys preyed upon by crowned hawk eagles (as reported by McGraw et al., this issue). This new evidence, along with previously described aspects of the nonhominin bone assemblage from Taung and damage to the neurocranium of the hominin specimen itself, strongly supports the hypothesis that a bird of prey was an accumulating agent at Taung, and that the Taung child itself was the victim of a bird of prey.  相似文献   

18.
19.
As a follow-up study to Proctor et al. (Am J Phys Anthropol 135 (2008) 216-224), this study quantifies the first metatarsal proximal articular surface using three-dimensional morphometrics to test for differences in articular surface shape between habitually shod and habitually unshod humans. In addition, differences in shape between Homo, Pan, Gorilla, and Hylobates are compared to the fossil hominin specimens A. L. 333-54, Stw 562, Stw 573 ("Little Foot"), OH 8, SKX 5017, and SK 1813. No difference in surface shape was found between habitually shod and habitually unshod humans. There is a clear quantitative division in articular surface shape between humans and apes that is more pronounced than a previous study by Proctor et al. (Am J Phys Anthropol 135 (2008) 216-224), due to additional landmarks present in this study. The specimen OH 8 is indistinguishable from modern Homo. The fossils A. L. 333-54, Stw 562, and Stw 573 are intermediate in shape between humans and apes. The specimens SKX 5017 and SK 1813 have a more apelike articular surface. When combined with other characteristics, this trait suggests that Paranthropus used a degree of abduction during locomotion that was much less than that in extant apes, but greater than that in Australopithecus, allowing for some small degree of grasping ability.  相似文献   

20.
Neotaphonomic studies have determined the patterns of bone damage created by larger mammalian carnivores when consuming mammalian carcasses. Typically, mammalian carnivores gnaw and break bones to various degrees in order to access marrow, grease, and brain tissue. In contrast, crocodiles attempt to swallow whole parts of mammal carcasses, inflicting in the process tooth marks and other feeding traces on some of the bones they are unable to ingest. Although crocodiles are major predators of larger mammals along the margins of protected tropical rivers and lakes, their feeding traces on bone have received little systematic attention in neotaphonomic research. We present diagnostic characteristics of Crocodylus niloticus damage to uningested mammal bones resulting from a series of controlled observations of captive crocodile feeding. The resulting bone assemblages are composed of primarily complete elements from articulating units, some of which bear an extremely high density of shallow to deep, transversely to obliquely oriented tooth scores over often large areas of the bone, along with shallow to deep pits and punctures. Some of the tooth marks (bisected pits and punctures, hook scores) have a distinctive morphology we have not observed to be produced by mammalian carnivores. The assemblages are also characterized by the retention of both low- and high-density bone portions, an absence of gross gnawing, and minimal fragmentation. Together, the damage characteristics associated with feeding by crocodiles are highly distinctive from those produced by mammalian carnivores. Modern surface bone assemblages along the Grumeti River in Tanzania's Serengeti National Park contain a mixture of specimens bearing damage characteristic of crocodiles and mammalian carnivores. Comparison of Plio-Pleistocene fossil bones from Olduvai Gorge, Tanzania, to bones damaged by captive and free-ranging Nile crocodiles reveals direct evidence of fossil crocodilian feeding from larger mammal bones associated with Oldowan stone artifacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号