共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
BINDU D PAUL 《Cell research》2003,(6)
The biological effects of thyroid hormone (T3) are mediated by the thyroid hormone receptor (TR). Amphibian metamorphosis is one of the most dramatic processes that are dependent on T3. T3 regulates a series of orchestrated developmental changes, which ultimately result in the conversion of an aquatic herbivorous tadpole to a terrestrial carnivorous frog. T3 is presumed to bind to TRs, which in turn recruit coactivators, leading to gene activation. The best-studied coactivators belong to the p160 or SRC family. Members of this family include SRC1/ NCoA-1, SRC2/TIF2/GRIP1, and SRC3/pCIP/ACTR/AIB-l/RAC-3/TRAM-1. These SRCs interact directly with liganded TR and function as adapter molecules to recruit other coactivators such as p300/CBP. Here, we studied the expression patterns of these coactivators during various stages of development. Amongst the coactivators cloned in Xenopus laevis, SRC3 was found to be dramatically upregulated during natural and T3-induced metamorphosis, and SRC2 and p300 are express 相似文献
4.
The biological effects of thyroid hormone (T3) are mediated by the thyroid hormone receptor (TR). Amphibian metamorphosis is one of the most dramatic processes that are dependent on T3. T3 regulates a series of orchestrated developmental changes, which ultimately result in the conversion of an aquatic herbivorous tadpole to a terrestrial carnivorous frog. T3 is presumed to bind to TRs, which in turn recruit coactivators, leading to gene activation. The best-studied coactivators belong to the p160 or SRC family. Members of this family include SRC1/NCoA-1, SRC2/TIF2/GRIP1, and SRC3/pCIP/ACTR/AIB-1/RAC-3/TRAM-1. These SRCs interact directly with liganded TR and function as adapter molecules to recruit other coactivators such as p300/CBP. Here, we studied the expression patterns of these coactivators during various stages of development. Amongst the coactivators cloned in Xenopus laevis, SRC3 was found to be dramatically upregulated during natural and T3-induced metamorphosis, and SRC2 and p300 are expressed throughout postembryonic development with little change in their expression levels. These results support the view that these coactivators participate in gene regulation by TR during metamorphosis. 相似文献
5.
6.
7.
8.
Fu L Tomita A Wang H Buchholz DR Shi YB 《The Journal of biological chemistry》2006,281(25):16870-16878
The matrix metalloproteinase (MMP) stromelysin-3 (ST3) (MMP11) was first isolated as a breast cancer-associated gene and is expressed in diverse human carcinomas and various developmental processes involving apoptosis. The Xenopus laevis ST3 is highly up-regulated by thyroid hormone (T3) during amphibian metamorphosis, and its expression is spatially and temporally correlated with apoptosis in different tissues. Furthermore, it has been shown in vivo and in organ cultures to play a critical role in regulating T3-induced epithelial cell death during intestinal metamorphosis. Earlier studies suggest that ST3 is a direct T3 response gene, although a thyroid hormone response element (TRE) was not found in the initial analysis of the ST3 promoter. Here, we have identified a strong TRE consisting of two nearly perfect direct repeats of the consensus nuclear hormone receptor binding element AGGTCA separated by 4 bp in the first intron of the Xenopus ST3 gene. We show that the heterodimers of T3 receptor (TR) and 9-cis-retinoic acid receptor bind to the TRE both in vitro and in vivo in the context of chromatin. Furthermore, T3 induces strong activation of the promoter through the intronic TRE. Interestingly, although the unliganded TR/9-cis-retinoic acid receptor was able to recruit corepressors to the promoter, it had little repressive effect on the promoter in vivo. These results suggest that the intronic TRE mediates the inductive effect of T3 and that promoter context plays an important role in gene repression by unliganded TR. 相似文献
9.
10.
11.
Sun G Hasebe T Fujimoto K Lu R Fu L Matsuda H Kajita M Ishizuya-Oka A Shi YB 《PloS one》2010,5(10):e13605
Background
The intestinal epithelium undergoes constant self-renewal throughout adult life across vertebrates. This is accomplished through the proliferation and subsequent differentiation of the adult stem cells. This self-renewal system is established in the so-called postembryonic developmental period in mammals when endogenous thyroid hormone (T3) levels are high.Methodology/Principal Findings
The T3-dependent metamorphosis in anurans like Xenopus laevis resembles the mammalian postembryonic development and offers a unique opportunity to study how the adult stem cells are developed. The tadpole intestine is predominantly a monolayer of larval epithelial cells. During metamorphosis, the larval epithelial cells undergo apoptosis and, concurrently, adult epithelial stem/progenitor cells develop de novo, rapidly proliferate, and then differentiate to establish a trough-crest axis of the epithelial fold, resembling the crypt-villus axis in the adult mammalian intestine. The leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) is a well-established stem cell marker in the adult mouse intestinal crypt. Here we have cloned and analyzed the spatiotemporal expression profile of LGR5 gene during frog metamorphosis. We show that the two duplicated LGR5 genes in Xenopus laevis and the LGR5 gene in Xenopus tropicalis are highly homologous to the LGR5 in other vertebrates. The expression of LGR5 is induced in the limb, tail, and intestine by T3 during metamorphosis. More importantly, LGR5 mRNA is localized to the developing adult epithelial stem cells of the intestine.Conclusions/Significance
These results suggest that LGR5-expressing cells are the stem/progenitor cells of the adult intestine and that LGR5 plays a role in the development and/or maintenance of the adult intestinal stem cells during postembryonic development in vertebrates. 相似文献12.
13.
14.
15.
Watanabe M Ohshima M Morohashi M Maéno M Izutsu Y 《Development, growth & differentiation》2003,45(1):77-84
Results from previous studies using an inbred strain of Xenopus laevis have led to the proposition that metamorphosis includes the events by which the newly differentiating adult immune system, including T lymphocytes, recognizes and eliminates larval skin cells as 'non-self'. More recently, a larval antigen targeted by adult T cells was identified as a 59 kDa protein with a specific peptide sequence. Using antisera directed against the larval antigen and the peptide, immunohistochemistry and western blotting were done to examine expression of the 59 kDa larval antigen in the skin during larval and metamorphic periods. There was no expression before Nieuwkoop and Faber stage 53. Expression was first seen at the beginning of metamorphic stage 54, when hind limbs appear, and increased thereafter, in apical and skein cells of both trunk and tail regions. In the trunk region, expression started to decrease at stage 58, until it completely disappeared at stage 62 (metamorphic climax). In the tail skin, however, expression persisted throughout the metamorphic stages. Treatment of larvae with thyroid hormone (TH) resulted in repression of expression of the 59 kDa molecule in a dose-dependent manner. Downregulation occurred earlier in the trunk than in the tail skin. These results suggest involvement in metamorphic events of an immunological mechanism: differential expression of the larval antigen in the trunk and tail skin cells due to their differing concentration of TH results in the tail, but not the trunk skin, being selectively attacked by the newly differentiating adult-type immune system. 相似文献
16.
17.
Thyroid hormone directly induces hepatocyte competence for estrogen-dependent vitellogenin synthesis during the metamorphosis of Xenopus laevis 总被引:3,自引:0,他引:3
Hepatocytes competent for estrogen-dependent vitellogenin synthesis appeared and increased in number in the liver at the metamorphic climax of Xenopus laevis (A. Kawahara, S. Kohara, Y. Sugimoto, and M. Amano, 1987, Dev. Biol. 122, 139-145). The present study was conducted to determine whether cells competent for vitellogenin synthesis could be induced by thyroid hormone in a primary culture of larval hepatocytes. The thyroid hormone, triiodothyronine (T3), directly induced the competent cells in a primary culture of premetamorphic larval hepatocytes in a dose- and duration-dependent manner. The competency acquired in response to T3 persisted after removal of the hormone. Aphidicholin, an inhibitor of DNA synthesis, failed to block this induction, suggesting the presence of a "precursor cell fraction." This cell fraction in the hepatocyte population increased with the progress of metamorphosis. The thyroid hormone is thus considered the cause of competent cell formation at metamorphic climax. 相似文献
18.
19.
Ultrastructural changes in the intestinal connective tissue of Xenopus laevis during metamorphosis 总被引:5,自引:0,他引:5
Ultrastructural changes in the intestinal connective tissue of Xenopus laevis during metamorphosis have been studied. Throughout the larval period to stage 60, the connective tissue consists of a few immature fibroblasts surrounded by a sparse extracellular matrix: few collagen fibrils are visible except close to the thin basal lamina. At the beginning of the transition from larval to adult epithelial form around stage 60, extensive changes are observed in connective tissue. The cells become more numerous and different types appear as the collagen fibrils increase in number and density. Through gaps in the thickened and extensively folded basal lamina, frequent contacts between epithelial and connective tissue cells are established. Thereafter, with the progression of fold formation, the connective tissue cells become oriented according to their position relative to the fold structure. The basal lamina beneath the adult epithelium becomes thin after stage 62, while that beneath the larval epithelium remains thick. Upon the completion of metamorphosis, the connective tissue consists mainly of typical fibroblasts with definite orientation and numerous collagen fibrils. These observations indicate that developmental changes in the connective tissue, especially in the region close to the epithelium, are closely related spatiotemporarily to the transition from the larval to the adult epithelial form. This suggests that tissue interactions between the connective tissue and the epithelium play important roles in controlling the epithelial degeneration, proliferation, and differentiation during metamorphic climax. 相似文献