首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wu WY  Mee C  Califano F  Banki R  Wood DW 《Nature protocols》2006,1(5):2257-2262
A simple technique is presented for non-chromatographic purification of recombinant proteins expressed in Escherichia coli. This method is based on a reversibly precipitating, self-cleaving purification tag. The tag is made up of two components: an elastin-like polypeptide (ELP), which reversibly self-associates in high-salt buffers at temperatures above 30 degrees C; and an intein, which causes the ELP tag to self-cleave in response to a mild pH shift. Thus, a tripartite ELP-intein-target protein precursor can be purified by cycles of salt addition, heating and centrifugation. Once purified, intein-mediated self-cleavage, followed by precipitation of the cleaved ELP tag, allows easy and effective isolation of the pure, native target protein without the need for chromatographic separations. Recoveries of 50-100 mg of cleaved, native target protein per liter of shake-flask culture have been achieved for over a dozen proteins, typically in 8-24 h depending on specific process parameters.  相似文献   

2.
基于蛋白质内含子的蛋白质纯化自我断裂标签已经被广泛使用超过15年之久.但这一系统体内表达过程的提前断裂一直是限制这一技术广泛应用的瓶颈,特别是在需要高温表达和长表达周期的真核表达系统中.本研究介绍了一种利用小肽控制的基于蛋白质内含子和非层析标签ELP(elastin-like polypeptide)的自我断裂系统.在这一系统中,蛋白质内含子的体内外活性严格受到其结构互补小肽控制.在体内表达不含有互补小肽时,蛋白质内含子不具有活性;而在体外添加结构互补小肽,蛋白质内含子结构恢复并发生C端断裂反应释放目的蛋白.由于非层析标签ELP的引入,因此整个纯化过程可以简单地通过几步机械沉淀完成.此外,这一系统反应pH、小肽与前体蛋白之间的摩尔比及断裂速率也一并进行了系统的研究.  相似文献   

3.
High throughput methods for recombinant protein production using E. coli typically involve the use of affinity tags for simple purification of the protein of interest. One drawback of these techniques is the occasional need for tag removal before study, which can be hard to predict. In this work, we demonstrate two high throughput purification methods for untagged protein targets based on simple and cost-effective self-cleaving intein tags. Two model proteins, E. coli beta-galactosidase (βGal) and superfolder green fluorescent protein (sfGFP), were purified using self-cleaving versions of the conventional chitin-binding domain (CBD) affinity tag and the nonchromatographic elastin-like-polypeptide (ELP) precipitation tag in a 96-well filter plate format. Initial tests with shake flask cultures confirmed that the intein purification scheme could be scaled down, with >90% pure product generated in a single step using both methods. The scheme was then validated in a high throughput expression platform using 24-well plate cultures followed by purification in 96-well plates. For both tags and with both target proteins, the purified product was consistently obtained in a single-step, with low well-to-well and plate-to-plate variability. This simple method thus allows the reproducible production of highly pure untagged recombinant proteins in a convenient microtiter plate format.  相似文献   

4.
Previously, we reported a non‐chromatographic protein purification method exploiting the highly specific interaction between the dockerin and cohesin domains from Clostridium thermocellum and the reversible aggregation property of elastin‐like polypeptide (ELP) to provide fast and cost‐effective protein purification. However, the bound dockerin‐intein tag cannot be completely dissociated from the ELP‐cohesin capturing scaffold due to the high binding affinity, resulting in a single‐use approach. In order to further reduce the purification cost by recycling the ELP capturing scaffold, a truncated dockerin domain with the calcium‐coordinating function partially impaired was employed. We demonstrated that the truncated dockerin domain was sufficient to function as an effective affinity tag, and the target protein was purified directly from cell extracts in a single binding step followed by intein cleavage. The efficient EDTA‐mediated dissociation of the bound dockerin‐intein tag from the ELP‐cohesin capturing scaffold was realized, and the regenerated ELP capturing scaffold was reused in another purification cycle without any decrease in the purification efficiency. This recyclable non‐chromatographic based affinity method provides an attractive approach for efficient and cost‐effective protein purification. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:968–971, 2013  相似文献   

5.
Banki MR  Feng L  Wood DW 《Nature methods》2005,2(9):659-661
We introduce a new method for the purification of recombinant proteins expressed in Escherichia coli using self-cleaving elastin-like polypeptide (ELP) fusion tags without the need for affinity chromatography or proteolytic tag removal. Using this method we obtained high purity, activity and reasonable yields for ten diverse target proteins.  相似文献   

6.
While protein purification has long been dominated by standard chromatography, the relatively high cost and complex scale‐up have promoted the development of alternative non‐chromatographic separation methods. Here we developed a new non‐chromatographic affinity method for the purification of proteins expressed in Escherichia coli. The approach is to genetically fuse the target proteins with an affinity tag. Direct purification and recovery can be achieved using a thermo‐responsive elastin‐like protein (ELP) scaffold containing the capturing domain. Naturally occurring cohesin–dockerin pairs, which are high‐affinity protein complex responsible for the formation of cellulosome in anaerobic bacteria, were used as the model. By exploiting the highly specific interaction between the dockerin and cohesin domain from Clostridium thermocellum and the reversible aggregation property of ELP, highly purified and active dockerin‐tagged proteins, such as the endoglucanase CelA, chloramphenicol acetyl transferase (CAT), and enhanced green fluorescence protein (EGFP), were recovered directly from crude cell extracts in a single thermal precipitation step with yields achieving over 90%. Incorporation of a self‐cleaving intein domain enabled rapid removal of the affinity tag from the target proteins, which was subsequently removed by another cycle of thermal precipitation. This method offers great flexibility as a wide range of affinity tags and ligands can be used. Biotechnol. Bioeng. 2012; 109: 2829–2835. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Abstract

Despite the ever-growing demand for proteins in pharmaceutical applications, downstream processing imposes many technical and economic limitations to recombinant technology. Elastin-like polypeptides tend to aggregate reversibly at a specific temperature. These biopolymers have been joined with self-cleaving inteins to develop a non-chromatographic platform for protein purification without the need for expensive enzymatic tag removal. Following the design and expression of an ELP-intein-tagged GFP, herein, we report certain complications and setbacks associated with this protein purification system, overlooked in previous studies. Based on our results, a recovery rate of 68% was achieved using inverse transition cycling. Fluorescence intensity analysis indicated a production yield of 11?mg GFP fusion protein per liter of bacterial culture. The low expression level is attributable to several factors, such as irreversible aggregation, slipped-strand mispairing or insufficiency of aminoacyl tRNAs during protein translation of the highly repetitive ELP tag. While the goals we set out to achieve were not entirely met, a number of useful tips could be gathered as a generic means for implementing ELP-intein protein purification. Overall, we believe that such reports help clarify the exact capacity of emerging techniques and build a fairly realistic prospect toward their application.  相似文献   

8.
Elastin-like polypeptides (ELPs) undergo a reversible, soluble-to-insoluble phase transition in aqueous solution upon heating through a characteristic transition temperature (T(t)). Incorporating a terminal ELP expression tag into the gene of a protein of interest allows ELP fusion proteins to be purified from cell lysate by cycles of environmentally triggered aggregation, separation from solution by centrifugation, and resolubilization in buffer. In this study, we examine the effect of ELP length on the expression and purification of a thioredoxin-ELP fusion protein and show that reducing the size of the ELP tag from 36 to 9 kDa increases the expression yield of thioredoxin by 4-fold, to a level comparable to that of free thioredoxin expressed without an ELP tag, while still allowing efficient purification. However, truncation of the ELP tag also results in a more complex transition behavior than is observed with larger tags. For both the 36 kDa and the 9 kDa ELP tag fused to thioredoxin, dynamic light scattering showed that large aggregates with hydrodynamic radii of approximately 2 microm form as the temperature is raised to above the T(t). These aggregates persist at all temperatures above the T(t) for the thioredoxin fusion with the 36 kDa ELP tag. With the 9 kDa tag, however, smaller particles with hydrodynamic radii of approximately 12 nm begin to form at the expense of the larger, micron-size aggregates as the temperature is further raised above the T(t). Because only large aggregates can be effectively retrieved by centrifugation, efficient purification of fusion proteins with short ELP tags requires selection of solution conditions that favor the formation of the micron-size aggregates. Despite this additional complexity, our results show that the ELP tag can be successfully truncated to enhance the yield of a target protein without compromising its purification.  相似文献   

9.
Self-cleaving elastin-like protein (ELP) tags provide a very promising tool for recombinant protein purification. With this method, the target protein is purified by simple ELP-mediated precipitation steps, followed by self-cleavage and removal of the ELP tag. Unfortunately, however, inteins usually experience some level of pre-cleavage during protein expression, which can significantly decrease final yields. In this study, we solve this problem by splitting the intein into two ELP-tagged segments. Each segment is incapable of pre-cleavage alone, but the assembled segments release the target protein rapidly when assembled in vitro. The result is the very tight control of the tag cleaving reaction, combined with the simplicity of the ELP purification method. Using this system, we successfully purified four different sizes of target proteins with final yields comparable to or higher than our original contiguous intein–ELP system. Further, we demonstrate a streamlined split intein method, where cells expressing the tagged intein segments are combined prior to cell lysis, allowing the segments to be co-purified in a single reaction mixture.  相似文献   

10.
A self‐cleaving elastin‐like polypeptide (ELP) tag was used to purify the multisubunit Escherichia coli RNA polymerase (RNAP) via a simple, nonchromatographic method. To accomplish this, the RNAP α subunit was tagged with a self‐cleaving ELP‐intein tag and coexpressed with the β, β′, and ω subunits. The assembled RNAP was purified with its associated subunits, and was active and acquired at reasonable yield and purity. To remove residual polynucleotides bound to the purified RNAP, two polymer precipitation methods were investigated: polyethyleneimine (PEI) and polyethylene (PEG) precipitation. The PEG procedure was shown to enhance purity and was compatible with downstream ELP‐intein purification. Thus, this simple ELP‐based method should be applicable for the nonchromatographic purification of other recombinant, in vivo‐assembled multisubunit complexes in a single step. Further, the simplicity and low cost of this method will likely facilitate scale up for large‐scale production of additional multimeric protein targets. Finally, this technique may have utility in isolating protein interaction partners that associate with a given target.  相似文献   

11.
Proteins fused to the elastin-like polypeptide (ELP) tag can be selectively separated from crude cell extract without chromatography. To avoid the interference of the ELP tag on properties of the target protein, it is necessary to remove the ELP tag from target protein by protease digestion. Therefore, an additional chromatographic purification step is required to remove the proteases, and this is time- and labor-consuming. Here we demonstrate the utility of the ELP-tagged proteases for cleavage of ELP fusion proteins, allowing one-step removal of the cleaved ELP tag and ELP-tagged proteases without chromatography.  相似文献   

12.
We have combined Invitrogen's Gateway cloning technology with self-cleaving purification tags to generate a new system for rapid production of recombinant protein products. To accomplish this, we engineered our previously reported DeltaI-CM cleaving intein to include a Gateway cloning recognition sequence, and demonstrated that the resulting Gateway-competent intein is unaffected. This intein can therefore be used in several previously reported purification methods, while at the same time being compatible with Gateway cloning. We have incorporated this intein into a set of Gateway vectors, which include self-cleaving elastin-like polypeptide (ELP), chitin binding domain (CBD), phasin (polyhydroxybutyrate-binding), or maltose binding domain (MBD) tags. These vectors were verified by Gateway cloning of TEM-1 beta-lactamase and Escherichia coli catalase genes, and the expressed target proteins were purified using the four methods encoded on the vectors. The purification methods were unaffected by replacing the DeltaI-CM intein with the Gateway intein. It was observed that some purification methods were more appropriate for each target than others, suggesting utility of this technology for rapid process identification and optimization. The modular design of the Gateway system and intein purification method suggests that any tag and promoter can be trivially added to this system for the development of additional expression vectors. This technology could greatly facilitate process optimization, allowing several targets and methods to be tested in a high-throughput manner.  相似文献   

13.
This article describes a simple and potentially scalable microfiltration method for purification of recombinant proteins. This method is based on the fact that when an elastin-like polypeptide (ELP) is fused to a target protein, the inverse phase transition behavior of the ELP tag is imparted to the fusion protein. Triggering the phase transition of a solution of the ELP fusion protein by an increase in temperature, or isothermally by an increase in salt concentration, results in the formation of micron-sized aggregates of the ELP fusion protein. In this article, it is shown that these aggregates are efficiently retained by a microfiltration membrane, while contaminating E. coli proteins passed through the membrane upon washing. Upon reversing the phase transition by flow of Milli-Q water, soluble, pure, and functionally active protein is eluted from the membrane. Proof-of principle of this approach was demonstrated by purifying a fusion of thioredoxin with ELP (Trx-ELP) with greater than 95% recovery of protein and with greater than 95% purity (as estimated from SDS-PAGE gels). The simplicity of this method is demonstrated for laboratory scale purification by purifying Trx-ELP from cell lysate using a syringe and a disposable microfiltration cartridge. The potential scalability of this purification as an automated, continuous industrial-scale process is also demonstrated using a continuous stirred cell equipped with a microfiltration membrane.  相似文献   

14.
This paper reports an improvement in the purification of thioredoxin (Trx) expressed from E. coli by inverse transition cycling (ITC) using cationic elastin-like polypeptides (ELPs). Two ELP libraries having 2% and 5% lysine residues and molecular weights ranging from 4 to 61.1 kDa showed greater salt sensitivity in their inverse transition behavior than purely aliphatic ELPs. Expression yield of Trx-ELP fusions was an unpredictable function of guest residue composition, but reducing the molecular weight of the ELP tag generally increased Trx yield. A cationic 4.3 kDa ELP is the shortest ELP used to purify any protein by ITC to date. A 15.9 kDa ELP with a guest residue composition of K:V:F of 1:7:1 was found to be the optimal cationic tag to purify Trx, as it provided 50% greater Trx yield and only required one-fifth the added NaCl for purification of Trx as compared to previously used aliphatic ELP tags.  相似文献   

15.
In this work, we apply self-cleaving affinity tag technology to several target proteins secreted into the Escherichia coli periplasm, including two with disulfide bonds. The target proteins were genetically fused to a self-cleaving chitin-binding domain-intein tag for purification via a chitin-agarose affinity resin. By attaching the intein-tagged fusion genes to the PelB secretion leader sequence, the tagged target proteins were secreted to the periplasmic space and could be recovered in active form by simple osmotic shock. After chitin-affinity purification, the target proteins were released from the chitin-binding domain tag via intein self-cleaving. This was induced by a small change in pH from 8.5 to 6.5 at room temperature, allowing direct elution of the cleaved target protein from the chitin affinity resin. The target proteins include the E. coli maltose-binding protein and β-lactamase enzyme, as well as two human antibody fragments that contain disulfide bonds. In all cases, the target proteins were purified with good activity and yield, without the need for refolding. Overall, this work demonstrates the compatibility of the ΔI-CM intein with the PelB secretion system in E. coli, greatly expanding its potential to more complex proteins.  相似文献   

16.
Low-cost recombinant antibodies could provide a new strategy to control Foot-and-mouth disease virus (FMDV) outbreaks by passive immunization of susceptible animals. In this study, a single chain variable antibody fragment (scFv) recognizing FMDV coat protein VP1 was expressed in transgenic tobacco plants. To enhance the accumulation of scFv protein, the codon-usage of a murine hybridoma-derived scFv gene was adjusted to mimic highly expressed tobacco genes and fused to an elastin-like polypeptide (ELP) tag. This scFv–ELP fusion accumulated up to 0.8% of total soluble leaf protein in transgenic tobacco. To recover scFv–ELP protein from the leaf extract, a simple and scalable purification strategy was established. Purified scFv–ELP fusion was cleaved to separate the scFv portion. Finally, it was shown that the purified scFv proteins retained their capacity to bind the FMDV in the absence or presence of ELP fusion. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Thermally responsive elastin like polypeptides (ELPs) can be used to purify proteins from Escherichia coli culture when proteins are expressed as a fusion with an ELP. Nonchromatographic purification of ELP fusion proteins, termed inverse transition cycling (ITC), exploits the reversible soluble-insoluble phase transition behavior imparted by the ELP tag. Here, we quantitatively compare the expression and purification of ELP and oligohistidine fusions of chloramphenicol acetyltransferase (CAT), blue fluorescent protein (BFP), thioredoxin (Trx), and calmodulin (CalM) from both a 4-h culture with chemical induction of the plasmid-borne fusion protein gene and a 24-h culture without chemical induction. The total protein content and functional activity were quantified at each ITC purification step. For CAT, BFP, and Trx, the 24-h noninduction culture of ELP fusion proteins results in a sevenfold increase in the yield of each fusion protein compared to that obtained by the 4-h-induced culture, and the calculated target protein yield is similar to that of their equivalent oligohistidine fusion. For these proteins, ITC purification of fusion proteins also results in approximately 75% recovery of active fusion protein, similar to affinity chromatography. Compared to chromatographic purification, however, ITC is inexpensive, requires no specialized equipment or reagents, and because ITC is a batch purification process, it is easily scaled up to accommodate larger culture volumes or scaled down and multiplexed for high-throughput, microscale purification; thus, potentially impacting both high-throughput protein expression and purification for proteomics and large scale, cost-effective industrial bioprocessing of pharmaceutically relevant proteins.  相似文献   

18.
The demand for recombinant proteins for medical and industrial use is expanding rapidly and plants are now recognized as an efficient, inexpensive means of production. Although the accumulation of recombinant proteins in transgenic plants can be low, we have previously demonstrated that fusions with an elastin‐like polypeptide (ELP) tag can significantly enhance the production yield of a range of different recombinant proteins in plant leaves. ELPs are biopolymers with a repeating pentapeptide sequence (VGVPG)n that are valuable for bioseparation, acting as thermally responsive tags for the non‐chromatographic purification of recombinant proteins. To determine the optimal ELP size for the accumulation of recombinant proteins and their subsequent purification, various ELP tags were fused to green fluorescent protein, interleukin‐10, erythropoietin and a single chain antibody fragment and then transiently expressed in tobacco leaves. Our results indicated that ELP tags with 30 pentapeptide repeats provided the best compromise between the positive effects of small ELP tags (n = 5–40) on recombinant protein accumulation and the beneficial effects of larger ELP tags (n = 80–160) on recombinant protein recovery during inverse transition cycling (ITC) purification. In addition, the C‐terminal orientation of ELP fusion tags produced higher levels of target proteins, relative to N‐terminal ELP fusions. Importantly, the ELP tags had no adverse effect on the receptor binding affinity of erythropoietin, demonstrating the inert nature of these tags. The use of ELP fusion tags provides an approach for enhancing the production of recombinant proteins in plants, while simultaneously assisting in their purification. Biotechnol. Bioeng. 2009;103: 562–573. © 2009 Wiley Periodicals, Inc.  相似文献   

19.
Protein purification of recombinant proteins constitutes a significant cost of biomanufacturing and various efforts have been directed at developing more efficient purification methods. We describe a protein purification scheme wherein Ralstonia eutropha is used to produce its own “affinity matrix,” thereby eliminating the need for external chromatographic purification steps. This approach is based on the specific interaction of phasin proteins with granules of the intracellular polymer polyhydroxybutyrate (PHB). By creating in-frame fusions of phasins and green fluorescent protein (GFP) as a model protein, we demonstrated that GFP can be efficiently sequestered to the surface of PHB granules. In a second step, we generated a phasin-intein-GFP fusion, wherein the self-cleaving intein can be activated by the addition of thiols. This construct allowed for the controlled binding and release of essentially pure GFP in a single separation step. Finally, pure, active β-galactosidase was obtained in a single step using the above described method.  相似文献   

20.
Affinity purification of plasmid DNA by temperature-triggered precipitation   总被引:4,自引:0,他引:4  
This report describes a new plasmid DNA purification method, which takes advantage of the DNA-binding affinity and specificity of the bacterial metalloregulatory protein MerR, and of the temperature responsiveness of elastin-like proteins (ELPs). Upon increasing the temperature, ELP undergoes a reversible phase transition from water-soluble forms into aggregates, and this property was exploited for the precipitation of plasmid DNA containing the MerR recognition sequence by a simple temperature trigger. In one purification step, plasmid DNA was purified from E. coli cell lysates to a better purity than that prepared by a standard alkaline purification method, with no contaminating chromosomal DNA and cellular proteins. This protein-based approach, in combination with the reversible phase transition feature of ELP, makes the outlined method a promising candidate for large-scale purification of plasmid DNA for sensitive applications such as nonviral gene therapy or DNA vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号