首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fluoroquinolone Rufloxacin (RFX) is active as specific inhibitor of bacterial gyrase. The adverse effects of the photosensitization induced by fluoroquinolones are well known. A predominant type II photosensitizing activity of Rufloxacin has already been demonstrated on simpler models (free nucleosides, calf thymus DNA), whereas a cooperative mechanism was corroborated on more complex ones (plasmid and fibroblast). The purpose of this study is to examine the drug photocytoxicity in another complex cellular model, a wild-type eukaryotic fast-growing microorganism whose cultivation is cheap and easily managed, Saccharomyces cerevisiae. This work represents the first report of the potential photogenotoxicity of Rufloxacin. Particular emphasis was given to DNA modifications caused in yeast by the formation of Rufloxacin photomediated toxic species, such as hydrogen peroxide and formaldehyde. Drug phototoxicity on yeast was evaluated by measuring DNA fragmentation (single/double strand breaks) using single cell gel electrophoresis assay and 8-OH-dGuo, a DNA photooxidation biomarker, by HPLC-ECD. Cellular sensitivity was also assessed by cell viability test. The extra- and intracellular RFX concentration (as well as its main photoproduct) was verified by HPLC-MS, whereas the cytotoxic species were evaluated by colorimetric assays. The results confirm the phototoxicity of Rufloxacin on yeast cell and are in agreement with those previously obtained with human fibroblast and with simpler models used recently, and provide a clear link between DNA photosensitization and overall phototoxicity.  相似文献   

2.
Using the plasmid relaxation assay, the induction of single strand breaks (SSB) and base damages was investigated in air-dried plasmid DNA irradiated under air or under vacuum, with two high LET particles. We first observed that an irradiation with 12C5+ ion produced less of both damages when performed in a vacuum rather than in the presence of air. This could be due to the presence of O2 which increases the primary radicalar effects in the latter case. Another explanation is a difference in the degree of hydration of the DNA molecules. Indeed, under vacuum only the water molecules tightly bound to DNA will persist. In contrast, in the presence of air, the outer hydration shell enhances the amount of hydroxyl radicals available for the radiolytic attack. However, no difference in the SSB induction was observed when DNA was irradiated with 36S16+ ion in the presence of air or under vacuum. This is likely due to the LET effect which partly cancels the production of radicals by recombination and increases the formation of superoxide anions in the track. Similarly, the lower induction of damage by 36S16+ irradiation in comparison with the 12C5+ ion is a consequence of the higher ionizing density for 36S16+ than for 12C5+ ions. Meanwhile, for both ions, base damages are not detected when DNA is irradiated under vacuum, whereas they are as frequent as SSB when irradiation is performed in the presence of air. Altogether, these observations support the idea that SSB and base damage are not formed by the same mechanism.  相似文献   

3.
Thioredoxin (Trx) plays important biological roles both intra- and extracellularly via thiol redox control. We have previously demonstrated that Trx exhibited protective effects against UVA cytotoxicity in human skin fibroblasts. As an extension of the latter investigation, the present work is aimed at assessing ability of Trx to maintain genomic integrity in human skin fibroblasts upon exposure to UVA radiation. Indeed, UVA (320--380 nm) is mutagenic and induces genomic damage to skin cells. The alkaline comet assay was used in association with DNA repair enzyme including formamido pyrimidine glycosylase (Fpg) and endonuclease III (endo III) to estimate the amount of modified bases together with the level of strand breaks and alkali-labile sites. The HPLC-EC assay was applied to assess 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) levels and to permit the calibration of comet assay as previously described. We reported that overexpression of human Trx (transient transfection) as well as exogenous human recombinant Trx added to the culture medium, decreased the level of DNA damage in UVA irradiated cells. Interestingly, transfection appeared to prevent UVA-induced 8-oxodGuo (3.06 au per Joules.cm(-2) compared to 4.94 au per Joules.cm(-2) for nontransfected cells). Moreover, Trx accumulates into nuclei in transfected cells. This finding supports the notion that Trx is important for the maintenance of the integrity of genetic information. This work demonstrated that under conditions of UVA oxidative stress, Trx prevented the UVA-induced DNA damage.  相似文献   

4.
The effect of ferulic acid was studied on γ-radiation-induced relaxation of plasmid pBR322 DNA and induction of DNA strand breaks in peripheral blood leukocytes and bone marrow cells of mice exposed to whole body γ-radiation. Presence of 0.5 mM ferulic acid significantly inhibited the disappearance of supercoiled (ccc) plasmid pBR322 with a dose modifying factor (DMF) of 2.0. Intraperitoneal administration of different amounts (50, 75 and 100 mg/kg body weight) of ferulic acid 1 h prior to 4 Gy γ-radiation exposure showed dose-dependent decrease in the yield of DNA strands breaks in murine peripheral blood leukocytes and bone marrow cells as evidenced from comet assay. The dose-dependent protection was more pronounced in bone marrow cells than in the blood leukocytes. It was observed that there was a time-dependent disappearance of radiation induced strand breaks in blood leukocytes (as evidenced from comet parameters) following whole body radiation exposure commensuration with DNA repair. Administration of 50 mg/kg body weight of ferulic acid after whole body irradiation of mice resulted disappearance of DNA strand breaks at a faster rate compared to irradiated controls, suggesting enhanced DNA repair in ferulic acid treated animals. (Mol Cell Biochem xxx: 209–217, 2005)  相似文献   

5.
To study possible genotoxic effects of occupational exposure to vanadium pentoxide, we determined DNA strand breaks (with alkaline comet assay), 8-hydroxy-2'deoxyguanosine (8-OHdG) and the frequency of sister chromatid exchange (SCE) in whole blood leukocytes or lymphocytes of 49 male workers employed in a vanadium factory in comparison to 12 non-exposed controls. In addition, vanadate has been tested in vitro to induce DNA strand breaks in whole blood cells, isolated lymphocytes and cultured human fibroblasts of healthy donors at concentrations comparable to the observed levels of vanadium in vivo. To investigate the impact of vanadate on the repair of damaged DNA, co-exposure to UV or bleomycin was used in fibroblasts, and DNA migration in the alkaline and neutral comet assay was determined. Although, exposed workers showed a significant vanadium uptake (serum: median 5.38microg/l, range 2.18-46.35microg/l) no increase in cytogenetic effects or oxidative DNA damage in leukocytes could be demonstrated. This was consistent with the observation that in vitro exposure of whole blood leukocytes and lymphocytes to vanadate caused no significant changes in DNA strand breaks below concentrations of 1microM (50microg/l). In contrast, vanadate clearly induced DNA fragmentation in cultured fibroblasts at relevant concentrations. Combined exposure of fibroblasts to vanadate/UV or vanadate/bleomycin resulted in non-repairable DNA double strand breaks (DSBs) as seen in the neutral comet assay. We conclude that exposure of human fibroblasts to vanadate effectively causes DNA strand breaks, and co-exposure of cells to other genotoxic agents may result in persistent DNA damage.  相似文献   

6.
用简化的Kohn氏碱洗脱法,观察了光敏剂血卟啉衍生物(HPD)对小鼠S-180肿瘤细胞DNA单链断裂及其重接修复的影响。激光HPD能导致S-180细胞DNA单链断裂明显增加,而且这种断裂随着保温时间的延长,继续增多。在本实验条件下没有观察到HPD对X线的增敏作用,HPD不能增加X线所致的DNA单链断裂,也不能影响其重接。单链断裂重接动力学的实验进一步证明了这个论点。  相似文献   

7.
We have gamma-irradiated plasmid DNA in aqueous solution in the presence of submillimolar concentrations of the ligand tetra-arginine. Depending upon the ionic strength, under these conditions, the plasmid can adopt a highly compacted and aggregated form which attenuates by some two orders of magnitude the yield of damage produced by the indirect effect. The yields of DNA single- and double-strand breaks (SSB and DSB) which result are closely comparable with those produced in living cells. The radical lifetimes, diffusion distances, and track structure are expected to be similarly well reproduced. After irradiation, the aggregation was reversed by adjusting the ionic conditions. The approximate spatial distribution of the resulting DNA damage was then assayed by comparing the increases in the SSB and DSB yields produced by a subsequent incubation with limiting concentrations of the eukaryotic base excision repair enzymes formamidopyrimidine-DNA N-glycosylase (the FPG protein) and endonuclease III. Smaller increases in DSB yields were observed in the plasmid target that was irradiated in the condensed form. By modeling the spatial distribution of DNA damage, this result can be interpreted in terms of a greater extent of damage clustering.  相似文献   

8.
The frequency of cells with chromosome aberrations and the number of aberrations per cell have been studied by metaphase analysis in the nonirradiated progeny of irradiated human blood lymphocytes. DNA fragmentation (DNA double-stranded breaks) has been investigated by DNA comet assay. To study the adaptive response (AR), PHA-stimulated lymphocytes were irradiated by the adaptive dose (0.05 Gy) in 24 h and by challenge dose (1 Gy) in 48 h after stimulation. The first through fourth mitoses were identified by 5-bromodeoxyuridine. It was found that the frequency of chromosome aberrations and double-strand breaks were increased in all mitotic cycles after the challenge irradiation. In most individuals, the adaptive response is induced by adaptive and challenge irradiations in the first and the second mitotic cycles (48 and 72 h after stimulation, respectively); however, it is absent in the third and the fourth mitoses. In the first mitosis (1Gy in 48 h after stimulation), only chromatid aberrations are observed; chromosome aberrations were registered in subsequent mitoses. DNA comet assay showed that the adaptive response was obvious at 48–72 h, but not 96 h, after stimulation. It can be concluded that the nonirradiated progeny of irradiated lymphocytes have genomic instability. The adaptive response is manifested up to the third mitosis and is explained by the decreasing number of chromatid and chromosome aberrations and DNA fragmentation. We suppose that double-stranded DNA breaks may be damage signals for the induction of adaptive response.  相似文献   

9.
Previous in vivo studies showed the combination pentoxifylline (PTX) and alpha-tocopherol was highly efficient in reducing late radiation-induced skin damage. The present work aimed at investigating the molecular and cellular mechanisms involved in the effects of this combination. Primary cultures of confluent dermal fibroblasts were gamma-irradiated in the presence of PTX and trolox (Tx), the water-soluble analogue of alpha-tocopherol. Drugs were added either before or after radiation exposure and were maintained over time. Their antioxidant capacity and their effect on radiation-induced ROS production was assessed together with cell viability and clonogenicity. DNA damage formation was assessed by the alkaline comet assay and by the micronucleus (MN) test. Cell cycle distribution was also determined. The combination of PTX/ Tx was shown to reduce both immediate and late ROS formation observed in cells after irradiation. Surprisingly, decrease in DNA strand breaks measured by the comet assay was observed any time drugs were added. In addition, the micronucleus test revealed that for cells irradiated with 10 Gy, a late significant increase in MN formation occurred. The combination of PTX/Tx was shown to be antioxidant and to decrease radiation-induced ROS production. The observed effects on DNA damage at any time the drugs were added suggest that PTX/Tx could interfere with the DNA repair process.  相似文献   

10.
The induction and disappearance of DNA single-strand breaks (SSB) in human peripheral blood lymphocytes (PBL) and fibroblasts exposed to methyl methanesulfonate (MMS) were investigated by using the alkaline filter elution assay. In the two cell types, identical amounts of SSB were induced during a 45-min treatment with a given dose of MMS. In quiescent PBL only 9 +/- 4% (mean +/- SD) of the induced SSB had disappeared at 1 h after exposure, whereas in phytohemagglutinin-stimulated PBL, 23 +/- 12% disappeared within the same repair period. The percentage SSB disappearance in confluent fibroblasts was 25 +/- 2% at 1 h after exposure. As in PBL, the percentage SSB disappearance in fibroblasts appeared to be proliferation-dependent; actively dividing fibroblasts removed 50 +/- 12% of the MMS-induced SSB during the 1-h repair period. The accumulation of SSB in PBL, but not in fibroblasts, during MMS exposure in the presence of the excision-repair inhibitor 1-beta-D-arabinofuranosylcytosine indicated the utilization of different repair pathways in these two cell types. The generally lower rate of disappearance of MMS-induced SSB in PBL as compared to fibroblasts correlated with an increased loss of cell viability, measured by determining the incorporation of [3H]thymidine.  相似文献   

11.
In spite of being one of the first vitamins to be discovered, the full range of biological activities of Vitamin A remains incomplete. A growing body of evidence has demonstrated an apparent enhancement of carcinogenesis, induced by dietary retinol. Since DNA damage is a well-recognized inducer of carcinogenesis, the aim of this study was to test the possible genotoxic effect of dietary retinol, using different types of bioassays. Retinol caused an increased recombinogenic activity in Drosophila melanogaster larvae as measured by the SMART test. In mammalian cell cultures, retinol supplementation-induced DNA double-strands breaks (DSB) and single-strands breaks (SSB), cell cycle progression and proliferative focus formation in terminal-differentiated rat Sertoli cells and increased DNA fragmentation in Chinese hamster lung fibroblasts (V79 cells), as measured by the comet assay. Altogether, our results suggest that retinol causes DNA damage and chromosomal rearrangements, which may disturbs key physiological processes and lead to cell cycle progression and preneoplasic transformation of terminal-differentiated mammalian cells.  相似文献   

12.
It is assumed that the efficient antitumor activity of calicheamicin gamma1 is mediated by its ability to introduce DNA double-strand breaks in cellular DNA. To test this assumption we have compared calicheamicin gamma1-mediated cleavage of cellular DNA and purified plasmid DNA. Cleavage of purified plasmid DNA was not inhibited by excess tRNA or protein indicating that calicheamicin gamma1 specifically targets DNA. Cleavage of plasmid DNA was not affected by incubation temperature. In contrast, cleavage of cellular DNA was 45-fold less efficient at 0 degrees C as compared to 37 degrees due to poor cell permeability at low temperatures. The ratio of DNA double-strand breaks (DSB) to single-stranded breaks (SSB) in cellular DNA was 1:3, close to the 1:2 ratio observed when calicheamicin gamma1 cleaved purified plasmid DNA. DNA strand breaks introduced by calicheamicin gamma1 were evenly distributed in the cell population as measured by the comet assay. Calicheamicin gamma1-induced DSBs were repaired slowly but completely and resulted in high levels of H2AX phosphorylation and efficient cell cycle arrest. In addition, the DSB-repair deficient cell line Mo59J was hyper sensitive to calicheamicin gamma. The data indicate that DSBs is the crucial damage after calicheamicin gamma1 and that calicheamicin gamma1-induced DSBs are recognized normally. The high DSB:SSB ratio, specificity for DNA and the even damage distribution makes calicheamicin gamma1 a superior drug for studies of the DSB-response and emphasizes its usefulness in treatment of malignant disease.  相似文献   

13.
HEMA (2-hydroxyethyl methacrylate), a methacrylate commonly used in dentistry, was reported to induce genotoxic effects, but their mechanism is not fully understood. HEMA may be degraded by the oral cavity esterases or through mechanical stress following the chewing process. Methacrylic acid (MAA) is the primary product of HEMA degradation. In the present work we compared cytotoxic and genotoxic effects induced by HEMA and MAA in human gingival fibroblasts (HGFs). A 6-h exposure to HEMA or MAA induced a weak decrease in the viability of HGFs. Neither HEMA nor MAA induced strand breaks in the isolated plasmid DNA, but both compounds evoked DNA damage in HGFs, as evaluated by the alkaline comet assay. Oxidative modifications to the DNA bases were monitored by the DNA repair enzymes Endo III and Fpg. DNA damage induced by HEMA and MAA was not persistent and was removed during a 120 min repair incubation. Results from the neutral comet assay indicated that both compounds induced DNA double strand breaks (DSBs) and they were confirmed by the γ-H2AX assay. Both compounds induced apoptosis and perturbed the cell cycle. Therefore, methacrylic acid, a product of HEMA degradation, may be involved in its cytotoxic and genotoxic action.  相似文献   

14.
Recovery of the cell cycle in cells A 431 and in human embryo fibroblasts (EFH) differs much. Unlike EFH, A 431 cells have: 1) synchronized exit of cells from G1 into S phase after 5 Gr irradiation; 2) G2-block; 3) much less manifestation of these two phenomena in the presence of EGF; 4) a lesser effectiveness of the repair of DNA single-strand breaks. EGF stimulation of the repair of radiation-induced DNA lesions, SSB in particular, may be of great importance for the postirradiation cell cycle recovery.  相似文献   

15.
Ultraviolet Al (UVA1) radiation generates reactive oxygen species and the oxidative stress is known as a mediator of DNA damage and of apoptosis. We exposed cultured human cutaneous fibroblasts to UVA1 radiation (wavelengths in the 340–450-nm range with emission peak at 365 nm) and, using the alkaline unwinding method, we showed an immediate significant increase of DNA strand breaks in exposed cells. Apoptosis was determined by detecting cytoplasmic nucleosomes (enzyme-linked immunosorbent assay method) at different time points in fibroblasts exposed to different irradiation doses. In our conditions, UVA1 radiation induced an early (8 h) and a delayed (18 h) apoptosis. Delayed apoptosis increased in a UVA dosedependent manner. Zinc is an important metal for DNA protection and has been shown to have inhibitory effects on apoptosis. The addition of zinc (6.5 mg/L) as zinc chloride to the culture medium significantly decreased immediate DNA strand breaks in human skin fibroblasts. Moreover, zinc chloride significantly decreased UVA1-induced early and delayed apoptosis. Thus, these data show for the first time in normal cutaneous cultured cells that UVA1 radiation induces apoptosis. This apoptosis is biphasic and appears higher 18 h after the stress. Zinc supplementation can prevent both immediate DNA strand breakage and early and delayed apoptosis, suggesting that this metal could be of interest for skin cell protection against UVA1 irradiation.  相似文献   

16.
Cryptosporidium parvum is a well-known waterborne intracellular protozoan that causes severe diarrheal illness in immunocompromised individuals. This organism is highly resistant to harsh environmental conditions and various disinfectants, and it exhibits one of the highest known resistances to gamma irradiation. We investigated rejoining of gamma-ray-induced DNA damage in C. parvum by neutral comet assay. Oocysts were gamma irradiated at various doses (1, 5, 10, and 25 kGy) and were incubated for various periods (6-96 h) after exposure to 10 kGy. The comet tail moment showed that the number of DNA double-strand breaks increased concomitantly with the gamma irradiation dose. When investigating rejoining after irradiation at 10 kGy, double-strand breaks peaked at 6 h postirradiation, and rejoining was highest at 72 h postirradiation. The observed rejoining pattern suggests that repair process occurs slowly even when complex DNA double-strand breaks in C. parvum were induced by high dose irradiation, 10 kGy.  相似文献   

17.
Impact of the comet assay in radiobiology   总被引:1,自引:0,他引:1  
Until the development of single cell gel electrophoresis methods in the 1980s, measurement of radiation-induced DNA strand breaks in individual cells was limited to detection of micronuclei or chromosome breaks that measured the combined effects of exposure and repair. Development of methods to measure the extent of migration of DNA from single cells permitted detection of initial radiation-induced DNA breaks present in each cell. As cells need not be radiolabeled, there were new opportunities for analysis of radiation effects on cells from virtually any tissue, provided a single cell suspension could be prepared. The comet assay (as this method was subsequently named) was able to measure, for the first time, the fraction of radiobiologically hypoxic cells in mouse and human tumors. It was used to determine that the rate of rejoining of DNA breaks was relatively homogenous within an irradiated population of cells. Because individual cells were analyzed, heavily damaged or apoptotic cells could be identified and eliminated from analysis to determine "true" DNA strand break rejoining rates. Other examples of applications of the comet assay in radiobiology research include analysis of the inter-individual differences in response to radiation, effect of hypoxia modifying agents on tumor hypoxic fraction, the role of cell cycle position during DNA break induction and rejoining, non-targeted effects on bystander cells, and effects of charged particles on DNA fragmentation patterns.  相似文献   

18.
The co-genotoxic effects of cadmium are well recognized and it is assumed that most of these effects are due to the inhibition of DNA repair. We used the comet assay to analyze the effect of low, non-toxic concentrations of CdCl2 on DNA damage and repair-induced in Chinese hamster ovary (CHO) cells by UV-radiation, by methyl methanesulfonate (MMS) and by N-methyl-N-nitrosourea (MNU). The UV-induced DNA lesions revealed by the comet assay are single-strand breaks which are the intermediates formed during nucleotide excision repair (NER). In cells exposed to UV-irradiation alone the formation of DNA strand breaks was rapid, followed by a fast rejoining phase during the first 60 min after irradiation. In UV-irradiated cells pre-exposed to CdCl2, the formation of DNA strand breaks was significantly slower, indicating that cadmium inhibited DNA damage recognition and/or excision. Methyl methanesulfonate and N-methyl-N-nitrosourea directly alkylate nitrogen and oxygen atoms of DNA bases. The lesions revealed by the comet assay are mainly breaks at apurinic/apyrimidinic (AP) sites and breaks formed as intermediates during base excision repair (BER). In MMS treated cells the initial level of DNA strand breaks did not change during the first hour of recovery; thereafter repair was detected. In cells pre-exposed to CdCl2 the MMS-induced DNA strand breaks accumulated during the first 2h of recovery, indicating that AP sites and/or DNA strand breaks were formed but that further steps of BER were blocked. In MNU treated cells the maximal level of DNA strand breaks was detected immediately after the treatment and the breaks were repaired rapidly. In CdCl2 pre-treated cells the formation of MNU-induced DNA single-strand breaks was not affected, while the repair was slower, indicating inhibition of polymerization and/or the ligation step of BER. Cadmium thus affects the repair of UV-, MMS- and MNU-induced DNA damage, providing further evidence, that inhibition of DNA repair is an important mechanism of cadmium induced mutagenicity and carcinogenicity.  相似文献   

19.
Due to the need for in vivo photo-genotoxicity tests, the in vivo photo-comet assay was established in epidermal cells of the SKH-1 mouse. Groups of 10 male SKH-1 mice each were treated once orally with vehicle only, with three fluoroquinolones (25 mg/kg clinafloxacin, 20 mg/kg lomefloxacin, 200 mg/kg ciprofloxacin) or with 200mg/kg 8-methoxypsoralene (8-MOP). Thirty minutes after treatment half of the mice in each group were exposed to 23.8 J/cm2 UVA. Thereafter the mice were killed and their epidermal cells tested in the alkaline (pH >13) comet assay; at the same time after administration, compound-treated, non-irradiated mice were killed and analysed. A negative control group of ten male SKH-1 mice received the vehicle only; half of these animals were exposed to UVA, half were not. The comet tail lengths of epidermal cells of the mice were statistically significantly increased for all three fluoroquinolones (FQ) tested in combination with UV irradiation. Treatment with 8-methoxypsoralene+UV induced a significant reduction of comet tail length. Tail intensity and tail moment gave essentially the same results after combined exposure (compound+UV). Without irradiation, the tail lengths of controls and compound-treated mice were comparable under the conditions of this study. In contrast, tail intensity and tail moment were increased for all test compounds (including 8-MOP), without irradiation. Irradiated controls had a tail length comparable to non-irradiated controls, while tail intensity and tail moment were clearly increased in irradiated controls. In conclusion: under the present experimental conditions the in vivo photo-comet assay is able to detect photo-chemically induced DNA strand breaks as well as photo-chemically induced DNA cross-links.  相似文献   

20.
Astrocytes, the most common cell type in the brain, play a principal role in the repair of damaged brain tissues during external radiotherapy of brain tumours. As a downstream gene of p53, the effects of Krüppel‐like factor 4 (KLF4) in response to X‐ray‐induced DNA damage in astrocytes are unclear. In the present study, KLF4 expression was upregulated after the exposure of astrocytes isolated from the murine brain. Inhibition of KLF4 expression using lentiviral transduction produced less double‐strand DNA breaks (DSB) determined by a neutral comet assay and flow cytometric analysis of phosphorylated histone family 2A variant and more single‐strand DNA breaks (SSB) determined by a basic comet assay when the astrocytes were exposed to 4 Gy of X‐ray radiation. These data suggest that radiation exposure of the tissues around brain tumour during radiation therapy causes KLF4 overexpression in astrocytes, which induces more DSB and reduces SSB. This causes the adverse effects of radiation therapy in the treatment of brain tumours. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号