首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Strip-shaped projections are present at the cytoplasmic faceof the outer membrane of the generative cell in Amaryllis belladonna.This outer membrane is actually the inner plasma membrane ofthe vegetative cell which surrounds the generative cell. Theprojections are situated in groups and arranged parallel toeach other. Their predominant orientation is perpendicular tothe long axis of the generative cell. The projections are approximately35 nm high, and on average equally spaced 40 nm apart. Theirmaximum observed length, estimated from grazing sections ofgenerative cells, is 250 nm. Generative cell, outer membrane, Amaryllis belladonna, ultrastructure  相似文献   

2.
High-resolution electron microscopic investigation of cholesterol monohydrate crystals obtained from human atheroma was carried out for the purpose of characterization of the crystal lattice, demonstration of crystallization processes and identification of crystal disorders. By high-resolution electron microscopy the crystal structures of perfect cholesterol monohydrate crystals were characterized as regular lattice arrays which consisted of stacks of repetitive rod-shaped substructures ca 1.58 nm long and 0.16 nm wide, with the total thickness of bilayered substructures ca 3.36 nm. These substructures were in an end-to-end arrangement of approximately side-to-side parallel packing, with a centre-to-centre spacing ca 0.32 nm. At the atomic level the lattice arrays were made up of regularly spaced rows of dots ca 0.28 nm × 0.16 nm in size. These dots possessed a six-fold ring-like shape, and were arranged in a hexagonal structure with an additional dot in the centre. High-resolution electron microscopic observations of the partially crystallized particles of cholesterol monohydrate showed various stages of cholesterol crystallization, from very small short-ordered segment of lattice arrays to different sized nano- and microcrystallites in the amorphous matrix of the crystals. Furthermore, crystal growth was also demonstrated from detailed examination of the crystal surfaces, the interfaces between the crystals and the boundary structures between the amorphous and crystalline phases. In addition, high-resolution electron microscopy could clearly identify various kinds of crystal defect in the cholesterol monohydrate crystals, including considerable variations of lattice spacings with focal fragmentation of lattice fringes, derangement of atom-sized dots along the lattice fringes and marked alterations of the morphology of atom-sized dots with the vacancies along the lattice arrays. It is hoped that such information obtained from high-resolution electron microscopic observations of the crystalline cholesterol in human atheroma at the atomic or near-atomic level may be helpful by providing a more complete understanding of the pathogenetic mechanisms responsible for the formation, progression and regression of the acellular lipid-rich cores of advanced atherosclerotic plaques.  相似文献   

3.
Membrane crystals have been prepared from mitochondrial ubiquinol: cytochrome c reductase by mixing the enzyme-Triton complex with phospholipid-Triton micelles and subsequently removing the Triton. The electron micrographs of the negatively stained crystals diffract to 2·5 nm, with unit cell dimensions of 13·7 nm by 17·4 nm. The enzyme is arranged in a two-sided plane group P22121, i.e. alternate molecules span the bilayer in an up and down manner. By combining tilted views of the membrane crystals, a low-resolution three-dimensional structure of the enzyme has been calculated. The structure shows that the enzyme is a dimer, the monomers being related by a 2-fold axis running perpendicular to the membrane. The monomeric units of the enzyme are elongated, extending approximately 15 nm across the membrane. The protein is unequally distributed with about 30% of the total mass located in the bilayer, 50% in a section which extends 7 nm from one side of the bilayer and 20% in a section which extends 3 nm from the opposite side of the bilayer. The two monomeric units are in contact only in the membraneous section. This structure is compared with a model of the enzyme which is derived from biochemical properties of the isolated subunits.  相似文献   

4.
Fine Structure of Thermus aquaticus, an Extreme Thermophile   总被引:3,自引:1,他引:2       下载免费PDF全文
Electron microscopic studies using thin sections revealed that Thermus aquaticus has a structure similar to that of most other gram-negative bacteria. The cell envelope is tripartite: plasma membrane, thin middle layer, and a thicker and irregular outer layer. The outer layer appears to be joined to the plasma membrane by a series of connections and, when seen in tangential section, the outer layer appears as a series of parallel bands. The cell division mechanism resembles that of typical gram-negative bacteria. Large spherical bodies designated “rotund bodies” are formed as a result of the association of a number of separate cells. In this association the outer envelope layers of the cells fuse and pull away from the middle layer. The rotund body thus appears as a series of rods, usually lying in parallel around the periphery of the sphere, completely connected by means of the fused outer layer.  相似文献   

5.
Xenorhabdus nematophilus secretes a large number of proteins into the culture supernatant as soluble proteins and also as large molecular complexes associated with the outer membrane. Transmission electron micrographs of X. nematophilus cells showed that there was blebbing of the outer membrane from the surface of the bacterium. The naturally secreted outer membrane vesicles (OMVs) were purified from the culture supernatant of X. nematophilus and analyzed. Electron microscopy revealed a vesicular organization of the large molecular complexes, whose diameters varied from 20 to 100 nm. A sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile of the vesicles showed that in addition to outer membrane proteins, several other polypeptides were also present. The membrane vesicles contained lipopolysaccharide, which appeared to be of the smooth type. Live cells of X. nematophilus and the OMV proteins derived from them exhibited oral insecticidal activity against neonatal larvae of Helicoverpa armigera. The proteins present in the OMVs are apparently responsible for the biological activity of the OMVs. The soluble proteins left after removal of the OMVs and the outer membrane proteins also showed low levels of oral toxicity to H. armigera neonatal larvae. The OMV protein preparations were cytotoxic to Sf-21 cells in an in vitro assay. The OMV proteins showed chitinase activity. This is the first report showing toxicity of outer membrane blebs secreted by the insect pathogen X. nematophilus into the extracellular medium.  相似文献   

6.
The cell of Pyrocystis spp. is covered by an outer layer of material resistant to strong acids and bases. Internal to this layer much of the cell wall is composed of cellulose fibrils. The presence of cellulose fibrils was established by staining raw and ultra-violet–peroxide-cleaned cell walls and by combining X-ray diffraction spectroscopy with electron microscope observation. Carbon replicas of freeze-etched preparations and thin sections of P. lunula walls show outer layers, inside them ca. 24 layers of crossed parallel cellulose fibrils (4–5 nm thick, ca. 12 nm wide), then a region of smaller (ca. 6–12 nm diameter) fibrils in a disperse texture, and then the plasma membrane. Cellulose fibrils in the parallel texture are constructed of 3–5 elementary fibrils ca. 3 nm in diameter. Walls of P. fusiformis and P. pseudonctiluca also have cellulose fibrils in a crossed parallel texture similar to those of P. lunula. The Gymnodinium-type swarmer from lunate P. lunula appears to have a cell wall ultrastructure typical of other “naked” dinoflagellates.  相似文献   

7.
V. R. Franceschi 《Protoplasma》1984,120(3):216-223
Summary Sugar beet (Beta vulgaris L.) leaf has a layer of cells extended laterally between the palisade parenchyma and spongy mesophyll that develop numerous small crystals (crystal sand) within their vacuoles. Solubility studies and histochemical staining indicate the crystals are calcium oxalate. The crystals are deposited within the vacuoles early during leaf development, and at maturity the cells are roughly spherical in shape and 2 to 3 times larger than other mesophyll cells. Crystal deposition is preceeded by formation of membrane vesicles within the vacuole. The membranes are synthesizedde novo in the vacuole and have a typical trilaminate structure as viewed with the TEM. The membranes are formed within paracrystalline aggregates of tubular particles (6–8nm outer diameter) as membrane sheets, but are later organized into chambers or vesicles. Calcium oxalate is then precipitated within the membrane chambers. The tubular particles involved in membrane synthesis are usually present in the vacuoles of mature crystal cells, but in very small amounts.  相似文献   

8.
The three-dimensional structure of the regular surface protein (p4 symmetry, lattice constant a = b = 10.5 nm) of Comamonas acidovorans has been determined to a resolution of about 1.5 nm by means of electron microscopy and image processing. Three-dimensional reconstructions were performed using native outer membranes and artificial two-dimensional crystals of the surface protein, which was selectively solubilized by deoxycholate and recrystallized on carbon films. The two-fold symmetric morphological complex is composed of two identical monomers which are in tight contact with the outer membrane and presumably anchored to it by a small hydrophobic domain.  相似文献   

9.
Numerous protein plaques cover the apical surface of mammalian urinary bladder epithelial cells. These plaques contain four integral membrane proteins, called uroplakins, which form a well-ordered array of hexameric complexes. The 3D structure of these naturally occurring 2D crystals was studied by cryo-electron-crystallographic methods using a slow-scan charged-coupled device (CCD) camera to record the electron micrographs. A 1.2 nm projection map calculated from untilted crystals shows that each hexamer comprises a ring of six inner and six outer domains at a radius of 5.7 nm and 9.2 nm respectively. The 3D structure shows that the mass is distributed strongly asymmetrically with respect to the membrane, with most of the mass protruding from the luminal face. Both domains in the asymmetric unit traverse the membrane and protrude from the membrane on the cytoplasmic side. On the luminal side, the two domains are bridged forming a stretched arc. The total thickness of the complex is about 13.2 nm. A model of the urothelial plaque reveals that contacts between the hexamers are much less extended than within the hexamers.  相似文献   

10.
Electron microscope and electron diffraction studies of developing embryonic bovine enamel have revealed the organization of the organic matrix and the inorganic crystals. The most recently deposited inorganic crystals located at the ameloblast-enamel junction are thin plates, approximately 1300 A long, 400 A wide, and 19 A thick. During maturation of the enamel, crystal growth occurs primarily by an increase in crystal thickness. Statistical analyses failed to show a significant change in either the width or the length of the crystals during the period of maturation studied. Even in the earliest stages of calcification, the crystals are organized within the prisms so that their long axes (c-axes) are oriented parallel to the long axes of the prisms but randomly distributed about their long axes. With maturation of the enamel, the crystals become more densely packed and more highly oriented within the prisms. The organic matrix in decalcified sections of enamel is strikingly similar in its over-all organization to that of the fully mineralized tissue. When viewed in longitudinal prism profiles, the intraprismatic organic matrix is composed of relatively thin dense lines, approximately 48 A wide, which are relatively parallel to each other and have their fiber axes parallel to the long axes of the prisms within which they are located. Many of these dense lines, which have the appearance of thin filaments, are organized into doublets, the individual 48 A wide filaments of the doublets being separated by approximately 120 A. When observed in oblique prism profiles, the intraprismatic organic matrix is likewise remarkably similar in general orientation and organization to that of the fully mineralized tissue. Moreover, the spaces between adjacent doublets or between single filaments have the appearance of compartments. These compartments, more clearly visualized in cross- or near cross-sectional prism profiles, are oval or near oval in shape. Therefore, the appearance of the intraprismatic organic matrix (in longitudinal, oblique, and cross-sectional prism profiles) indicates that it is organized into tubular sheaths which are oriented with their long axes parallel to the long axes of the prisms in which they are located, but randomly oriented about their own long axes, an orientation again remarkably "blue printing" that of the inorganic crystals. The predominant feature of the walls of the tubular sheaths, when viewed in cross- or near cross-section, is that of continuous sheets, although in many cases closely packed dot-like structures of approximately 48 A were also observed, suggesting that the wall of the sheaths consists of a series of closely packed filaments. The 48 A wide dense lines (filaments) representing the width of the sheath wall were resolved into two dense strands when viewed in longitudinal prism profiles. Each strand was 12 A wide and was separated by a less electron-dense space 17 A wide. The intraprismatic organic matrix is surrounded by a prism sheath which corresponds in mineralized sections to the electron-lucent uncalcified regions separating adjacent prisms. Structurally, the prism sheaths appear to consist of filaments arranged in basket-weave fashion.  相似文献   

11.
The submicroscopic structure of the growing surface of the shell of the oyster, Crassostrea virginica, was studied by means of shadowed replicas. The outer edge of the prismatic region consists of a fine grained matrix enclosing crystals, the surfaces of which show a finely pebbled structure. Crystal size varies continously from 0.01 µ to 8 µ. The matrix surface shows no evidence of fibrous structure. The outer portions of the prismatic region exhibit a tile-like arrangement of large crystals separated by granular matrix 0.02 to 0.08 µ in thickness. The exposed crystal surfaces have indentations of varying form which appear as roughly parallel grooves spaced at intervals of approximately 0.3 µ. The final form of this region is believed to result from the random distribution of crystal seeds, which grow without orientation and through coalescence and growth come into contact, producing polygonal areas. The crystal arrangement of the nacreous region is one of overlapping rows of crystals in side to side contact, and with one end of each crystal free, permitting continued increase in length. Crystal angles and plane indices are presented.  相似文献   

12.
For the first time, chain-like aggregates, called "strands," have been enriched from crude cell wall preparations of liquid-grown vegetative cells of two strains of Myxococcus xanthus. These strands are highly isomorphic to macromolecular structures, previously described for Myxococcus fulvus (Lünsdorf and Reichenbach, J. Gen. Microbiol. 135:1633-1641, 1989). The strands are morphologically composed of ring elements, consisting of six or more peripheral protein masses and possibly three small central masses. The ring elements are linked by two parallel strings of filamentous proteins, called elongated elements, which keep the ring elements at a constant distance. The overall dimensions of the ring elements are 16.6 +/- 1.0 nm (n = 55) for M. xanthus Mx x48 and 16.4 +/- 1.5 nm (n = 37) for M. xanthus DK 1622. The distance between the ring elements, as a measure of the length of the elongated elements, is 16.6 +/- 1.1 nm (n = 59) for strain Mx x48 and 15.5 +/- 0.6 nm (n = 41) for strain DK 1622. Characteristically, the strands and oligomeric forms thereof show a strict association with the outer membrane. In situ studies of freeze-fractured cells of M. fulvus showed ring elements, isomorphic to those described for M. xanthus, within the periplasm; they appeared in parallel rows just below the outer membrane but not in direct contact with the cytoplasmic membrane. A three-dimensional model summarizes the morphological data. It is hypothesized that the chain-like strands, as building blocks of a more complex belt-like continuum, represent the peripheral part of the gliding machinery, which transforms membrane potential energy into mechanical work.  相似文献   

13.
ABC (ATP-binding cassette) membrane exporters are efflux transporters of a wide diversity of molecule across the membrane at the expense of ATP. A key issue regarding their catalytic cycle is whether or not their nucleotide-binding domains (NBDs) are physically disengaged in the resting state. To settle this controversy, we obtained structural data on BmrA, a bacterial multidrug homodimeric ABC transporter, in a membrane-embedded state. BmrA in the apostate was reconstituted in lipid bilayers forming a mixture of ring-shaped structures of 24 or 39 homodimers. Three-dimensional models of the ring-shaped structures of 24 or 39 homodimers were calculated at 2.3 nm and 2.5 nm resolution from cryo-electron microscopy, respectively. In these structures, BmrA adopts an inward-facing open conformation similar to that found in mouse P-glycoprotein structure with the NBDs separated by 3 nm. Both lipidic leaflets delimiting the transmembrane domains of BmrA were clearly resolved. In planar membrane sheets, the NBDs were even more separated. BmrA in an ATP-bound conformation was determined from two-dimensional crystals grown in the presence of ATP and vanadate. A projection map calculated at 1.6 nm resolution shows an open outward-facing conformation. Overall, the data are consistent with a mechanism of drug transport involving large conformational changes of BmrA and show that a bacterial ABC exporter can adopt at least two open inward conformations in lipid membrane.  相似文献   

14.
15.
A novel genus of hyperthermophilic, strictly chemolithotrophic archaea, Ignicoccus, has been described recently, with (so far) three isolates in pure culture. Cells were prepared for ultrastructural investigation by cultivation in cellulose capillaries and processing by high-pressure freezing, freeze-substitution and embedding in Epon. Cells prepared in accordance with this protocol consistently showed a novel cell envelope structure previously unknown among the Archaea: a cytoplasmic membrane; a periplasmic space with a variable width of 20 to 400 nm, containing membrane-bound vesicles; and an outer sheath, approximately 10 nm wide, resembling the outer membrane of gram-negative bacteria. This sheath contained three types of particles: numerous tightly, irregularly packed single particles, about 8 nm in diameter; pores with a diameter of 24 nm, surrounded by tiny particles, arranged in a ring with a diameter of 130 nm; and clusters of up to eight particles, each particle 12 nm in diameter. Freeze-etched cells exhibited a smooth surface, without a regular pattern, with frequent fracture planes through the outer sheath, indicating the presence of an outer membrane and the absence of an S-layer. The study illustrates the novel complex architecture of the cell envelope of Ignicoccus as well as the importance of elaborate preparation procedures for ultrastructural investigations.  相似文献   

16.
In Gram-negative bacteria, type I protein secretion systems and tripartite drug efflux pumps have a periplasmic membrane fusion protein (MFP) as an essential component. MFPs bridge the outer membrane factor and an inner membrane transporter, although the oligomeric state of MFPs remains unclear. The most characterized MFP AcrA connects the outer membrane factor TolC and the resistance-nodulation-division-type efflux transporter AcrB, which is a major multidrug efflux pump in Escherichia coli. MacA is the periplasmic MFP in the MacAB-TolC pump, where MacB was characterized as a macrolide-specific ATP-binding-cassette-type efflux transporter. Here, we report the crystal structure of E. coli MacA and the experimentally phased map of Actinobacillus actinomycetemcomitans MacA, which reveal a domain orientation of MacA different from that of AcrA. Notably, a hexameric assembly of MacA was found in both crystals, exhibiting a funnel-like structure with a central channel and a conical mouth. The hexameric MacA assembly was further confirmed by electron microscopy and functional studies in vitro and in vivo. The hexameric structure of MacA provides insight into the oligomeric state in the functional complex of the drug efflux pump and type I secretion system.  相似文献   

17.
Cell-substrate interactions have been studied by examining migrating edge cells of the expanding chick extraembryonic epiblast on their normal substrate and in culture. Scanning electron microscopy shows that the outer face of the vitelline membrane is a random meshwork of fibrils (80 nm diam). The inner face, which is the normal substrate of epiblast expansion, is composed of a random branched system of fibers (400 nm diam) overlain by a network of fibrils (40 nm diam). The epiblast edge in situ has radially oriented filopodia (20 μm long, 200 nm diam.), frequently extending from broad lamellipodia. Blastoderms cultured on the inner face of unincubated vitelline membrane expand at a normal rate but display ruffles as well as filopodia and lamellipodia. When the blastoderm is cultured on the outer membrane face there is no expansion, but cells leave the edge and migrate across the membrane. In these cultures, ruffles are observed on the ventral epiblast face. Absence of the mass of yolk in culture appears to permit or provoke the observed ruffling. Comparison of dissociated epiblast edge cells and skin epithelial cells, cultured on glass and on the vitelline membrane inner face, indicates that epiblast cells remain flattened and display characteristic filopodia on both substrates, whereas skin cells display ruffles on the vitelline membrane but are flattened on glass. The mode of migration of epiblast edge cells seems to be more dependent on intrinsic factors than that of skin cells.  相似文献   

18.
The late steps in assembly of capsular polysaccharides (CPS) and their translocation to the bacterial cell surface are not well understood. The Wza protein was shown previously to be required for the formation of the prototype group 1 capsule structure on the surface of Escherichia coli serotype K30 (Drummelsmith, J., and Whitfield, C. (2000) EMBO J. 19, 57-66). Wza is a conserved outer membrane lipoprotein that forms multimers adopting a ringlike structure, and collective evidence suggests a role for these structures in the export of capsular polymer across the outer membrane. Wza was purified in the native form and with a C-terminal hexahistidine tag. WzaHis6 was acylated and functional in capsule assembly, although its efficiency was slightly reduced in comparison to the native Wza protein. Ordered two-dimensional crystals of WzaHis6 were obtained after reconstitution of purified multimers into lipids. Electron microscopy of negatively stained crystals and Fourier filtering revealed ringlike multimers with an average outer diameter of 8.84 nm and an average central cavity diameter of 2.28 nm. Single particle analysis yielded projection structures at an estimated resolution of 3 nm, favoring a structure for the WzaHis6 containing eight identical subunits. A derivative of Wza (Wza*) in which the original signal sequence was replaced with that from OmpF showed that the native acylated N terminus of Wza is critical for formation of normal multimeric structures and for their competence for CPS assembly, but not for targeting Wza to the outer membrane. In the presence of Wza*, CPS accumulated in the periplasm but was not detected on the cell surface. Chemical cross-linking of intact cells suggested formation of a transmembrane complex minimally containing Wza and the inner membrane tyrosine autokinase Wzc.  相似文献   

19.
Jacques Breton 《BBA》1977,459(1):66-75
The light induced transient absorbance changes associated with the trap of photosystem I have been studied using magnetically oriented spinach chloroplasts and a polarized measuring beam. The ΔA spectra for the two polarizations parallel and perpendicular to the plane of the photosynthetic membranes have been recorded in the spectral range 630–850 nm.A dichroic ratio greater than two is observed both in the main band around 700 nm and in the radical cation band around 810 nm, leading to the conclusion that the far-red transition moment of the P-700 dimeric species is lying almost parallel to the membrane plane.Dichroic ratios smaller than one are reported in the 650–670 nm band of the ΔA spectrum. The possible attribution of this band to excitonic interactions in the dimer favors the hypothesis of a tilting out of the membrane plane of this transition. This finding ruled out an orientation parallel to the membrane plane of the two chlorophyll molecules constituting the P-700 phototrap.A small residual transient absorbance change is observed in the absence of artificial electron acceptor. Its spectrum shows significant differences as compared to the normal P-700 spectrum: the magnitude of the signal at 700 nm is only 15–25% of the normal signal, the half-band width of the band around 700 nm is nearly twice as large and the dichroic ratio in the band is only 1.5±0.1. In the presence of ferricyanide, this signal is still observed both for intact and osmotically broken chloroplasts, suggesting a heterogeneity in the population of traps in Photosystem I.  相似文献   

20.
At the position of insertion of the flagellum into the Gram-negative bacterial cell envelope, a specialized membrane differentiation has been observed by electron microscopy. This structure, termed concentric membrane rings, is harboured on the under-side of the outer membrane of Spirillum serpens, and forms a plate-like array of up to seven rings (diameter 90 nm) and an interior supporting collar. The concentric membrane rings are sensitive to proteolytic digestion, but are lysozyme and phospholipase resistant. The structures are disrupted by ionic detergents, yet resistant to the action of non-ionic detergents. A model integrating the basal organelle of the bacterial flagellum and the outer membrane of the cell wall is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号