首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The peachtree borer, Synanthedon exitiosa, is a major pest of stone fruit trees in North America. In prior studies, the entomopathogenic nematode, Steinernema carpocapsae, caused substantial reductions in S. exitiosa damage when applied by watering can to peach trees that were irrigated regularly. Here we report two additional studies that assessed S. carpocapsae efficacy in suppressing S. exitiosa damage in peach orchards; one study focused on irrigation requirements and the other on application method. In the first experiment we compared S. carpocapsae applied with and without irrigation, and application of a sprayable gel, Barricade®, as a potential replacement for irrigation. In the second experiment, we compared application methods that growers might use including a boom sprayer, handgun, trunk sprayer and watering can (used as a positive control). In both experiments chlorpyrifos was also included as a positive control, and in the application methods experiment an untreated (negative) control was also included. All treatments were applied in the fall of 2012 and 2013 and S. exitiosa infestation was assessed following the spring of 2013 and 2014, respectively. In the first experiment, nematodes applied without irrigation did not prevent high levels of infestation levels (75% of trees were infested) whereas nematodes applied with the sprayable gel suppressed damage at the same level as chlorpyrifos (<20% infestation). Thus, our results indicate that the sprayable gel applied to soil around the tree base can enhance entomopathogenic nematode efficacy, and the gel may be used as a substitute for irrigation when applying S. carpocapsae for S. exitiosa control; this finding may be applicable to similar pests in various cropping systems. This is the first report of direct application of the sprayable gel to soil (previous reports concerned aboveground applications). Also in the first experiment, intermediate levels of damage (31–38% infestation) were observed in plots that received nematodes with irrigation. We suspect that a higher rate of irrigation would have improved efficacy. In the second experiment, the boom sprayer, trunk sprayer and watering can methods of nematode application resulted in S. exitiosa infestations that were similar to the chemical insecticide standard treatment (chlorpyrifos) and below levels in the non-treated control, whereas the handgun treatment was not different from the untreated control or chemical standard.  相似文献   

2.
The nematode Steinernema carpocapsae infects and kills many pest insects in agro-ecosystems and is commonly used in biocontrol of these pests. Growth of the nematodes prior to distribution for biocontrol commonly results in deterioration of traits that are essential for nematode persistence in field applications. To better understand the mechanisms underlying trait deterioration of the efficacy of natural parasitism in entomopathogenic nematodes, we explored the maintenance of fitness related traits including reproductive capacity, heat tolerance, virulence to insects and ‘tail standing’ (formerly called nictation) among laboratory-cultured lines derived from natural, randomly mating populations of S. carpocapsae. Laboratory cultured nematode lines with fitness-related trait values below wild-type levels regained wild-type levels of reproductive and heat tolerance traits when outcrossed with a non-deteriorated line, while virulence and ‘tail standing’ did not deteriorate in our experiments. Crossbreeding two trait-deteriorated lines with each other also resulted in restoration of trait means to wild-type levels in most crossbred lines. Our results implicate inbreeding depression as the primary cause of trait deterioration in the laboratory cultured S. carpocapsae. We further suggest the possibility of creating inbred lines purged of deleterious alleles as founders in commercial nematode growth.  相似文献   

3.
The susceptibility of the boll weevil (BW), Anthonomus grandis Boheman, to Steinernema riobrave and other nematode species in petri dishes, soil (Hidalgo sandy clay loam), and cotton bolls and squares was investigated. Third instar weevils were susceptible to entomopathogenic nematode (EN) species and strains in petri dish bioassays at 30 degrees C. Lower LC(50)'s occurred with S. riobrave TX- 355 (2 nematodes per weevil), S. glaseri NC (3), Heterorhabditis indicus HOM-1 (5), and H. bacteriophora HbL (7) than H. bacteriophora IN (13), S. riobrave TX (14), and H. bacteriophora HP88 (21). When infective juveniles (IJs) of S. riobrave were applied to weevils on filter paper at 25 degrees C, the LC(50) of S. riobrave TX for first, second, and third instars, pupae, and 1-day-old and 10-days-old adult weevils were 4, 5, 4, 12, 13, and 11IJs per weevil, respectively. The mean time to death, from lowest to highest concentration, for the first instar (2.07 and 1.27days) and second instar (2.55 and 1.39days) weevils were faster than older weevil stages. But, at concentrations of 50 and 100IJs/weevil, the mean time to death for the third instar, pupa and adult weevils were similar (1.84 and 2.67days). One hundred percent weevil mortality (all weevil stages) occurred 3days after exposure to 100IJs per weevil. Invasion efficiency rankings for nematode concentration were inconsistent and changed with weevil stage from 15 to 100% when weevils were exposed to 100 and 1IJs/weevil, respectively. However, there was a consistent relationship between male:female nematode sex ratio (1:1.6) and nematode concentration in all infected weevil stages. Nematode production per weevil cadaver increased with increased nematode concentrations. The overall mean yield of nematodes per weevil was 7680IJs. In potted soil experiments (30 degrees C), nematode concentration and soil moisture greatly influenced the nematode efficacy. At the most effective concentrations of 200,000 and 400,000IJs/m(2) in buried bolls or squares, higher insect mortalities resulted in pots with 20% soil moisture either in bolls (94 and 97% parasitism) or squares (92 and 100% parasitism) than those of 10% soil moisture in bolls (44 and 58% parasitism) or squares (0 and 13% parasitism). Similar results were obtained when nematodes were sprayed on the bolls and squares on the soil surface. This paper presents the first data on the efficacy of S. riobrave against the boll weevil, establishes the potential of EN to control the BW inside abscised squares and bolls that lay on the ground or buried in the soil.  相似文献   

4.
Generally, microbial control agents such as entomopathogenic nematodes are applied in a curative manner for achieving pest suppression; prophylactic applications are rare. In this study, we determined the ability of two Steinernema carpocapsae strains (All and Hybrid) to prophylactically protect peach trees from damage caused by the peachtree borer, Synanthedon exitiosa, which is a major pest of stone fruit trees in North America. In prior studies, the entomopathogenic nematodes S. carpocapsae and Heterorhabditis bacteriophora caused field suppression when applied in a curative manner to established S. exitiosa populations. In our current study, nematodes were applied three times (at 150,000–300,000 infective juveniles/tree) during September and October of 2005, 2006, and 2007. A control (water only) and a single application of chlorpyrifos (at the labeled rate) were also made each year. The presence of S. exitiosa damage was assessed each year in the spring following the treatment applications. Following applications in 2006, we did not detect any differences among treatments or the control (possibly due to a low and variable S. exitiosa infestation of that orchard). Following applications in 2005 and 2007, however, the nematode and chemical treatments caused significant damage suppression. The percentage of trees with S. exitiosa damage in treated plots ranged from 0% damage in 2005 to 16% in plots treated with S. carpocapsae (Hybrid) in 2007. In control plots damage ranged from 25% (2005) to 41% (2007). Our results indicate that nematodes applied in a preventative manner during S. exitios’s oviposition period can reduce insect damage to levels similar to what is achieved with recommended chemical insecticide treatments.  相似文献   

5.
Termites exploit microbially rich resources such as decayed wood and soil that are colonized by potentially pathogenic and parasitic fungi, bacteria, viruses, and nematodes. In colonies composed of thousands of individuals, the risk of infection among nestmates is significant, and individual and social behavior could involve various adaptations to resist disease and parasitism. Here we show that the dampwood termite Zootermopsis angusticollis (Hagen) exhibits a dosage dependent susceptibility to the soil nematode Steinernema carpocapsae (Weiser) (Mexican strain) and that this social insect significantly alters its behavior in response to this entomopathogenic roundworm. Relative to their baseline behavior, termites exposed to infective juveniles increased the frequency and duration of allogrooming and vibratory displays as well as two other novel behaviors, abdominal tip-raising and self-scratching. Whereas the first two behaviors likely reflect general adaptations to reduce susceptibility to a variety of pathogens and parasites, the latter behaviors might be specific to nematodes because they have never been observed in Z. angusticollis in any other pathogenic context. Our results support the hypotheses that behavioral responses in termites are important in the control of pathogenic and parasitic microorganisms and that termite susceptibility is socially mediated.  相似文献   

6.
A method for the cryopreservation of third-stage infective juveniles (IJ) of Steinernema carpocapsae and Heterorhabiditis bacteriophora was developed. Cryoprotection was achieved by incubating the nematodes in 22% glycerol (S. carpocapsae) or 14% glycerol (H. bacteriophora) for 24 hours, followed by 70% methanol at 0 C for 10 minutes. The viability of S. carpocapsae frozen in liquid nitrogen as 20 μl volumes spread over cover slip glass was > 80%. Survival of H. bacteriophora frozen on glass varied from 10 to 60% but was improved to > 80% by replacing the glass with filter paper. Cryopreservation and storage of 1-ml aliqots of S. carpocapsae IJ resulted in > 50% survival after 8 months; pathogenicity was retained and normal in vitro development took place. Trehalose and glycerol levels increased and glycogen levels decreased during incubation of S. carpocapsae IJ in glycerol. Normal levels of trehalose, glycerol and glycogen were restored during post freezing rehydration.  相似文献   

7.
A stilbene fluorescent brightener, Tinopal LPW, was used as an ultraviolet (UV) protectant for the entomopathogenic nematode Steinernema carpocapsae (All strain). Irradiation of an aqueous suspension of nematodes produced a LC₅₀ in 15.7 minutes under a sunlamp and in 31.7 minutes in direct sunlight. Irradiation by both sunlamp and sunlight of a suspension of nematodes in Tinopal LPW did not reduce their biological activity as measured by their ability to parasitize wax moth larvae after exposure of 8 hours and 4 hours, respectively. Tinopal LPW appeared promising as a radiation protectant.  相似文献   

8.
Three different laboratory conditions were used to examine the impacts of fluctuating temperature on the development and infectivity of entomopathogenic nematode (EPN) Steinernema carpocaposae A10. Set I experiments focused on the impact of cold stress early in the development cycle. In these studies Galleria mellonella hosts were infected and incubated for 2 days at the control temperature of 23 degrees C and then subjected to lower temperatures of -10, 4, 10 or 14 degrees C, respectively, from days 3 to 36 post-infection (PI). Dissections of infected cadavers indicated arrested development at the adult stage at all lower temperatures tested. Set II experiments examined the impacts of cold stress early in the development followed by a return to 23 degrees C. Hosts were infected and incubated as in Set I and subjected to the same temperatures as above for 7 days, followed by incubation at 23 degrees C until 23 days PI. A limited number of EPN populations were able to complete development at 10 and 14 degrees C though emergent population numbers were significantly lower than those of control infections incubated continuously at 23 degrees C. In Set III experiments, infected hosts were subjected to cold stress later during development starting at day 4 post-infection followed by incubation at the control temperature. Population survival past first and second stage juveniles was reduced by at least 95% or more at the lower temperatures compared with controls. Emergent populations from the Set III cold-stressed hosts were not infectious. These studies may provide insights as to how EPN survive seasonal temperature fluctuations under natural environmental conditions.  相似文献   

9.
Exsheathed infective juveniles of Steinernema carpocapsae All strain were attracted to the plasma of three species of insects in agar plate bioassays. Plasma of Pieris rapae crucivora, Spodoptera litura, and Agrotis segetum attracted 88.6%, 80.4%, and 64.4%, respectively, of Steinernema carpocapsae juveniles added to plates. Autoclaved plasma of S. litura larvae attracted more juveniles than saline controls, but less than nonautoclaved plasma. The active agent passed through a 14,000 MW dialysis membrane.  相似文献   

10.
"Pesta," a new granular product for use with entrapped biocontrol agents, is based on a cohesive dough made of wheat flour, fillers, and other additives. Infective juveniles of the entomopathogen Steinernema carpocapsae strain All incorporated in Pesta granules emerged when the granules were softened by immersion in water. These granules may be useful for the biocontrol of insect pests in the soil. Storage temperature had the greatest effect on recovery of nematodes, followed by the moisture content of the granules. Recovery of nematodes was the same among the formulations tested and was unaffected by storage in nitrogen. Nematode recovery after storage at 21 C decreased to zero after 3-6 weeks. Storage of samples at 4 C and with a high moisture content (19.9-23.1%) greatly improved nematode viability.  相似文献   

11.
Entomopathogenic nematodes of the family Steinernematidae and their mutualistic bacteria (Xenorhabdus spp.) are lethal endoparasites of insects. We hypothesized that growth of the nematode’s mutualistic bacteria in the insect host may contribute to the production of cues used by the infective juveniles (IJs) in responding to potential hosts for infection. Specifically, we tested if patterns of bacterial growth could explain differences in CO2 production over the course of host infection. Growth of Xenorhabdus cabanillasii isolated from Steinernema riobrave exhibited the characteristic exponential and stationary growth phases. Other non-nematode symbiotic bacteria were also found in infected hosts and exhibited similar growth patterns to X. cabanillasii. Galleria mellonella larvae infected with S. riobrave produced two distinct peaks of CO2 occurring at 25.6–36 h and 105–161 h post-infection, whereas larvae injected with X. cabanillasii alone showed only one peak of CO2, occurring at 22.8–36.2 h post-injection. Tenebrio molitor larvae infected with S. riobrave or injected with bacteria alone exhibited only one peak of CO2 production, which occurred later during S. riobrave infection (41.4–64.4 h post-infection compared to 20.4–35.9 h post-injection). These results indicate a relationship between bacterial growth and the first peak of CO2 in both host species, but not for the second peak exhibited in G. mellonella.  相似文献   

12.
Virulence and development of the insect-parasitic nematode, Steinernema carpocapsae (Weiser) (Mexican strain), were evaluated for the immature stages of the western corn rootworm, Diabrotica virgifera virgifera LeConte. Third instar rootworm larvae were five times more susceptible to nematode infection than second instar larvae and 75 times more susceptible than first instar larvae and pupae, based on laboratory bioassays. Rootworm eggs were not susceptible. Nematode development was observed in all susceptible rootworm stages, but a complete life cycle was observed only in second and third instar larvae and pupae. Nematode size was affected by rootworm stage; the smallest infective-stage nematodes were recovered from second instar rootworm larvae. Results of this study suggest that S. carpocapsae should be applied when second and third instar rootworm larvae are predominant in the field.  相似文献   

13.
Dispersal of the nematode Steinernema carpocapsae (All strain), applied on the top or the bottom of soil columns, was tested in the presence or absence of two earthworm species, Lumbricus terrestris or Aporrectodea trapezoides. Nematode dispersal was estimated after a 2-week period with a bioassay against the greater wax moth, Galleria mellonella. Vertical dispersal of nematodes was increased in the presence of earthworms. When nematodes were placed on the surface of soil columns, significantly more nematodes dispersed to the lower half of the columns when either earthworm species was present than when earthworms were not present. When nematodes were placed on the bottom of soil columns, significantly more nematodes dispersed to the upper half of the columns when L. terrestris was present than when A. trapezoides was present or in the absence of earthworms. Because nematodes were found on the exterior and in the interior of earthworms, nematode dispersal may be enhanced by direct contact with the earthworms.  相似文献   

14.
The infection behavior of Steinernema carpocapsae infective juveniles (IJ) was investigated in the presence and absence of S. glaseri. Mixed inoculation of S. carpocapsae with S. glaseri IJ significantly raised the nictation rates of S. carpocapsae IJ. Significantly more S. carpocapsae IJ migrated to the host insect in the mixed inoculation with S. glaseri IJ on agar plates. More S. carpocapsae IJ penetrated into the host insect placed 2 cm below the surface in the mixed inoculation with S. glaseri IJ. More S. glaseri than S. carpocapsae IJ penetrated into hosts placed 7 cm deep. Irrespective of host location, the male ratio of S. carpocapsae IJ established in the host body was always higher in the mixed inoculation with S. glaseri IJ.  相似文献   

15.
This study investigates the effect of host desiccation on entomopathogenic nematode (EPN) development, emergence, infectivity, and cross-protection against secondary environmental stress. Galleria mellonella hosts infected with the EPN Steinernema carpocapsae A10 were allowed to dehydrate in an environmental chamber for up to 56 days at 23 degrees C achieving a weight loss of approximately 86% by day 44 post-infection. Host carcasses were rehydrated on water-saturated filter paper in White traps to collect emergent infective juveniles (IJ) at specific time intervals. Populations were counted with an apparent peak coinciding with desiccated hosts rehydrated at 24-day post-infection. Desiccation-stressed IJ populations from each time interval were tested for infectivity, and cross-resistance to secondary temperature and pH stresses and were found to have significant increases in both infectivity and protection from extremes of temperature and pH compared with controls. Total aqueous soluble protein profiles from control and desiccation-stressed IJs were analyzed using 10% SDS Laemmli gels. Several novel proteins were over-expressed in EPN from hosts subjected to desiccation suggesting the induction and expression of stress response genes.  相似文献   

16.
We determined the effects of crop residue on the persistence of an entomopathogenic nematode, Steinernema carpocapsae. During 2 consecutive years, nematodes were applied at rates of 2.5 × 10₄ and 1.0 × 10⁵ infective juveniles/m² to small field plots planted with corn. Nematode persistence was monitored by exposing Galleria mellonella larvae to soil samples from plots with and without crop residue (approximately 75% coverage of soybean stubble). Persistence of S. carpocapsae was significantly greater in crop residue plots than in plots without residue. In crop residue plots that received the higher rate of nematode application, larval mortality did not significantly decrease during the study period (3 to 5 days) and remained above 85%. In nematode-treated plots without crop residue, however, larval mortality fell from over 96% to below 11% and 35% in the first and second trials, respectively. The increased crop residue may have benefited nematode persistence through protection from desiccation or ultraviolet light. We conclude that increased ground cover in cropping systems (e.g., due to reduced tillage) may lead to increased insect pest suppression with entomopathogenic nematodes.  相似文献   

17.
18.
The peachtree borer, Synanthedon exitiosa (Say 1823), is a major pest of stone fruit trees in North America. Current management relies upon preventative control using broad-spectrum chemical insecticides, primarily chlorpyrifos, applied in the late summer or early fall. However, due to missed applications, poor application timing, or other factors, high levels of S. exitiosa infestation may still occur and persist through the following spring. Curative treatments applied in the spring to established infestations would limit damage to the tree and prevent the next generation of S. exitiosa from emerging within the orchard. However, such curative measures for control of S. exitiosa do not exist. Our objective was to measure the efficacy of the entomopathogenic nematode, Steinernema carpocapsae, as a curative control for existing infestations of S. exitiosa. In peach orchards, spring applications of S. carpocapsae (obtained from a commercial source) were made to infested trees and compared with chlorpyrifos and a water-only control in 2014 and 2015. Additionally, types of spray equipment were compared: nematodes were applied via boom sprayer, handgun, or trunk sprayer. To control for effects of application method or nematode source, in vivo laboratory-grown S. carpocapsae, applied using a watering can, was also included. Treatment effects were assessed 39 d (2014) or 19 d (2015) later by measuring percentage of trees still infested, and also number of surviving S. exitiosa larvae per tree. Results indicated that S. carpocapsae provided significant curative control (e.g., >80% corrected control for the handgun application). In contrast, chlorpyrifos failed to reduce S. exitiosa infestations or number of surviving larvae. In most comparisons, no effect of nematode application method was detected; in one assessment, only the handgun and watering can methods reduced infestation. In conclusion, our study indicates that S. carpocapsae may be used as an effective curative measure for S. exitiosa infestations.  相似文献   

19.
The effect of soil moisture on the distribution of Steinernema riobrave in a sand column was determined. Larvae of Pectinophora gossypiella were used to detect S. riobrave infective juveniles (IJ) in each 2.5-cm section of 30-cm-long soil columns. Soil moisture was determined for each section and related to the numbers of nematodes recovered from infected insect baits. Infective juveniles of S. riobrave applied on the sand column surface showed some degree of positive geotaxis. IJ in soil columns with a consistent moisture gradient grouped in the upper 12.7 cm within a water potential range of ¯40 to ¯0.0055 MPa (2% to 14% moisture). Nematodes in sand columns that were gradually dehydrating moved down the soil column, aggregating on the 28th day between 15-23 cm in depth. Nematode redistribution over time allowed IJ to remain within a water potential range of ¯0.1 to ¯0.012 MPa (5.2% to 9.5% moisture).  相似文献   

20.
The effect of temperature on the infection of larvae of the greater wax moth, Galleria mellonella, by Heterorhabditis megidis H90 and Steinernema carpocapsae strain All, was determined. For both species, infection, reproduction, and development were fastest at 20 to 24 °C. Infection by both H. megidis and S. carpocapsae occurred between 8 and 16 °C; however, neither species reproduced at 8 °C. Among the nematodes used in experiments at 8 °C, no H. megidis and very few S. carpocapsae developed beyond the infective juvenile stage. Compared with H. megidis, S. carpocapsae invaded and killed G. mellonella larvae faster at 8 to 16 °C. By comparing invasion rates, differences in infectivity between the two nematode species were detected that could not be detected in conventional petri dish bioassays where mortality was measured after a specified period. Invasion of G. mellonella larvae by H. megidis was faster at 24 than at 16 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号