首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dissection of barley chromosome 5H in common wheat   总被引:1,自引:0,他引:1  
We dissected barley chromosome 5H added to common wheat by a genetic method or the gametocidal system. Firstly, we induced chromosomal breaks in the offspring of a 5H addition line of common wheat carrying a gametocidal chromosome and cytologically screened for plants with structural chromosomal changes involving 5H, such as deletions and translocations. Secondly, we screened the progeny of such plants to establish common wheat lines carrying structurally changed chromosomes containing single segments of the dissected 5H. Using 23 representative 5H dissection lines, we physically mapped 97 barley EST markers assigned to 5H. The ESTs fell into 20 regions of 5H between the breakpoints of the 23 dissected segments, distributing rather evenly along the chromosome, with significantly higher frequency in the distal region of the long arm. The ESTs, in turn, allowed us to distinguish the breakpoints of dissected 5H segments. We demonstrated by PCR (polymerase chain reaction), as well as by in situ hybridization, that these dissected 5H segments were stably transmitted in the dissection lines. We discuss the usefulness of the 5H dissection lines for physical mapping of DNA markers. These 5H dissection lines are available from National BioResource Projects-Wheat, Japan.  相似文献   

2.
Genomes of numerous diploid plant and animal species possess traces of interspecific crosses, and many researches consider them as support for homoploid hybrid speciation (HHS), a process by which a new reproductively isolated species arises through hybridization and combination of parts of the parental genomes, but without an increase in ploidy. However, convincing evidence for a creative role of hybridization in the origin of reproductive isolation between hybrid and parental forms is extremely limited. Here, through studying Agrodiaetus butterflies, we provide proof of a previously unknown mode of HHS based on the formation of post-zygotic reproductive isolation via hybridization of chromosomally divergent parental species and subsequent fixation of a novel combination of chromosome fusions/fissions in hybrid descendants. We show that meiotic segregation, operating in the hybrid lineage, resulted in the formation of a new diploid genome, drastically rearranged in terms of chromosome number. We also demonstrate that during the heterozygous stage of the hybrid species formation, recombination was limited between rearranged chromosomes of different parental origin, representing evidence that the reproductive isolation was a direct consequence of hybridization.  相似文献   

3.
Summary A number of cell lines, some containing chromosomes with distinctive heteromorphisms, have been flow karyotyped using a single laser flow sorter in an attempt to select those suitable for sorting all human chromosomes individually. Using the non-base-specific DNA stain ethidium bromide, chromosomes 3,4,5, and 6 form individual peaks in practically all normal subjects, while the right combination of heteromorphisms enables chromosomes 1, 2, 8, 9, 13, 16, 17, 18, 19, 20, 21, 22, and Y to be sorted separately. Two male cell lines, one containing a duplication and one a deletion of the X, produce flow karyotypes suitable for sorting chromosomes 7 and 8. The use of numerical chromosome abnormalities to enrich the sex chromosomes and the autosomes 18 and 21 is also illustrated. The DNA stain Hoechst 33258 binds preferentially to AT base pairs. Flow karyotypes produced with this fluorochrome separate some chromosomes not well separated with ethidium bromide. Chromosomes 5, 6, 8, 13, 14, 15, 17, and 20, and Y can be sorted individually with Hoechst 33258 with the right combination of heteromorphisms. Using these techniques, all human chromosomes apart from 10, 11, and 12 have been found as individual flow karyotype peaks, suitable for sorting with a high degree of purity.  相似文献   

4.
5.
We used gametocidal (Gc) chromosomes 2C and 3C(SAT) to dissect barley 2H added to common wheat. The Gc chromosome induces chromosomal breakage resulting in chromosomal aberrations in the progeny of the 2H addition line of common wheat carrying the monosomic Gc chromosome. We conducted in situ hybridization to select plants carrying structurally rearranged aberrant 2H chromosomes and characterized them by sequential C-banding and in situ hybridization. We established 66 dissection lines of common wheat carrying single aberrant 2H chromosomes. The aberrant 2H chromosomes were of either deletion or translocation or complicated structural change. Their breakpoints were distributed in the short arm (2HS), centromere (2HC) and the long arm (2HL) at a rough 2HS/2HC/2HL ratio of 2:1:2. We conducted PCR analysis of the 66 dissection lines using 115 EST markers specific to chromosome 2H. Based on the PCR result, we constructed a physical or cytological map of chromosome 2H that were divided into 34 regions separated by the breakpoints of the aberrant 2H chromosomes. Forty-seven markers were present in 2HS and 68 in 2HL. We compared the 2H cytological map with a previously reported 2H genetic map using 44 markers that were used in common to construct both maps. The order of markers in the distal region was the same on both maps but that in the proximal region was somewhat contradictory between the two maps. We found that the markers distributed rather evenly in the genetic map were actually concentrated in the distal regions of both arms as revealed by the cytological map. We also recognized an EST-marker or gene-rich region in the 2HL interstitial region slightly to the telomere.  相似文献   

6.
Chagas disease is emerging in the Brazilian Amazon. We evaluated the position of eight zymodeme 3 isolates from Amazonian sylvatic vectors and one human case in relation to Trypanosoma cruzi I and II major groups and hybrid strains by chromosome size polymorphism. Nineteen isolates were analyzed by mapping nine coding sequences on chromosomal bands (0.6-3.3Mbp). Numerical analysis was based on the absolute chromosomal size difference index (aCSDI). A dendrogram was obtained applying the minimum evolution criterion and considering the aCSDI values to estimate the branch lengths. The isolates were distributed in four groups. Group A clustered hybrid isolates; Groups B and C, T. cruzi II and T. cruzi I isolates, respectively. Seven Z3 stocks were clustered in Group D, which showed low intra-group diversity and was the most divergent. The proportion of two different-sized homologous chromosomes was determined. Wild vectors harboring Z3 stocks constitute a potential reservoir of human infection in the Amazon.  相似文献   

7.
Summary Human Y chromosomes were purified by dual beam flow sorting from a human x Chinese hamster cell line retaining the Y as the only free human chromosome. DNA was extracted from the Y fraction and cloned into gtWES.B vector arms. More than 100 recombinant clones carrying human inserts have been characterised by Benton-Davis plaque screening and Southern blotting or in situ hybridisation. Several repetitive sequences were found to be predominantly located on the Y, whereas the majority also cross-hybridised with autosomal DNA. One repetitive clone gave a specific hybridisation signal with the X and the Y chromosome but not with autosomes. Preliminary evidence indicates that many clones contain single copy as well as repetitive sequences. However, no Y-specific single copy sequence has yet been identified.  相似文献   

8.
Dissection of a malting quality QTL region on chromosome 1 (7H) of barley   总被引:2,自引:1,他引:1  
Malting and brewing are major uses of barley (Hordeum vulgare L.) worldwide, utilizing 30–40% of the crop each year. A set of complex traits determines the quality of malted barley and its subsequent use for beer. Molecular genetics technology has increased our understanding of genetic control of the many malting and brewing quality traits, most of which are quantitatively inherited. The objective of this study was to further dissect and evaluate a known major malting quality quantitative trait locus (QTL) region of about 28 cM on chromosome 1 (7H). Molecular marker-assisted backcrossing was used to develop 39 isolines originating from a Steptoe / Morex cross. Morex, a 6–row malting type, was the donor parent and Steptoe, a 6–row feed type, was the recurrent parent. The isolines and parents were grown in four environments, and the grain was micro-malted and analyzed for malting quality traits. The effect of each Morex chromosome segment in the QTL target region was determined by composite interval mapping (CIM) and confirmed and refined by multiple interval mapping (MIM). One QTL was resolved for malt extract content, and two QTLs each were resolved for -amylase activity, diastatic power, and malt -glucan content. One additional putative malt extract QTL was detected at the plus border of the target region by CIM, but not confirmed by MIM. All QTLs were resolved to intervals of 2.0 to 6.4 cM by CIM, and to intervals of 2.0 cM or less by MIM. These results should facilitate marker-assisted selection in breeding improved malting barley cultivars.  相似文献   

9.
Unlocking the barley genome by chromosomal and comparative genomics   总被引:2,自引:0,他引:2  
We used a novel approach that incorporated chromosome sorting, next-generation sequencing, array hybridization, and systematic exploitation of conserved synteny with model grasses to assign ~86% of the estimated ~32,000 barley (Hordeum vulgare) genes to individual chromosome arms. Using a series of bioinformatically constructed genome zippers that integrate gene indices of rice (Oryza sativa), sorghum (Sorghum bicolor), and Brachypodium distachyon in a conserved synteny model, we were able to assemble 21,766 barley genes in a putative linear order. We show that the barley (H) genome displays a mosaic of structural similarity to hexaploid bread wheat (Triticum aestivum) A, B, and D subgenomes and that orthologous genes in different grasses exhibit signatures of positive selection in different lineages. We present an ordered, information-rich scaffold of the barley genome that provides a valuable and robust framework for the development of novel strategies in cereal breeding.  相似文献   

10.
11.
Summary The breakpoint of the recurrent t(11;22) translocation, one of the most frequent chromosome anomalies encountered in human population, always involves bands 11q23.2 and 22q11.2. The involvement of the C locus of the immunoglobulin gene cluster on chromosome 22 has been suggested: however, in situ hybridization experiments have yielded conflicting results. In order to solve these discrepancies by another approach, we have used bivariate flow sorting to separate the chromosomes of interest and to map the specific breakpoints by direct spot-blot hybridization with the gene-specific radiolabelled DNA probes, Alu, V, ets. The results showed unambiguously that in the t(11;22) patient analysed, a set of C and V genes was translocated to the der(11) chromosome. Since V genes are situated proximally to C genes, we demonstrate that, in the case studied here, the chromosome 22 breakpoint is not located within or even immediately close to the C region.Presented at the 7th International Congress of Human Genetics, Berlin, September 22–26, 1986  相似文献   

12.

Background

The taxonomic and phylogenetic relationships of New World monkeys (Platyrrhini) are difficult to distinguish on the basis of morphology and because diagnostic fossils are rare. Recently, molecular data have led to a radical revision of the traditional taxonomy and phylogeny of these primates. Here we examine new hypotheses of platyrrhine evolutionary relationships by reciprocal chromosome painting after chromosome flow sorting of species belonging to four genera of platyrrhines included in the Cebidae family: Callithrix argentata (silvered-marmoset), Cebuella pygmaea (pygmy marmoset), Callimico goeldii (Goeldi's marmoset) and Saimiri sciureus (squirrel monkey). This is the first report of reciprocal painting in marmosets.

Results

The paints made from chromosome flow sorting of the four platyrrhine monkeys provided from 42 to 45 hybridization signals on human metaphases. The reciprocal painting of monkey probes on human chromosomes revealed that 21 breakpoints are common to all four studied species. There are only three additional breakpoints. A breakpoint on human chromosome 13 was found in Callithrix argentata, Cebuella pygmaea and Callimico goeldii, but not in Saimiri sciureus. There are two additional breakpoints on human chromosome 5: one is specific to squirrel monkeys, and the other to Goeldi's marmoset.

Conclusion

The reciprocal painting results support the molecular genomic assemblage of Cebidae. We demonstrated that the five chromosome associations previously hypothesized to phylogenetically link tamarins and marmosets are homologous and represent derived chromosome rearrangements. Four of these derived homologous associations tightly nest Callimico goeldii with marmosets. One derived association 2/15 may place squirrel monkeys within the Cebidae assemblage. An apparently common breakpoint on chromosome 5q33 found in both Saimiri and Aotus nancymae could be evidence of a phylogenetic link between these species. Comparison with previous reports shows that many syntenic associations found in platyrrhines have the same breakpoints and are homologous, derived rearrangements showing that the New World monkeys are a closely related group of species. Our data support the hypothesis that the ancestral karyotype of the Platyrrhini has a diploid number of 2n = 54 and is almost identical to that found today in capuchin monkeys; congruent with a basal position of the Cebidae among platyrrhine families.
  相似文献   

13.
Red- and green-fluorescing polystyrene beads were used to label different populations of cultured human fibroblasts. After enucleation of the green-fluorescing population, the cytoplasts were fused with red-fluorescing cells. Twenty-four hours after cell fusion the population of red-green heterofluorescent cells was isolated with a FACS II cell sorter. When Lesch-Nyhan fibroblasts (HPRT) were fused with cytoplasts from control fibroblasts (HPRT+) more than 95% of the sorted cells were heterofluorescent and 90% of the sorted cells showed HPRT+ activity. Therefore almost all sorted heterofluorescent cells are true cybrids. With this procedure for cybrid isolation, earlier complementation studies using cybrids from different variants of β-galactosidase deficiency could be confirmed.  相似文献   

14.
Summary We have determined the subchromosomal location of the human insulin gene by analyzing DNA isolated from sorted human metaphase chromosomes. Metaphase chromosome suspensions were sorted into fractions according to relative Hoechst fluorescence intensity by the fluorescence activated chromosome sorter. The chromosomal DNA in each fraction was characterized by restriction endonuclease analysis. Initial sorts indicated that the insulin gene-containing fragment resided in a fraction containing chromosomes 9, 10, 11 and 12. Studies of cell lines that contained chromosome translocations permitted the assignment of the insulin gene to a derivative chromosome that contains portions of the short arm of chromosome 11. Simultaneous sorting of the normal homolog from this small derivative chromosome separated the two different sized insulin gene-containing restriction fragments in this individual. These data indicate that the two restriction fragments represent insulin gene polymorphism and not duplicate gene loci.  相似文献   

15.
Plant DNA flow cytometry and estimation of nuclear genome size   总被引:25,自引:0,他引:25  
BACKGROUND: DNA flow cytometry describes the use of flow cytometry for estimation of DNA quantity in cell nuclei. The method involves preparation of aqueous suspensions of intact nuclei whose DNA is stained using a DNA fluorochrome. The nuclei are classified according to their relative fluorescence intensity or DNA content. Because the sample preparation and analysis is convenient and rapid, DNA flow cytometry has become a popular method for ploidy screening, detection of mixoploidy and aneuploidy, cell cycle analysis, assessment of the degree of polysomaty, determination of reproductive pathway, and estimation of absolute DNA amount or genome size. While the former applications are relatively straightforward, estimation of absolute DNA amount requires special attention to possible errors in sample preparation and analysis. SCOPE: The article reviews current procedures for estimation of absolute DNA amounts in plants using flow cytometry, with special emphasis on preparation of nuclei suspensions, stoichiometric DNA staining and the use of DNA reference standards. In addition, methodological pitfalls encountered in estimation of intraspecific variation in genome size are discussed as well as problems linked to the use of DNA flow cytometry for fieldwork. CONCLUSIONS: Reliable estimation of absolute DNA amounts in plants using flow cytometry is not a trivial task. Although several well-proven protocols are available and some factors controlling the precision and reproducibility have been identified, several problems persist: (1) the need for fresh tissues complicates the transfer of samples from field to the laboratory and/or their storage; (2) the role of cytosolic compounds interfering with quantitative DNA staining is not well understood; and (3) the use of a set of internationally agreed DNA reference standards still remains an unrealized goal.  相似文献   

16.
Mature embryos and seedlings from mature embryos of one standard and five reconstructed karyotypes of barley (Hordeum vulgare L.) were cultured in vitro to study the influence of repositioning of particular chromosome segments of barley genome on the regeneration response. A comparative analysis of the regeneration response of a reconstructed karyotype having complete and well characterized rearrangement of the chromosome complement, and its four parental lines were used as experimental material. Depending on the source of explants two systems of in vitro culture were applied. The regeneration ability was found to be significantly influenced by both chromosome reconstruction and protocol applied. Possible reasons underlying the effects of chromosomal reconstruction on the regeneration response of karyotypes are briefly discussed.  相似文献   

17.

Background  

Toxoplasma gondii is a zoonotic parasite of global importance. In common with many protozoan parasites it has the capacity for sexual recombination, but current evidence suggests this is rarely employed. The global population structure is dominated by a small number of clonal genotypes, which exhibit biallelic variation and limited intralineage divergence. Little is known of the genotypes present in Africa despite the importance of AIDS-associated toxoplasmosis.  相似文献   

18.
19.
20.
Species delimitation inLipomyces was attempted by nuclear genome comparison in conjuction with the re-evaluation of 48 physiological characters of 65 strains.High intraspecific (>75%) and low interspecific (<28%) similarity values established thatL. japonicus, L. lipofer andL. tetrasporus are genetically isolated, and also distinct fromL. kononenkoae andL. starkeyi.Ambiguous similarity values were obtained withL. kononenkoae andL. starkeyi. Strains previously assigned toL. kononenkoae constitute two related clusters. While similarity values within each cluster range from 76–99%, representatives of the two clusters reassociate for only 47%. Since these clusters are differentiated by their ecologically relevant maximum growth temperature,L. kononenkoae is subdivided. Strains previously assigned toL. starkeyi resolve into four closely related clusters. While similarity values within each cluster range from 78–100%, representatives of the four clusters reassociate for only 59–69%. Since these four clusters are poorly differentiated, the subdivision ofL. starkeyi does not appear possible without recourse to other criteria.Four unassigned strains constitute a further two clusters. Reassociation within these clusters is of the order of 91–100%, while reassociation between them occurs only at 59%. Reassociation of representatives of these clusters with those of theL. kononenkoae andL. starkeyi complexes is around 40% and 31%, respectively. These two clusters consequently appear to be intermediate betweenL. kononenkoae andL. starkeyi, and will, as such, have to be considered in any delimitation of these two species. A key to the taxa ofLipomyces and related genera of the Lipomycetaceae is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号