共查询到20条相似文献,搜索用时 0 毫秒
1.
Mukhopadhyay R Bisacchi D Zhou Y Armirotti A Bordo D 《Journal of molecular biology》2009,386(5):1229-12045
The arsenate/antimonate reductase LmACR2 has been recently identified in the genome of Leishmania major. Besides displaying phosphatase activity in vitro, this enzyme is able to reduce both As(V) and Sb(V) to their respective trivalent forms and is involved in the activation of Pentostan, a drug containing Sb(V) used in the treatment of leishmaniasis. LmACR2 displays sequence and functional similarity with the arsenate reductase ScACR2 from Saccharomyces cerevisiae, and both proteins are homologous to the catalytic domain of Cdc25 phosphatases, which, in turn, belong to the rhodanese/Cdc25 phosphatase superfamily. In this work, the three-dimensional structure of LmACR2 has been determined with crystallographic methods and refined at 2.15 Å resolution. The protein structure maintains the overall rhodanese fold, but substantial modifications are observed in secondary structure position and length. However, the conformation of the active-site loop and the position of the catalytic residue Cys75 are unchanged with respect to the Cdc25 phosphatases. From an evolutionary viewpoint, LmACR2 and the related arsenate reductases form, together with the known Cdc25 phosphatases, a well-defined subfamily of the rhodanese/Cdc25 phosphatase superfamily, characterized by a 7-amino-acid-long active-site loop that is able to selectively bind substrates containing phosphorous, arsenic, or antinomy. The evolutionary tree obtained for these proteins shows that, besides the active-site motif CE[F/Y]SXXR that characterizes Cdc25 phosphatase, the novel CALSQ[Q/V]R motif is also conserved in sequences from fungi and plants. Similar to Cdc25 phosphatase, these proteins are likely involved in cell cycle control. The active-site composition of LmACR2 (CAQSLVR) does not belong to either group, but gives to the enzyme a bifunctional activity of both phosphatase and As/Sb reductase. The subtle dependence of substrate specificity on the amino acid composition of the active-site loop displays the versatility of the ubiquitous rhodanese domain. 相似文献
2.
Carrió J de Colmenares M Riera C Gállego M Arboix M Portús M 《Experimental parasitology》2000,95(3):209-214
The determination of the intrinsic sensitivity of Leishmania strains to pentavalent antimonials in clinical trials, before treatment is begun, is essential in order to avoid failures and to allow alternative drugs to be chosen. A comparative study of SbV activity on promastigotes, axenic amastigote-like cells, and intracellular amastigotes of Leishmania infantum, when administered in the form of meglumine antimoniate and free, in hydrochloric solution, was performed. Results indicate that the conditions under which the promastigotes were cultured affect the IC(50) obtained, although results were homogeneous when the products were assayed on axenic-like and intracellular amastigotes. The IC(50) obtained for SbV in the form of meglumine antimoniate or in hydrochloric solution on promastigotes cultured in Schneider's medium depends on the growth rate of the culture and therefore could be regulated by modifying the fetal calf serum concentration in the medium. The pH of the culture medium strongly affected the activity of meglumine antimoniate but not that of the SbV hydrochloric solution on promastigotes cultured in Schneider's medium. This influence of pH was observed to a much lesser extent when promastigotes were cultured on M199 or RPMI media. In homogeneous culture conditions, which included the regulation of the promastigote growth rate through the heat-inactivated fetal calf serum concentration in the medium and the dilution of the meglumine antimoniate with Schneider's medium at pH 6.5, the activity of SbV, free or in the form of meglumine antimoniate, was the same in promastigotes, intracellular amastigotes, and axenic amastigote-like cells. 相似文献
3.
Ortiz-Gómez A Jiménez C Estévez AM Carrero-Lérida J Ruiz-Pérez LM González-Pacanowska D 《Eukaryotic cell》2006,5(7):1057-1064
Farnesyl diphosphate synthase is the most likely molecular target of aminobisphosphonates (e.g., risedronate), a set of compounds that have been shown to have antiprotozoal activity both in vitro and in vivo. This protein, together with other enzymes involved in isoprenoid biosynthesis, is an attractive drug target, yet little is known about the compartmentalization of the biosynthetic pathway. Here we show the intracellular localization of the enzyme in wild-type Leishmania major promastigote cells and in transfectants overexpressing farnesyl diphosphate synthase by using purified antibodies generated towards a homogenous recombinant Leishmania major farnesyl diphosphate synthase protein. Indirect immunofluorescence, together with immunoelectron microscopy, indicated that the enzyme is mainly located in the cytoplasm of both wild-type cells and transfectants. Digitonin titration experiments also confirmed this observation. Hence, while the initial step of isoprenoid biosynthesis catalyzed by 3-hydroxy-3-methylglutaryl-coenzyme A reductase is located in the mitochondrion, synthesis of farnesyl diphosphate by farnesyl diphosphate synthase is a cytosolic process. Leishmania major promastigote transfectants overexpressing farnesyl diphosphate synthase were highly resistant to risedronate, and the degree of resistance correlated with the increase in enzyme activity. Likewise, when resistance was induced by stepwise selection with the drug, the resulting resistant promastigotes exhibited increased levels of farnesyl diphosphate synthase. The overproduction of protein under different conditions of exposure to risedronate further supports the hypothesis that this enzyme is the main target of aminobisphosphonates in Leishmania cells. 相似文献
4.
Leishmania major peroxidase (LmP) exhibits both ascorbate and cytochrome c peroxidase activities. Our previous results illustrated that LmP has a much higher activity against horse heart cytochrome c than ascorbate, suggesting that cytochrome c may be the biologically important substrate. To elucidate the biological function of LmP, we have recombinantly expressed, purified, and determined the 2.08 ? crystal structure of L. major cytochrome c (LmCytc). Like other types of cytochrome c, LmCytc has an electropositive surface surrounding the exposed heme edge that serves as the site of docking with redox partners. Kinetic assays performed with LmCytc and LmP show that LmCytc is a much better substrate for LmP than horse heart cytochrome c. Furthermore, unlike the well-studied yeast system, the reaction follows classic Michaelis-Menten kinetics and is sensitive to an increasing ionic strength. Using the yeast cocrystal as a control, protein-protein docking was performed using Rosetta to develop a model for the binding of LmP and LmCytc. These results suggest that the biological function of LmP is to act as a cytochrome c peroxidase. 相似文献
5.
Methotrexate (MTX)-resistant mutants of the parasitic protozoan Leishmania have been used as models for the mechanism and genetic basis of drug resistance in trypanosomatids and other cells. Three resistance mechanisms to MTX, a dihydrofolate reductase inhibitor, have been described in Leishmania: decreased uptake and accumulation of MTX via the folate/MTX transporter, amplification and overexpression of the dihydrofolate reductase-thymidylate synthase gene, and extrachromosomal amplification of H region DNA. We have now identified hmtxr as the H region gene conferring MTX resistance using a transfection-based approach. Data base searches show that the predicted HMTXr protein is related to members of the polyol dehydrogenase/carbonyl reductase family of aldoketo reductases, whose substrates include polyols, quinones, steroids, prostaglandins, fatty acids, and pterins. We therefore propose that HMTXr is also an oxidoreductase and suggest several biochemical mechanisms of resistance in Leishmania that could be exploited in the design of parasite-specific inhibitors. 相似文献
6.
Ca2+-permeable channels that are involved in the responses of mammalian cells to changes in extracellular osmolarity have not been characterized at the molecular level. Here we identify a new TRP (transient receptor potential)-like channel protein, OTRPC4, that is expressed at high levels in the kidney, liver and heart. OTRPC4 forms Ca2+-permeable, nonselective cation channels that exhibit spontaneous activity in isotonic media and are rapidly activated by decreases in, and are inhibited by increases in, extracellular osmolarity. Changes in osmolarity of as little as 10% result in significant changes in intracellular Ca2+ concentration. We propose that OTRPC4 is a candidate for a molecular sensor that confers osmosensitivity on mammalian cells. 相似文献
7.
Catabolic pathway for 2-nitroimidazole involves a novel nitrohydrolase that also confers drug resistance 总被引:1,自引:0,他引:1
Antibiotic resistance in pathogens can be mediated by catabolic enzymes thought to originate from soil bacteria, but the physiological functions and evolutionary origins of the enzymes in natural ecosystems are poorly understood. 2-Nitroimidazole (2NI) is a natural antibiotic and an analogue of the synthetic nitroimidazoles used for treatment of tuberculosis, Chagas' disease and cancer. Mycobacterium sp. JS330 was isolated from soil based on its ability to use 2NI as a sole growth substrate. The initial step in the degradation pathway is the hydrolytic denitration of 2NI to produce imidazol-2-one and nitrite. The amino acid sequence of 2NI nitrohydrolase is highly divergent from those of biochemically characterized enzymes, and it confers drug resistance when it is heterologously expressed in Escherichia coli. The unusual enzymatic reaction seems likely to determine the flux of nitroimidazole in natural ecosystems and also represents the discovery of a previously unreported drug resistance mechanism in soil before its identification in clinical situations. 相似文献
8.
Both Leishmania major and L. braziliensis induce cutaneous leishmaniasis in BALB/c mice. Whereas BALB/c mice die of infection with L. major, they cure an infection with L. braziliensis. We report here that after curing an infection with L. braziliensis, BALB/c mice are resistant to challenge with L. major. When challenged with L. major, L. braziliensis pre-treated BALB/c mice mounted a delayed-type hypersensitivity response to L. major and produced high amounts of interferon-gamma (IFN-gamma) but low amounts of interleukin-4. The IFN-gamma produced by the L. braziliensis pre-infected mice was involved in the protection seen against L. major challenge since treating the mice with a neutralizing anti-IFN-gamma abrogated the protection. This suggests that cross-reactive antigen epitopes exist between L. braziliensis and L. major and that pre-infection with L. braziliensis primes BALB/c mice to epitopes on L. major that can elicit a protective Th1 response to the parasite. 相似文献
9.
Heterologous expression of the bifunctional thymidylate synthase-dihydrofolate reductase from Leishmania major 总被引:3,自引:0,他引:3
The bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) of Leishmania major has been cloned and expressed in Escherichia coli and Saccharomyces cerevisiae. The strategy involved placing the entire 1560-bp coding sequence into a parent cloning plasmid that was designed to permit introduction of unique restriction sites at the 5'- and 3'-ends. In this manner, the entire coding sequence could be easily subcloned into a variety of expression vectors. High levels of TS-DHFR gene expression were driven by tac, pL and T7 RNA pol promoters in E. coli, and the GAPDH-ADH-2 promoter in S. cerevisiae. L. major TS-DHFR also complemented TS deficiency in E. coli. In E. coli, the protein accumulated to very high levels, but most was present as inactive inclusion bodies. Nevertheless, substantial amounts were soluble; up to 2% of the soluble protein was catalytically active TS-DHFR. In the yeast systems, essentially all of the bifunctional protein was soluble and catalytically active, and crude extracts contained about 100-fold more enzyme than do extracts from wild-type L. major. The expressed TS-DHFR from yeast and E. coli was purified to homogeneity by methotrexate-Sepharose affinity chromatography. About 8.5 mg of homogeneous, catalytically active protein is obtained from a 1-L culture of yeast, and 1.5 mg was obtained from 1 L of E. coli culture. A 200-L fermentation of the yeast expression system yielded a crude extract containing over 4 g of TS-DHFR.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
10.
Yong Tao Steven Gutteridge Eric A. Benner Lihong Wu Daniel F. Rhoades Matthew D. Sacher Michel A. Rivera Johan Desaeger Daniel Cordova 《Insect biochemistry and molecular biology》2013,43(9):820-828
Anthranilic diamides, which include the new commercial insecticide, chlorantraniliprole, are an exciting new class of chemistry that target insect ryanodine receptors. These receptors regulate release of stored intracellular calcium and play a critical role in muscle contraction. As with insects, nematodes express ryanodine receptors and are sensitive to the plant alkaloid, ryanodine. However the plant parasitic nematode, Meloidogyne incognita, is insensitive to anthranilic diamides. Expression of a full-length Drosophila melanogaster ryanodine receptor in an insect cell line confers sensitivity to the receptor agents, caffeine and ryanodine along with nanomolar sensitivity to anthranilic diamides. Replacement of a 46 amino acid segment in a highly divergent region of the Drosophila C-terminus with that from Meloidogyne results in a functional RyR which lack sensitivity to diamide insecticides. These findings indicate that this region is critical to diamide sensitivity in insect ryanodine receptors. Furthermore, this region may contribute to our understanding of the differential selectivity diamides exhibit for insect over mammalian ryanodine receptors. 相似文献
11.
The PSA-2 glycoprotein complex of Leishmania major is a glycosylphosphatidylinositol-linked promastigote surface antigen 总被引:2,自引:0,他引:2
P J Murray T W Spithill E Handman 《Journal of immunology (Baltimore, Md. : 1950)》1989,143(12):4221-4226
Polyclonal rabbit antiserum to the Triton X-114 phase material of Leishmania major, which comprises the surface and internal integral membrane proteins of the parasite, was used to screen a lambda gt11 genomic expression library. A recombinant clone producing a Mr 123,000 beta-galactosidase fusion protein was isolated. Antibodies affinity-purified on this fusion protein recognized a complex of three surface-oriented proteins of promastigotes of L. major of Mr 94,000, 90,000, and 80,000 that we have termed the promastigote surface Ag 2 (PSA-2) complex. The DNA sequence of the insert in this clone predicted the 3' end of an open reading frame encoding a hydrophobic C-terminus. The inferred C-terminal sequence was suggestive of a glycosylphosphatidyl-inositol membrane anchoring mechanism. Phosphatidylinositol-specific phospholipase C treatment of the native PSA-2 proteins caused a shift in their electrophoretic mobility with an apparent reduction in the molecular weight of the PSA-2 complex. After phospholipase C treatment these proteins also displayed the cryptic cross-reacting determinant recognized by antibodies to the Trypanosoma brucei variant surface Ag. Moreover, PSA-2, which previously partitioned in the detergent phase after Triton X-114 phase separation, became water-soluble after phospholipase C treatment. Immunoprecipitation of the PSA-2 proteins with sera directed to lectin-binding proteins indicated that these polypeptides may be differentially glycosylated. Finally, these PSA-2 proteins were recognized by sera from some patients with cutaneous leishmaniasis. 相似文献
12.
The major surface protein of Leishmania promastigotes is a protease 总被引:10,自引:0,他引:10
The major surface protein of Leishmania promastigotes is evolutionarily conserved and is found in isolates of L. donovani, L. major, L. tropica, L. mexicana, and L. braziliensis. The data provided in this communication demonstrate that in L. major this integral membrane protein is a protease, which we now designate promastigote surface protease. The enzyme has an alkaline pH optimum and is active both in its detergent-solubilized form and at the surface of living or fixed promastigotes. A water-soluble form of promastigote surface protease is obtained following digestion with the phospholipase C responsible for the release of the variant surface glycoprotein of Trypanosoma brucei. Possible biological functions of promastigote surface protease during the life cycle of Leishmania parasites are discussed. 相似文献
13.
The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease. 相似文献
14.
Matthews DJ Emson CL McKenzie GJ Jolin HE Blackwell JM McKenzie AN 《Journal of immunology (Baltimore, Md. : 1950)》2000,164(3):1458-1462
Leishmania major infection is useful as an experimental model to define factors responsible for the development and maintenance of Th cell immune responses. Studies using inbred mouse strains have identified that the Th1 response characteristic of C57BL/6 mice results in healing, whereas BALB/c mice fail to control the infection due to the generation of an inappropriate Th2 response. We now demonstrate that IL-13 is a key factor in determining susceptibility to L. major infection. Overexpression of IL-13 in transgenic mice makes the normally resistant C57BL/6 mouse strain susceptible to L. major infection even in the absence of IL-4 expression. This susceptibility correlates with a suppression of IL-12 and IFN-gamma expression. Furthermore, using BALB/c mice deficient in the expression of IL-4, IL-13, or both IL-13 and IL-4, we demonstrate that IL-13-deficient mice are resistant to infection and that there is an additive effect of deleting both IL-4 and IL-13. 相似文献
15.
Evidence that intracellular stages of Leishmania major utilize amino sugars as a major carbon source
Intracellular parasites, such as Leishmania spp, must acquire suitable carbon sources from the host cell in order to replicate. Here we present evidence that intracellular amastigote stages of Leishmania exploit amino sugars in the phagolysosome of mammalian macrophages as a source of carbon and energy. L. major parasites are capable of using N-acetylglucosamine and glucosamine as primarily carbon sources and contain key enzymes required for conversion of these sugars to fructose-6-phosphate. The last step in this pathway is catalyzed by glucosamine-6-phosphate deaminase (GND), which was targeted to glycosomes via a canonical C-terminal targeting signal when expressed as a GFP fusion protein. Mutant parasites lacking GND were unable to grow in medium containing amino sugars as sole carbohydrate source and rapidly lost viability, concomitant with the hyper-accumulation of hexosamine-phosphates. Expression of native GND, but not a cytosolic form of GND, in Δgnd parasites restored hexosamine-dependent growth, indicating that toxicity is due to depletion of glycosomal pools of ATP. Non-lethal increases in hexosamine phosphate levels in both Δgnd and wild type parasites was associated with a defect in promastigote metacyclogenesis, suggesting that hexosamine phosphate levels may influence parasite differentiation. Promastigote and amastigote stages of the Δgnd mutant were unable to replicate within macrophages and were either completely cleared or exhibited reduced lesion development in highly susceptible Balb/c mice. Our results suggest that hexosamines are a major class of sugars in the macrophage phagolysosome and that catabolism of scavenged amino sugars is required to sustain essential metabolic pathways and prevent hexosamine toxicity. 相似文献
16.
Xu X Oliveira F Chang BW Collin N Gomes R Teixeira C Reynoso D My Pham V Elnaiem DE Kamhawi S Ribeiro JM Valenzuela JG Andersen JF 《The Journal of biological chemistry》2011,286(37):32383-32393
LJM11, an abundant salivary protein from the sand fly Lutzomyia longipalpis, belongs to the insect "yellow" family of proteins. In this study, we immunized mice with 17 plasmids encoding L. longiplapis salivary proteins and demonstrated that LJM11 confers protective immunity against Leishmania major infection. This protection correlates with a strong induction of a delayed type hypersensitivity (DTH) response following exposure to L. longipalpis saliva. Additionally, splenocytes of exposed mice produce IFN-γ upon stimulation with LJM11, demonstrating the systemic induction of Th1 immunity by this protein. In contrast to LJM11, LJM111, another yellow protein from L. longipalpis saliva, does not produce a DTH response in these mice, suggesting that structural or functional features specific to LJM11 are important for the induction of a robust DTH response. To examine these features, we used calorimetric analysis to probe a possible ligand binding function for the salivary yellow proteins. LJM11, LJM111, and LJM17 all acted as high affinity binders of prohemostatic and proinflammatory biogenic amines, particularly serotonin, catecholamines, and histamine. We also determined the crystal structure of LJM11, revealing a six-bladed β-propeller fold with a single ligand binding pocket located in the central part of the propeller structure on one face of the molecule. A hypothetical model of LJM11 suggests a positive electrostatic potential on the face containing entry to the ligand binding pocket, whereas LJM111 is negative to neutral over its entire surface. This may be the reason for differences in antigenicity between the two proteins. 相似文献
17.
Type 1 and type 2 responses to Leishmania major 总被引:8,自引:0,他引:8
Rogers KA DeKrey GK Mbow ML Gillespie RD Brodskyn CI Titus RG 《FEMS microbiology letters》2002,217(1):1-7
Pseudomonas aeruginosa and Burkholderia cepacia cause destructive lung disease in cystic fibrosis (CF) patients. Both pathogens employ 'quorum sensing', i.e. cell-to-cell communication, via diffusible N-acyl-L-homoserine lactone (AHL) signal molecules, to regulate the production of a number of virulence determinants in vitro. However, to date, evidence that quorum sensing systems are functional and play a role in vivo is lacking. This study presents the first direct evidence for the presence of AHLs in CF sputum. A total of 42 samples from 25 CF patients were analysed using lux-based Escherichia coli AHL biosensors. AHLs were detected in sputum from patients colonised by P. aeruginosa or B. cepacia but not Staphylococcus aureus. Furthermore, using liquid chromatography-mass spectrometry and thin layer chromatography, we confirmed the presence of N-hexanoylhomoserine lactone and N-(3-oxododecanoyl)homoserine lactone respectively in sputum samples from patients colonised by P. aeruginosa. 相似文献
18.
IL-12 initiates Th1 cell development and cell-mediated immunity, but whether IL-12 contributes to the maintenance of a Th1 response is unclear. To address this question, we infected IL-12 p40-/- C57BL/6 mice with Leishmania major, an intracellular protozoan parasite controlled by a cell-mediated immune response, and simultaneously administered IL-12. Whereas untreated p40-/- mice developed an uncontrolled infection, p40-/- mice treated with IL-12 for the first 2 or 4 wk of infection developed a Th1 response and resolved their lesions. However, the induction of this protective Th1 cell response by IL-12 treatment was not associated with long term immunity. We observed that on rechallenge in the absence of IL-12, the mice exhibited a susceptible phenotype. In addition, without rechallenge, lesions in the IL-12-treated p40-/- mice developed several weeks after cessation of IL-12 treatment. In both cases, disease was associated with the loss of a Th1 response and the development of a Th2 response. Our observations are not limited to the C57BL/6 strain, because IL-12 treatment was also unable to provide lasting protection to p40-/- BALB/c mice. Finally, we found that although Th1 cells from healed wild-type C57BL/6 mice adoptively transferred protection to L. major-infected RAG-/- mice, they were unable to protect p40-/- mice. In conclusion, these studies provide the first demonstration that IL-12 is required not only to initiate Th1 cell development but also throughout infection to maintain a Th1 cell response and resistance to L. major. 相似文献
19.
Jorge Tovar Shane Wilkinson Jeremy C. Mottram & Alan H. Fairlamb 《Molecular microbiology》1998,29(2):653-660
Trypanothione reductase (TR), a flavoprotein oxidoreductase central to the unique thiol-redox system that operates in trypanosomatid protozoa, has been proposed as a potential target for the chemotherapy of trypanosomatid infections. In this study, targeted gene replacement was used to obtain evidence that TR is an essential cellular component and that its physiological function is crucial for parasite survival. Precise replacement of the Leishmania donovani tryA gene encoding TR was only possible upon simultaneous expression of the tryA coding region from an episome; in its absence, attempted removal of the last tryA allele invariably led to the generation of an extra copy of tryA , seemingly as a result of selective chromosomal polysomy. Partial replacement mutants were drastically affected in their ability to survive inside cytokine-activated macrophages in a murine model of Leishmania infection. As no compensatory mechanism for the partial loss of TR activity was observed in these mutants and as it was not possible to obtain viable Leishmania devoid of TR catalytic activity, specific inhibitors of this enzyme are likely to be useful anti-leishmanial agents for chemotherapeutic use. 相似文献
20.
Biopterin is required for growth of the protozoan parasite Leishmania and is salvaged from the host through the activities of a novel biopterin transporter (BT1) and broad-spectrum pteridine reductase (PTR1). Here we characterize Leishmania major quinonoid-dihydropteridine reductase (LmQDPR), the key enzyme required for regeneration and maintenance of H(4)biopterin pools. LmQDPR shows good homology to metazoan quinonoid-dihydropteridine reductase and conservation of domains implicated in catalysis and regulation. Unlike other organisms, LmQDPR is encoded by a tandemly repeated array of 8-9 copies containing LmQDPR plus two other genes. QDPR mRNA and enzymatic activity were expressed at similar levels throughout the infectious cycle. The pH optima, kinetic properties, and substrate specificity of purified LmQDPR were found to be similar to that of other qDPRs, although it lacked significant activity for non-quinonoid pteridines. These and other data suggest that LmQDPR is unlikely to encode the dihydrobiopterin reductase activity (PTR2) described previously. Similarly LmQDPR is not inhibited by a series of antifolates showing anti-leishmanial activity beyond that attributable to dihydrofolate reductase or PTR1 inhibition. qDPR activity was found in crude lysates of Trypanosoma brucei and Trypanosoma cruzi, further emphasizing the importance of H(4)biopterin throughout this family of human parasites. 相似文献