首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Luke K  Apiyo D  Wittung-Stafshede P 《Biochemistry》2005,44(44):14385-14395
All known cochaperonin protein 10 (cpn10) molecules are heptamers of seven identical subunits noncovalently linked by beta-strand interactions. Cpn10 from the deep-branching, hyperthermophilic bacterium Aquifex aeolicus (Aacpn10) shows high homology with mesophilic and other thermophilic cpn10 sequences, except for a 25-residue C-terminal extension not found in any other cpn10. Prior to atomic structure information, we here address the role of the tail by biophysical means. A tail-lacking variant (Aacpn10-del25) also adopts a heptameric structure in solution and exhibits nativelike substrate-refolding activity. Thermal and chemical perturbations of both Aacpn10 and Aacpn10-del25, probed by far-UV circular dichroism, demonstrate that both proteins have high thermodynamic stability. Heptamer-monomer dissociation midpoints were defined by isothermal titration calorimetry; at 25 degrees C, the values for Aacpn10 and Aacpn10-del25 are within 2-fold of each other and close to reported midpoints for mesophilic cpn10 proteins. In contrast, the monomer stabilities for the A. aeolicus proteins are significantly higher than those of mesophilic homologues at 30 degrees C; thus, heptamer thermophily is a result of more stable monomers. Electron microscopy data reveals that Aacpn10-del25 heptamers are prone to stack on top of each other forming chainlike molecules; the electrostatic surface pattern of a structural model can explain this behavior. Taken together, the unique tail in Aacpn10 is not required for heptamer structure, stability, or function; instead, it appears to be an ancient strategy to avoid cochaperonin aggregation at extreme temperatures.  相似文献   

2.
To compare folding/assembly processes of heptameric co-chaperonin proteins 10 (cpn10) from different species and search for the origin of thermostability in hyper-thermostable Aquifex aeolicus cpn10 (Aacpn10), we have studied two bacterial variants-Aacpn10 and Escherichia coli cpn10 (GroES)-and compared the results to data on Homo sapiens cpn10 (hmcpn10). Equilibrium denaturation of GroES by urea, guanidine hydrochloride (GuHCl) and temperature results in coupled heptamer-to-monomer transitions in all cases. This is similar to the behavior of Aacpn10 but differs from hmcpn10 denaturation in urea. Time-resolved experiments reveal that GroES unfolds before heptamer dissociation, whereas refolding/reassembly begins with folding of individual monomers; these assemble in a slower step. The sequential folding/assembly mechanism for GroES is rather similar to that observed for Aacpn10 but contradicts the parallel paths of hmcpn10. We reveal that Aacpn10's stability profile is shifted upwards, broadened, and also moved horizontally to higher temperatures, as compared to that of GroES.  相似文献   

3.
Here we investigate the time-resolved folding and assembly mechanism of the heptameric co-chaperonin protein 10 (cpn10) in vitro. The structure of cpn10 is conserved throughout nature: seven beta-barrel subunits are non-covalently assembled through beta-strand pairings in an overall doughnut-like shape. Kinetic folding/assembly experiments of chemically denatured cpn10 from Homo sapiens (hmcpn10) and Aquifex aeolicus (Aacpn10) were monitored by far-UV circular dichroism and fluorescence. We find the processes to be complex, involving several kinetic steps, and to differ between the mesophilic and hyper-thermophilic proteins. The hmcpn10 molecules partition into two parallel pathways, one involving polypeptide folding before protein-protein assembly and another in which inter-protein interactions take place prior to folding. In contrast, the Aacpn10 molecules follow a single sequential path that includes initial monomer misfolding, relaxation to productive intermediates and, subsequently, final folding and heptamer assembly. An A. aeolicus variant lacking the unique C-terminal extension of Aacpn10 displays the same kinetic mechanism as Aacpn10, signifying that the tail is not responsible for the rapid misfolding step. This study demonstrates that molecular details can overrule similarity of native-state topology in defining apparent protein-biophysical properties.  相似文献   

4.
The binding of a series of low-molecular-mass, active-site-directed thrombin inhibitors (399-575 Da) to human alpha-thrombin was investigated by surface plasmon resonance technology (BIACORE), stopped-flow spectrophotometry, and isothermal titration microcalorimetry (ITC). The equilibrium constants K(D) (nM to microM range) at 25 degrees C obtained from the BIACORE analysis correlated well with the inhibition constants K(i) in a chromogenic inhibition assay. The interactions between thrombin and three potent inhibitors, melagatran, inogatran, and CH-248, were further investigated at temperatures between 278 and 310K. A one-to-one binding stoichiometry found with ITC was supported by BIACORE data. K(i) and K(D) values increased with the temperature, mainly due to higher values for dissociation rate constants. The changes in enthalpy, DeltaH, and entropy, DeltaS, determined from the linear van't Hoff plots (R coefficient > 0.99), were linearly correlated by chemical compensation. Both techniques indicated clear differences in DeltaS for the three inhibitors, with a strong correlation to the number of rotational bonds. Immobilization of thrombin increased the binding stability at higher temperature and reduced the DeltaH by 20 kJ mol(-1). DeltaH values obtained from the inhibition kinetics and BIACORE were thus not identical, but correlated well with ITC data obtained at 37 degrees C. The two thermodynamic techniques allowed further differentiation between compounds of similar affinity; furthermore, kinetic analysis, hence analysis of the transition state, is complementary to ITC. A direct BIACORE binding assay might be a useful alternative to more elaborate inhibition studies.  相似文献   

5.
We have investigated the thermodynamic parameters and binding of a regulatory subunit of cAMP-dependent protein kinase (PKA) to its natural low-molecular-weight ligand, cAMP, and analogues thereof. For analysis of this model system, we compared side-by-side isothermal titration calorimetry (ITC) with surface plasmon resonance (SPR). Both ITC and SPR analyses revealed that binding of the protein to cAMP or its analogues was enthalpically driven and characterised by similar free energy values (DeltaG=-9.4 to -10.7 kcal mol-1) for all interactions. Despite the similar affinities, binding of the cyclic nucleotides used here was characterised by significant differences in the contribution of entropy (-TDeltaS) and enthalpy (DeltaH) to DeltaG. The comparison of ITC and SPR data for one cAMP analogue further revealed deviations caused by the method. These equilibrium parameters could be complemented by thermodynamic data of the transition state (DeltaHnot equal, DeltaGnot equal, DeltaSnot equal) for both association and dissociation measured by SPR. This direct comparison of ITC and SPR highlights method-specific advantages and drawbacks for thermodynamic analyses of protein/ligand interactions.  相似文献   

6.
Manganese(II) activation of the methionyl aminopeptidases from Escherichia coli (EcMetAP-I) and the hyperthermophilic archaeon Pyrococcus furiosus (PfMetAP-II) was investigated. Maximum catalytic activity for both enzymes was obtained with 1 equiv of Mn(II), and the dissociation constants (K(d)) for the first metal binding site were found to be 6 +/- 0.5 and 1 +/- 0.5 microM for EcMetAP-I and PfMetAP-II, respectively. These K(d) values were verified by isothermal titration calorimetry (ITC) and found to be 3.0 +/- 0.2 and 1.4 +/- 0.2 microM for EcMetAP-I and PfMetAP-II, respectively. The hydrolysis of MGMM was measured in triplicate between 25 and 85 degrees C at eight substrate concentrations ranging from 2 to 20 mM for PfMetAP-II. Both specific activity and K(m) values increased with increasing temperature. An Arrhenius plot was constructed from the kcat values and was found to be linear over the temperature range 25-85 degrees C. The activation energy for the Mn(II)-loaded PfMetAP-II hydrolysis of MGMM was found to be 25.7 kJ/mol while the remaining thermodynamic parameters calculated at 25 degrees C are DeltaG+ = 50.1 kJ/mol, DeltaH+ = 23.2 kJ/mol, and DeltaS++ = -90.2 J x mol(-1) x K(-1).  相似文献   

7.
PDZ10 is the 10th of 13 PDZ domains found within MUPP1, a cytoplasmic scaffolding protein first identified as an endogenous binding partner of serotonin receptor type 2c (5HT2c). This association, as with those of several other interacting proteins that have subsequently been identified, is mediated through the C-terminal tail of the PDZ domain partner. Using isothermal titration calorimetry (ITC), we measured the thermodynamic binding parameters [changes in Gibbs free energy (DeltaG), enthalpy (DeltaH) and entropy (TDeltaS)] of the isolated PDZ10 domain for variable-length N-acetylated peptides from the 5HT2c serotonin receptor C-terminal sequence, as well as for octapeptides of eight other putative partner proteins of PDZ10 (5HT2a, hc-kit, hTapp1, mTapp2, TARP, NG2, claudin-1, and HPV-18 E6). In length dependence studies of the 5HT2c sequence, the maximal affinity of the peptides leveled off rapidly and further elongation did not significantly improve the dissociation constant (Kd) of 11 microM observed with the pentapeptide. Among the native partners of PDZ10, octapeptides derived from the hc-kit and 5HT2c proteins were the strongest binders, with Kd values of 5.2 and 8.5 microM, respectively. The heat capacity change (DeltaCp) for the 5HT2c octapeptide was determined to be -94 cal/mol, and a calculated estimate indicates burial of polar and apolar surface areas in equal measure upon ligand binding. Peptides with phosphoserine at either the P-1 or P-2 position experienced decreased affinity, which is in accord with the hypothesis that reversible phosphorylation is a possible mechanism for regulating PDZ domain-mediated interactions. Additionally, two conformationally constrained side chain-bridged cyclic peptide ligands were also designed, prepared, evaluated by ITC, and shown to bind PDZ10 primarily through a favorable change in entropy.  相似文献   

8.
The interaction of biologicalmacromolecules, whether protein-DNA, antibody-antigen, hormone-receptor, etc., illustrates the complexity and diversity of molecular recognition. The importance of such interactions in the immune response, signal transduction cascades, and gene expression cannot be overstated. It is of great interest to determine the nature of the forces that stabilize the interaction. The thermodynamics of association are characterized by the stoichiometry of the interaction (n), the association constant (K(a)), the free energy (DeltaG(b)), enthalpy (DeltaH(b)), entropy (DeltaS(b)), and heat capacity of binding (DeltaC(p)). In combination with structural information, the energetics of binding can provide a complete dissection of the interaction and aid in identifying the most important regions of the interface and the energetic contributions. Various indirect methods (ELISA, RIA, surface plasmon resonance, etc.) are routinely used to characterize biologically important interactions. Here we describe the use of isothermal titration calorimetry (ITC) in the study of protein-protein interactions. ITC is the most quantitative means available for measuring the thermodynamic properties of a protein-protein interaction. ITC measures the binding equilibrium directly by determining the heat evolved on association of a ligand with its binding partner. In a single experiment, the values of the binding constant (K(a)), the stoichiometry (n), and the enthalpy of binding (DeltaH(b)) are determined. The free energy and entropy of binding are determined from the association constant. The temperature dependence of the DeltaH(b) parameter, measured by performing the titration at varying temperatures, describes the DeltaC(p) term. As a practical application of the method, we describe the use of ITC to study the interaction between cytochrome c and two monoclonal antibodies.  相似文献   

9.
Surfactin is a bacterial lipopeptide with powerful surfactant-like properties. High-sensitivity isothermal titration calorimetry was used to study the self association and membrane partitioning of surfactin. The critical micellar concentration (CMC), was 7.5 microM, the heat of micellization was endothermic with DeltaH(w-->m)(Su) = +4.0 kcal/mol, and the free energy of micellization DeltaG(O,w-->m)(Su) = -9.3 kcal/mol (25 degrees C; 100 mM NaCl; 10 mM TRIS, 1 mM EDTA; pH 8.5). The specific heat capacity of micellization was deduced from temperature dependence of DeltaH(w-->m)(Su) as DeltaC(w-->m)(P) = -250 +/- 10 cal/(mol.K). The data can be explained by combining the hydrophobicity of the fatty acyl chain with that of the hydrophobic amino acids. The membrane partition equilibrium was studied using small (30 nm) and large (100 nm) unilamellar POPC vesicles. At 25 degrees C, the partition coefficient, K, was (2.2 +/- 0.2) x 10(4) M(-1) for large vesicles leading to a free energy of DeltaG(O, w-->b)(Su) = -8.3 kcal/mol. The partition enthalpy was again endothermic, with DeltaH(w-->b)(Su) = 9 +/- 1 kcal/mol. The strong preference of surfactin for micelle formation over membrane insertion explains the high membrane-destabilizing activity of the peptide. For surfactin and a variety of non-ionic detergents, the surfactant-to-lipid ratio, inducing membrane solubilization, R(sat)(b), can be predicted by the simple relationship R(sat)(b) approximately K. CMC.  相似文献   

10.
The kinetics and energetics of the binding between barley alpha-amylase/subtilisin inhibitor (BASI) or BASI mutants and barley alpha-amylase 2 (AMY2) were determined using surface plasmon resonance and isothermal titration calorimetry (ITC). Binding kinetics were in accordance with a 1:1 binding model. At pH 5.5, [Ca(2+)] = 5 mM, and 25 degrees C, the k(on) and k(off) values were 8.3 x 10(+4) M(-1) s(-1) and 26.0 x 10(-4) s(-1), respectively, corresponding to a K(D) of 31 nM. K(D) was dependent on pH, and while k(off) decreased 16-fold upon increasing pH from 5.5 to 8.0, k(on) was barely affected. The crystal structure of AMY2-BASI shows a fully hydrated Ca(2+) at the protein interface, and at pH 6.5 increase of [Ca(2+)] in the 2 microM to 5 mM range raised the affinity 30-fold mainly due to reduced k(off). The K(D) was weakly temperature-dependent in the interval from 5 to 35 degrees C as k(on) and k(off) were only increasing 4- and 12-fold, respectively. A small salt dependence of k(on) and k(off) suggested a minor role for global electrostatic forces in the binding and dissociation steps. Substitution of a positively charged side chain in the mutant K140L within the AMY2 inhibitory site of BASI accordingly did not change k(on), whereas k(off) increased 13-fold. ITC showed that the formation of the AMY2-BASI complex is characterized by a large exothermic heat (Delta H = -69 +/- 7 kJ mol(-1)), a K(D) of 25 nM (27 degrees C, pH 5.5), and an unfavorable change in entropy (-T Delta S = 26 +/- 7 kJ mol(-1)). Calculations based on the thermodynamic data indicated minimal structural changes during complex formation.  相似文献   

11.
S100B, an EF-hand calcium-binding protein composed of two S100beta monomers, undergoes a calcium-dependent conformational change that provides a surface for target interactions. In this study, the calcium-sensitive S100B-binding epitope TRTK-12 has been used to probe the contributions of the linker and C-terminal regions of S100B to protein-protein interactions. These contributions were quantified using C-terminal mutant S100B proteins lacking the C-terminal seven (S100B85stop) or nine (S100B83stop) residues or containing alanine substitutions at Phe87 (F87A), Phe88 (F88A), or both (F8788A). Both F8788A and F88A bound TRTK-12 less tightly (K(d) = 1.85 +/- 0.02 and 0.97 +/- 0.08 microM, respectively) than the wild-type protein (K(d) = 0.27 +/- 0.03 microM, DeltaG = -37.2 kJ/mol), indicating these residues are important for TRTK-12 interaction. The truncated S100B proteins bound TRTK-12 much more weakly (K(d) = 659.7 +/- 119.3 microM, DeltaG = -17.9 kJ/mol), indicating the linker region contributed about 50% to the binding of TRTK-12, while the C-terminus contributed the remaining 50% of the binding energy. Based on mutagenesis and NMR chemical shift studies, a comparison with known S100-target protein complexes showed the S100B-TRTK-12 complex has the strongest resemblance to the S100A10-annexin II interaction.  相似文献   

12.
The effect of temperature, pH, free [Mg(2+)], and ionic strength on the apparent equilibrium constant of arginine kinase (EC 2.7.3.3) was determined. At equilibrium, the apparent K' was defined as [see text] where each reactant represents the sum of all the ionic and metal complex species. The K' at pH 7.0, 1.0 mM free [Mg(2+)], and 0. 25 M ionic strength was 29.91 +/- 0.59, 33.44 +/- 0.46, 35.44 +/- 0. 71, 39.64 +/- 0.74, and 45.19 +/- 0.65 (n = 8) at 40, 33, 25, 15, and 5 degrees C, respectively. The standard apparent enthalpy (DeltaH degrees') is -8.19 kJ mol(-1), and the corresponding standard apparent entropy of the reaction (DeltaS degrees') is + 2. 2 J K(-1)mol(-1) in the direction of ATP formation at pH 7.0, free [Mg(2+)] =1.0 mM, ionic strength (I) =0.25 M at 25 degrees C. We further show that the magnitude of transformed Gibbs energy (DeltaG degrees ') of -8.89 kJ mol(-1) is mostly comprised of the enthalpy of the reaction, with 7.4% coming from the entropy TDeltaS degrees' term (+0.66 kJ mol(-1)). Our results are discussed in relation to the thermodynamic properties of its evolutionary successor, creatine kinase.  相似文献   

13.
Amelogenin, the major extracellular enamel matrix protein, plays critical roles in controlling enamel mineralization. This generally hydrophobic protein self-assembles to form nanosphere structures under certain solution conditions. To gain clearer insight into the mechanisms of amelogenin self-assembly, we first investigated the occurrences of secondary structures within its sequence. By applying isothermal titration calorimetry (ITC), we determined the thermodynamic parameters associated with protein-protein interactions and with conformational changes during self-assembly. The recombinant porcine full length (rP172) and a truncated amelogenin lacking the hydrophilic C-terminal (rP148) were used. Circular dichroism (CD) measurements performed at low concentrations (<5 microM) revealed the presence of the polyproline-type II (PPII) conformation in both amelogenins in addition to alpha-helix and unordered conformations. Structural transition from PPII/unordered to beta-sheet was observed for both proteins at higher concentrations (>62.5 microM) and upon self-assembly. ITC measurements indicated that the self-assembly of rP172 and rP148 is entropically driven (+DeltaS(A)) and energetically favorable (-DeltaG(A)). The magnitude of enthalpy (DeltaH(A)) and entropy changes of assembly (DeltaS(A)) were smaller for rP148 than rP172, whereas the Gibbs free energy change of assembly (DeltaG(A)) was not significantly different. It was found that rP172 had higher PPII content than rP148, and the monomer-multimer equilibrium for rP172 was observed in a narrower protein concentration range when compared to rP148. The large positive enthalpy and entropy changes in both cases are attributed to the release of ordered water molecules and the associated entropy gain (due to the hydrophobic effect). These findings suggest that PPII conformation plays an important role in amelogenin self-assembly and that rP172 assembly is more favorable than rP148. The data are direct evidence for the notion that hydrophobic interactions are the main driving force for amelogenin self-assembly.  相似文献   

14.
The thermodynamics of 5'-ATGCTGATGC-3' binding to its complementary DNA and RNA strands was determined in sodium phosphate buffer under varying conditions of temperature and salt concentration from isothermal titration calorimetry (ITC). The Gibbs free energy change, DeltaG degrees of the DNA hybridization reactions increased by about 6 kJ mol(-1) from 20 degrees C to 37 degrees C and exhibited heat capacity changes of -1.42 +/- 0.09 kJ mol(-1) K(-1) for DNA/DNA and -0.87 +/- 0.05 kJ mol(-1) K(-1) for DNA/RNA. Values of DeltaG degrees decreased non-linearly by 3.5 kJ mol(-1) at 25 degrees C and 6.0 kJ mol(-1) at 37 degrees C with increase in the log of the sodium chloride concentration from 0.10 M to 1.0 M. A near-linear relationship was observed, however, between DeltaG degrees and the activity coefficient of the water component of the salt solutions. The thermodynamic parameters of the hybridization reaction along with the heat capacity changes were combined with thermodynamic contributions from the stacking to unstacking transitions of the single-stranded oligonucleotides from differential scanning calorimetry (DSC) measurements, resulting in good agreement with extrapolation of the free energy changes to 37 degrees C from the melting transition at 56 degrees C.  相似文献   

15.
Pokeweed antiviral protein (PAP) is a type I ribosomal inactivating protein (RIP). PAP binds to and depurinates the sarcin/ricin loop (SRL) of ribosomal RNA resulting in the cessation of protein synthesis. PAP has also been shown to bind to mRNA cap analogs and depurinate mRNA downstream of the cap structure. The biological role of cap binding and its possible role in PAP activity are not known. Here we show the first direct quantitative evidence for PAP binding to the cap analog m(7)GTP. We report a binding affinity of 43.3+/-0.1 nM at 25 degrees C as determined by fluorescence quenching experiments. This is similar to the values reported for wheat cap-binding proteins eIFiso4E and eIFiso4F. van't Hoff analysis of m(7)GTP-PAP equilibrium reveals a binding reaction that is enthalpy driven and entropy favored with TDeltaS degrees contributing 15% to the overall value of DeltaG degrees . This is in contrast to the wheat cap-binding proteins which are enthalpically driven in the DeltaG degrees for binding. Competition experiments indicate that ATP and GTP compete for the cap-binding site on PAP with slightly different affinities. Fluorescence studies of PAP-eIFiso4G binding reveal a protein-protein interaction with a K(d) of 108.4+/-0.3 nM. eIFiso4G was shown to enhance the interaction of PAP with m(7)GTP cap analog by 2.4-fold. These results suggest the involvement of PAP-translation initiation factor complexes in RNA selection and depurination.  相似文献   

16.
The energetics of the Sox-5 HMG box interaction with DNA duplexes, containing the recognition sequence AACAAT, were studied by fluorescence spectroscopy, isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC). Fluorescence titration showed that the association constant of this HMG box with the duplexes is of the order 4x10(7) M(-1), increasing somewhat with temperature rise, i.e. the Gibbs energy is -40 kJ mol(-1) at 5 degrees C, decreasing to -48 kJ mol(-1) at 32 degrees C. ITC measurements of the enthalpy of association over this temperature range showed an endothermic effect below 17 degrees C and an exothermic effect above, suggesting a heat capacity change on binding of about -4 kJ K(-1) mol(-1), a value twice larger than expected from structural considerations. A straightforward interpretation of ITC data in heat capacity terms assumes, however, that the heat capacities of all participants in the association reaction do not change over the considered temperature range. Our previous studies showed that over the temperature range of the ITC experiments the HMG box of Sox-5 starts to unfold, absorbing heat and the heat capacities of the DNA duplexes also increase significantly. These heat capacity effects differ from that of the DNA/Sox-5 complex. Correcting the ITC measured binding enthalpies for the heat capacity changes of the components and complex yielded the net enthalpies which exhibit a temperature dependence of about -2 kJ K(-1) mol(-1), in good agreement with that predicted on the basis of dehydration of the protein-DNA interface. Using the derived heat capacity change and the enthalpy and Gibbs energy of association measured at 5 degrees C, the net enthalpy and entropy of association of the fully folded HMG box with the target DNA duplexes was determined over a broad temperature range. These functions were compared with those for other known cases of sequence specific DNA/protein association. It appears that the enthalpy and entropy of association of minor groove binding proteins are more positive than for proteins binding in the major groove. The observed thermodynamic characteristics of protein binding to the A+T-rich minor groove of DNA might result from dehydration of both polar and non-polar groups at the interface and release of counterions. The expected entropy of dehydration was calculated and found to be too large to be compensated by the negative entropy of reduction of translational/rotational freedom. This implies that DNA/HMG box association proceeds with significant decrease of conformational entropy, i.e. reduction in conformational mobility.  相似文献   

17.
The binding interactions between dimeric glutathione transferase from Schistosoma japonicum (Sj26GST) and bromosulfophthalein (BS) or 8-anilino-1-naphthalene sulfonate (ANS) were characterised by fluorescence spectroscopy and isothermal titration calorimetry (ITC). Both ligands inhibit the enzymatic activity of Sj26GST in a non-competitive form. A stoichiometry of 1 molecule of ligand per mole of dimeric enzyme was obtained for the binding of these ligands. The affinity of BS is higher (K(d)=3.2 microM) than that for ANS (K(d)=195 microM). The thermodynamic parameters obtained by calorimetric titrations are pH-independent in the range of 5.5 to 7.5. The interaction process is enthalpically driven at all the studied temperatures. This enthalpic contribution is larger for the ANS anion than for BS. The strongly favourable enthalpic contribution for the binding of ANS to Sj26GST is compensated by a negative entropy change, due to enthalpy-entropy compensation. DeltaG degrees remains almost invariant over the temperature range studied. The free energy change for the binding of BS to Sj26GST is also favoured by entropic contributions at temperatures below 32 degrees C, thus indicating a strong hydrophobic interaction. Heat capacity change obtained for BS (DeltaC(p) degrees =(-580.3+/-54.2) cal x K(-1) mol(-1)) is twofold larger (in absolute value) than for ANS (DeltaC(p) degrees =(-294.8+/-15.8) cal x K(-1) mol(-1)). Taking together the thermodynamic parameters obtained for these inhibitors, it can be argued that the possible hydrophobic interactions in the binding of these inhibitors to L-site must be accompanied by other interactions whose contribution is enthalpic. Therefore, the non-substrate binding site (designed as ligandin) on Sj26GST may not be fully hydrophobic.  相似文献   

18.
The thermodynamics of the conversion of aqueous D-psicose to D-allose has been investigated using high-pressure liquid chromatography. The reaction was carried out in phosphate buffer at pH 7.4 over the temperature range 317.25-349.25 K. The following results are obtained for the conversion process at 298.15 K: DeltaG degrees = - 1.41 +/- 0.09 kJ mol(-1), DeltaH degrees = 7.42 +/- 1.7 kJ mol(-1), and DeltaC(p) degrees = 67 +/- 50 J mol(-1) K(-1). An approximate equilibrium constant of 0.30 is obtained at 333.15 K for the conversion of aqueous D-psicose to D-altrose. Available thermodynamic data for isomerization reactions involving aldohexoses and aldopentoses are summarized.  相似文献   

19.
We have carried out solution equilibrium binding studies of ICP8, the major single-stranded DNA (ssDNA)-binding protein of herpes simplex virus type I, in order to determine the thermodynamic parameters for its interaction with ssDNA. Fluorescence anisotropy measurements of a 5'-fluorescein-labeled 32-mer oligonucleotide revealed that ICP8 formed a nucleoprotein filament on ssDNA with a binding site size of 10 nucleotides/ICP8 monomer, an association constant at 25 degrees C, K = 0.55 +/- 0.05 x 10(6) M(-1), and a cooperativity parameter, omega = 15 +/- 3. The equilibrium constant was largely independent of salt, deltalog(Komega)/deltalog([NaCl]) = -2.4 +/- 0.4. Comparison of these parameters with other ssDNA-binding proteins showed that ICP8 reacted with an unusual mechanism characterized by low cooperativity and weak binding. In addition, the reaction product was more stable at high salt concentrations, and fluorescence enhancement of etheno-ssDNA by ICP8 was higher than for other ssDNA-binding proteins. These last two characteristics are also found for protein-DNA complexes formed by recombinases in their active conformation. Given the proposed role of ICP8 in promoting strand transfer reactions, they suggest that ICP8 and recombinase proteins may catalyze homologous recombination by a similar mechanism.  相似文献   

20.
Akmal A  Muñoz V 《Proteins》2004,57(1):142-152
We introduce a simple procedure to analyze the temperature dependence of the folding and unfolding rates of two-state proteins. We start from the simple transition-state-like rate expression: k = D(eff)exp(-DeltaG(TS)/RT), in which upper and lower bounds for the intra-chain effective diffusion coefficient (D(eff)) are obtained empirically using the timescales of elementary processes in protein folding. From the changes in DeltaG(TS) as a function of temperature, we calculate enthalpies and heat capacities of activation, together with the more elusive entropies of activation. We then estimate the conformational entropy of the transition state by extrapolation to the temperature at which the solvation entropy vanishes by cancellation between polar and apolar terms. This approach is based on the convergence temperatures for the entropy of solvating apolar (approximately 385 K) and polar groups (approximately 335 K), the assumption that the structural properties of the transition state are somewhere in between the unfolded and folded states, and the established relationship between observed heat capacity and solvent accessibility.1 To circumvent the lack of structural information about transition states, we use the empirically determined heat capacities of activation as constraints to identify the extreme values of the transition state conformational entropy that are consistent with experiment. The application of this simple approach to six two-state folding proteins for which there is temperature-dependent data available in the literature provides important clues about protein folding. For these six proteins, we obtain an average equilibrium cost in conformational entropy of -4.3 cal x mol(-1)K(-1)per residue, which is in close agreement to previous empirical and computational estimates of the same quantity. Furthermore, we find that all these proteins have a conformationally diverse transition state, with more than half of the conformational entropy of the unfolded state. In agreement with predictions from theory and computer simulations, the transition state signals the change from a regime dominated by loss in conformational entropy to one driven by the gain in stabilization free energy (i.e., including protein interactions and solvation effects). Moreover, the height of the barrier is determined by how much stabilization free energy is realized at that point, which is related to the relative contribution of local versus non-local interactions. A remarkable observation is that the fraction of conformational entropy per residue that is present in the transition state is very similar for the six proteins in this study. Based on this commonality, we propose that the observed change in thermodynamic regime is connected to a change in the pattern of structure formation: from one driven by formation of pairwise interactions to one dominated by coupling of the networks of interactions involved in forming the protein core. In this framework, the barrier to two-state folding is crossed when the folding protein reaches a "critical native density" that allows expulsion of remaining interstitial water and consolidation of the core. The principle of critical native density should be general for all two-state proteins, but can accommodate different folding mechanisms depending on the particularities of the structure and sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号