首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Engineered combinatorial libraries derived from small protein scaffolds represent a powerful tool for generating novel binders with high affinity, required specificity and designed inhibitory function. This work was aimed to generate a collection of recombinant binders of human interleukin‐23 receptor (IL‐23R), which is a key element of proinflammatory IL‐23‐mediated signaling. A library of variants derived from the three‐helix bundle scaffold of the albumin‐binding domain (ABD) of streptococcal protein G and ribosome display were used to select for high‐affinity binders of recombinant extracellular IL‐23R. A collection of 34 IL‐23R‐binding proteins (called REX binders), corresponding to 18 different sequence variants, was used to identify a group of ligands that inhibited binding of the recombinant p19 subunit of IL‐23, or the biologically active human IL‐23 cytokine, to the recombinant IL‐23R or soluble IL‐23R‐IgG chimera. The strongest competitors for IL‐23R binding in ELISA were confirmed to recognize human IL‐23R‐IgG in surface plasmon resonance experiments, estimating the binding affinity in the sub‐ to nanomolar range. We further demonstrated that several REX variants bind to human leukemic cell lines K‐562, THP‐1 and Jurkat, and this binding correlated with IL‐23R cell‐surface expression. The REX125, REX009 and REX128 variants competed with the p19 protein for binding to THP‐1 cells. Moreover, the presence of REX125, REX009 and REX115 variants significantly inhibited the IL‐23‐driven expansion of IL‐17‐producing primary human CD4+ T‐cells. Thus, we conclude that unique IL‐23R antagonists derived from the ABD scaffold were generated that might be useful in designing novel anti‐inflammatory biologicals. Proteins 2014; 82:975–989. © 2013 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

3.
A reversible green fluorogenic protein‐fragment complementation assay was developed based on the crystal structure of UnaG, a recently discovered fluorescent protein. In living mammalian cells, the nonfluorescent fragments complemented and rapidly became fluorescent upon rapamycin‐induced FKBP and Frb protein interaction, and lost fluorescence when the protein interaction was inhibited. This reversible fluorogenic reporter, named uPPI [UnaG‐based protein‐protein interaction (PPI) reporter], uses bilirubin (BR) as the chromophore and requires no exogenous cofactor. BR is an endogenous molecule in mammalian cells and is not fluorescent by itself. uPPI may have many potential applications in visualizing spatiotemporal dynamics of PPIs.  相似文献   

4.
Short, alpha‐helical coiled coils provide a simple, modular method to direct the assembly of proteins into higher order structures. We previously demonstrated that by genetically fusing de novo–designed coiled coils of the appropriate oligomerization state to a natural trimeric protein, we could direct the assembly of this protein into various geometrical cages. Here, we have extended this approach by appending a coiled coil designed to trimerize in response to binding divalent transition metal ions and thereby achieve metal ion‐dependent assembly of a tetrahedral protein cage. Ni2+, Co2+, Cu2+, and Zn2+ ions were evaluated, with Ni2+ proving the most effective at mediating protein assembly. Characterization of the assembled protein indicated that the metal ion–protein complex formed discrete globular structures of the diameter expected for a complex containing 12 copies of the protein monomer. Protein assembly could be reversed by removing metal ions with ethylenediaminetetraacetic acid or under mildly acidic conditions.  相似文献   

5.
The amyloid precursor protein (APP) is a membrane protein implicated in the pathogenesis of Alzheimer's disease. APP is a part‐time proteoglycan, as splice variants lacking exon 15 are modified by a chondroitin sulfate glycosaminoglycan (GAG) chain. Investigating the effect of the GAG chain on the trafficking of APP in non‐polarized cells, we found it to increase the steady‐state surface‐to‐intracellular distribution, to reduce the rate of endocytosis and to accelerate transport kinetics from the trans‐Golgi network (TGN) to the plasma membrane. Deletion of the cytosolic domain resulted in delayed surface arrival of GAG‐free APP, but did not affect the rapid export kinetics of the proteoglycan form. Protein‐free GAG chains showed the same TGN‐to‐cell surface transport kinetics as proteoglycan APP. Endosome ablation experiments were performed to distinguish between indirect endosomal and direct pathways to the cell surface. Surprisingly, TGN‐to‐cell surface transport of both GAG‐free and proteoglycan APP was found to be indirect via transferrin‐positive endosomes. Our results show that GAGs act as alternative sorting determinants in cellular APP transport that are dominant over cytoplasmic signals and involve distinct sorting mechanisms.   相似文献   

6.
7.
8.
9.
Predicted protein residue–residue contacts can be used to build three‐dimensional models and consequently to predict protein folds from scratch. A considerable amount of effort is currently being spent to improve contact prediction accuracy, whereas few methods are available to construct protein tertiary structures from predicted contacts. Here, we present an ab initio protein folding method to build three‐dimensional models using predicted contacts and secondary structures. Our method first translates contacts and secondary structures into distance, dihedral angle, and hydrogen bond restraints according to a set of new conversion rules, and then provides these restraints as input for a distance geometry algorithm to build tertiary structure models. The initially reconstructed models are used to regenerate a set of physically realistic contact restraints and detect secondary structure patterns, which are then used to reconstruct final structural models. This unique two‐stage modeling approach of integrating contacts and secondary structures improves the quality and accuracy of structural models and in particular generates better β‐sheets than other algorithms. We validate our method on two standard benchmark datasets using true contacts and secondary structures. Our method improves TM‐score of reconstructed protein models by 45% and 42% over the existing method on the two datasets, respectively. On the dataset for benchmarking reconstructions methods with predicted contacts and secondary structures, the average TM‐score of best models reconstructed by our method is 0.59, 5.5% higher than the existing method. The CONFOLD web server is available at http://protein.rnet.missouri.edu/confold/ . Proteins 2015; 83:1436–1449. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
11.
We reconstituted D2 like dopamine receptor (D2R) and the delta opioid receptor (DOR) coupling to G‐protein gated inwardly rectifying potassium channels (Kir3) and directly compared the effects of co‐expression of G‐protein coupled receptor kinase (GRK) and arrestin on agonist‐dependent desensitization of the receptor response. We found, as described previously, that co‐expression of a GRK and an arrestin synergistically increased the rate of agonist‐dependent desensitization of DOR. In contrast, only arrestin expression was required to produce desensitization of D2R responses. Furthermore, arrestin‐dependent GRK‐independent desensitization of D2R‐Kir3 coupling could be transferred to DOR by substituting the third cytoplasmic loop of DOR with that of D2R. The arrestin‐dependent GRK‐independent desensitization of D2R desensitization was inhibited by staurosporine treatment, and blocked by alanine substitution of putative protein kinase C phosphorylation sites in the third cytoplasmic loop of D2R. Finally, the D2R construct in which putative protein kinase C phosphorylation sites were mutated did not undergo significant agonist‐dependent desensitization even after GRK co‐expression, suggesting that GRK phosphorylation of D2R does not play an important role in uncoupling of the receptor.

  相似文献   


12.
Lens γ crystallins are found at the highest protein concentration of any tissue, ranging from 300 mg/mL in some mammals to over 1000 mg/mL in fish. Such high concentrations are necessary for the refraction of light, but impose extreme requirements for protein stability and solubility. γ‐crystallins, small stable monomeric proteins, are particularly associated with the lowest hydration regions of the lens. Here, we examine the solvation of selected γ‐crystallins from mammals (human γD and mouse γS) and fish (zebrafish γM2b and γM7). The thermodynamic water binding coefficient B1 could be probed by sucrose expulsion, and the hydrodynamic hydration shell of tightly bound water was probed by translational diffusion and structure‐based hydrodynamic boundary element modeling. While the amount of tightly bound water of human γD was consistent with that of average proteins, the water binding of mouse γS was found to be relatively low. γM2b and γM7 crystallins were found to exhibit extremely low degrees hydration, consistent with their role in the fish lens. γM crystallins have a very high methionine content, in some species up to 15%. Structure‐based modeling of hydration in γM7 crystallin suggests low hydration is associated with the large number of surface methionine residues, likely in adaptation to the extremely high concentration and low hydration environment in fish lenses. Overall, the degree of hydration appears to balance stability and tissue density requirements required to produce and maintain the optical properties of the lens in different vertebrate species.  相似文献   

13.
The question of how best to compare and classify the (three‐dimensional) structures of proteins is one of the most important unsolved problems in computational biology. To help tackle this problem, we have developed a novel shape‐density superposition algorithm called 3D‐Blast which represents and superposes the shapes of protein backbone folds using the spherical polar Fourier correlation technique originally developed by us for protein docking. The utility of this approach is compared with several well‐known protein structure alignment algorithms using receiver‐operator‐characteristic plots of queries against the “gold standard” CATH database. Despite being completely independent of protein sequences and using no information about the internal geometry of proteins, our results from searching the CATH database show that 3D‐Blast is highly competitive compared to current state‐of‐the‐art protein structure alignment algorithms. A novel and potentially very useful feature of our approach is that it allows an average or “consensus” fold to be calculated easily for a given group of protein structures. We find that using consensus shapes to represent entire fold families also gives very good database query performance. We propose that using the notion of consensus fold shapes could provide a powerful new way to index existing protein structure databases, and that it offers an objective way to cluster and classify all of the currently known folds in the protein universe. Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

14.
Chao Fang  Yi Shang  Dong Xu 《Proteins》2018,86(5):592-598
Protein secondary structure prediction can provide important information for protein 3D structure prediction and protein functions. Deep learning offers a new opportunity to significantly improve prediction accuracy. In this article, a new deep neural network architecture, named the Deep inception‐inside‐inception (Deep3I) network, is proposed for protein secondary structure prediction and implemented as a software tool MUFOLD‐SS. The input to MUFOLD‐SS is a carefully designed feature matrix corresponding to the primary amino acid sequence of a protein, which consists of a rich set of information derived from individual amino acid, as well as the context of the protein sequence. Specifically, the feature matrix is a composition of physio‐chemical properties of amino acids, PSI‐BLAST profile, and HHBlits profile. MUFOLD‐SS is composed of a sequence of nested inception modules and maps the input matrix to either eight states or three states of secondary structures. The architecture of MUFOLD‐SS enables effective processing of local and global interactions between amino acids in making accurate prediction. In extensive experiments on multiple datasets, MUFOLD‐SS outperformed the best existing methods and other deep neural networks significantly. MUFold‐SS can be downloaded from http://dslsrv8.cs.missouri.edu/~cf797/MUFoldSS/download.html .  相似文献   

15.
The Z‐molecule is a small, engineered IgG‐binding affinity protein derived from the immunoglobulin‐binding domain B of Staphylococcus aureus protein A. The Z‐domain consists of 58 amino acids forming a well‐defined antiparallel three‐helix structure. Two of the three helices are involved in ligand binding, whereas the third helix provides structural support to the three‐helix bundle. The small size and the stable three‐helix structure are two attractive properties comprised in the Z‐domain, but a further reduction in size of the protein is valuable for several reasons. Reduction in size facilitates synthetic production of any protein‐based molecule, which is beneficial from an economical viewpoint. In addition, a smaller protein is easier to manipulate through chemical modifications. By omitting the third stabilizing helix from the Z‐domain and joining the N‐ and C‐termini by a native peptide bond, the affinity protein obtains the advantageous properties of a smaller scaffold and in addition becomes resistant to exoproteases. We here demonstrate the synthesis and evaluation of a novel cyclic two‐helix Z‐domain. The molecule has retained affinity for its target protein, is resistant to heat treatment, and lacks both N‐ and C‐termini. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
Aurora‐A regulates the recruitment of TACC3 to the mitotic spindle through a phospho‐dependent interaction with clathrin heavy chain (CHC). Here, we describe the structural basis of these interactions, mediated by three motifs in a disordered region of TACC3. A hydrophobic docking motif binds to a previously uncharacterized pocket on Aurora‐A that is blocked in most kinases. Abrogation of the docking motif causes a delay in late mitosis, consistent with the cellular distribution of Aurora‐A complexes. Phosphorylation of Ser558 engages a conformational switch in a second motif from a disordered state, needed to bind the kinase active site, into a helical conformation. The helix extends into a third, adjacent motif that is recognized by a helical‐repeat region of CHC, not a recognized phospho‐reader domain. This potentially widespread mechanism of phospho‐recognition provides greater flexibility to tune the molecular details of the interaction than canonical recognition motifs that are dominated by phosphate binding.  相似文献   

17.
Collagen fibrils represent a unique case of protein folding and self‐association. We have recently successfully developed triple‐helical peptides that can further self‐assemble into collagen‐mimetic mini‐fibrils. The 35 nm axially repeating structure of the mini‐fibrils, which is designated the d‐period, is highly reminiscent of the well‐known 67 nm D‐period of native collagens when examined using TEM and atomic force spectroscopy. We postulate that it is the pseudo‐identical repeating sequence units in the primary structure of the designed peptides that give rise to the d‐period of the quaternary structure of the mini‐fibrils. In this work, we characterize the self‐assembly of two additional designed peptides: peptide Col877 and peptide Col108rr. The triple‐helix domain of Col877 consists of three pseudo‐identical amino acid sequence units arranged in tandem, whereas that of Col108rr consists of three sequence units identical in amino acid composition but different in sequence. Both peptides form stable collagen triple helices, but only triple helices Col877 self‐associate laterally under fibril forming conditions to form mini‐fibrils having the predicted d‐period. The Co108rr triple helices, however, only form nonspecific aggregates having no identifiable structural features. These results further accentuate the critical involvement of the repeating sequence units in the self‐assembly of collagen mini‐fibrils; the actual amino acid sequence of each unit has only secondary effects. Collagen is essential for tissue development and function. This novel approach to creating collagen‐mimetic fibrils can potentially impact fundamental research and have a wide range of biomedical and industrial applications.  相似文献   

18.
Sensitive differential proteomic analysis is challenging and often limited by distinct labeling or tagging strategies. In this study, we have examined the sensitivity, linearity, and photophysical properties of novel protein labeling DY‐maleimide dyes (DY‐505‐MAL, DY‐555‐MAL and DY‐635‐MAL). All MS compatible DY‐maleimide dyes exhibited excellent emission spectra, high sensitivity, and high linearity, when applied to standard 1‐DE protein analysis. Correspondingly, 2‐DE analysis of DY‐635‐MAL or DY‐505‐MAL maximal‐labeled human keratinocyte proteins displayed remarkably high sensitivity. Compared with a standard fluorescent protein stain, DY‐635‐MAL or DY‐505‐MAL 2‐DE analysis demonstrated equally high spot quality with an overall increase in the number of spots detectable (up to threefold higher;>1000 spots/gel). However, as determined with a FLA‐5100 imaging system, comparative MultiGauge, and Delta2D analysis, not all DY‐maleimide dyes possessed DIGE compatible fluorescent emission properties. However, DY‐505‐MAL and DY‐635‐MAL were found to be suitable for more complex, time and gel intensive, focused multiplexing analyses. Notably – as demonstrated with allergen‐stimulated human skin proteins – defined, singular DY‐maleimide dye protein labeling (SDPL) allows high quality, time saving, simple, and reliable differential proteomic examination.  相似文献   

19.
Increasing interest in protein immobilization on surfaces has heightened the need for techniques enabling layer‐by‐layer protein attachment. Here, we report a technique for controlling enzyme‐mediated immobilization of layers of protein on the surface using a genetically encoded protecting group. An enterokinase‐cleavable peptide sequence was inserted at the N‐terminus of bifunctional fluorescent proteins containing Sortase A substrate recognition tags at both ends to control Sortase A‐mediated protein immobilization on the surface layer‐by‐layer. Efficient, sequential immobilization of a second layer of protein using Sortase A required removal of the N‐terminal protecting group, suggesting the method enables multilayer synthesis using cyclic deprotection and coupling steps. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:824–831, 2017  相似文献   

20.
S100B and S100A10 are dimeric, EF‐hand proteins. S100B undergoes a calcium‐dependant conformational change allowing it to interact with a short contiguous sequence from the actin‐capping protein CapZ (TRTK12). S100A10 does not bind calcium but is able to recruit the N‐terminus of annexin A2 important for membrane fusion events, and to form larger multiprotein complexes such as that with the cation channel proteins TRPV5/6. In this work, we have designed, expressed, purified, and characterized two S100‐target peptide hybrid proteins comprised of S100A10 and S100B linked in tandem to annexin A2 (residues 1–15) and CapZ (TRTK12), respectively. Different protease cleavage sites (tobacco etch virus, PreScission) were incorporated into the linkers of the hybrid proteins. In situ proteolytic cleavage monitored by 1H‐15N HSQC spectra showed the linker did not perturb the structures of the S100A10‐annexin A2 or S100B‐TRTK12 complexes. Furthermore, the analysis of the chemical shift assignments (1H, 15N, and 13C) showed that residues T102‐S108 of annexin A2 formed a well‐defined α‐helix in the S100A10 hybrid while the TRTK12 region was unstructured at the N‐terminus with a single turn of α‐helix from D108‐K111 in the S100B hybrid protein. The two S100 hybrid proteins provide a simple yet extremely efficient method for obtaining high yields of intact S100 target peptides. Since cleavage of the S100 hybrid protein is not necessary for structural characterization, this approach may be useful as a scaffold for larger S100 complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号