首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims:  A new strain of Bacillus, Bacillus cereus SPV, was found to be capable of using a wide range of carbon sources for the production of polyhydroxyalkanoates (PHAs) ( Valappil et al. 2007b ). Limiting nutrient in the culture conditions is crucial for PHA production. In this study, B.   cereus SPV was grown in different culture conditions with limitation of potassium, nitrogen, sulphur and phosphorous to establish the impact of nutritional limitation on PHA production.
Methods and Results:  The PHA yields obtained were found to be 13·4, 38, 13·15 and 33·33% dcw for potassium, nitrogen, sulphur and phosphorus limitations, respectively. Gas chromatography–mass spectrometry analysis of the isolated polymers showed the presence of P(3HB) under nitrogen, sulphur and phosphate-limiting conditions and P(3HB-3HV) copolymer under potassium limiting conditions. This ability of B. cereus SPV to accumulate different PHA monomers from structurally unrelated carbon sources led to an interest in the molecular analysis of PHA biosynthesis in this organism. To achieve this, PCR was used to identify the polyhydroxyalkanoate biosynthetic genes in B. cereus SPV.
Conclusion:  Sequence analysis of the PCR products from B. cereus SPV revealed the sequence of the putative biosynthetic genes, and possible regions involved in substrate binding.
The nucleotide sequence reported in this paper is in the GenBank nucleotide sequence database under accession number DQ486135 .
Significance and Impact of the Study:  This is the first report comparing the capability of B. cereus SPV to produce PHAs under different culture conditions of potassium, nitrogen, sulfur and phosphate limitations. The results in this study suggest the unique ability of B. cereus SPV to supply both 3HB and 3HV monomers from a structurally unrelated carbon source, glucose.  相似文献   

2.
Aeromonas caviae polyhydroxyalkanoate synthase (PhaC(Ac)) is an important biocatalyst for the synthesis of practically useful two-component polyhydroxyalkanoate copolymer, poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)]. In a previous study, two PhaC(Ac) mutants that have a single amino acid substitution of either asparagine 149 by serine (N149S) or aspartate 171 by glycine (D171G) were isolated as higher active enzymes by means of evolutionary engineering. In this study, the synergistic effects of N149S and D171G double mutation (NSDG) in PhaC(Ac) on polyhydroxyalkanoate biosynthesis were investigated in recombinant Ralstonia eutropha. The PhaC(Ac) NSDG mutant showed enhanced incorporation of longer 3-hydroxyalkanoate (3HA) units into the polyhydroxyalkanoate copolymer from octanoate (3HA fraction: 18.5 mol%) and soybean oil (5.4 mol%) as a carbon source. Besides, the NSDG mutant synthesized P(3HB) homopolymer with a very high molecular weight (M(w)=368 x 10(4)) when fructose was used as a carbon source. Thus, a combination of the beneficial mutations synergistically altered enzymatic properties, leading to synthesis of a polyhydroxyalkanoate copolymer with enhanced 3HA fraction and increased molecular weight.  相似文献   

3.
4.
聚羟基脂肪酸酯解聚酶(polyhydroxyalkanoate depolymerase,PHAD)可用于聚羟基脂肪酸酯(polyhydroxyalkanoate,PHA)的降解回收,为开发热稳定性好的PHAD,本研究在大肠杆菌(Escherichiacoli)BL21(DE3)中成功表达了来自短须嗜热单孢菌(Thermomonospora umbrina)的PHA解聚酶(TumPHAD),并通过二硫键理性设计获得了热稳定性提升的突变体A190C/V240C,其最适温度为60℃,比野生型提高20℃,50℃半衰期为7h,是野生型酶的21倍。将突变体A190C/V240C用于典型PHA之一的聚羟基丁酸酯(polyhydroxybutyrate,PHB)降解,在50℃条件下,PHB的2 h和12 h降解率较野生型分别提高了2.1倍和3.8倍。本研究获得的TumPHAD突变体A190C/V240C具有耐高温、热稳定性好和PHB降解能力强的特点,对PHB的降解回收具有重要意义。  相似文献   

5.
AIMS: This study is mainly focused on the heterologous expression and accumulation of polyhydroxyalkanoates (PHA) in Escherichia coli. METHODS AND RESULTS: PHA synthase gene (phaC1) from indigenous Pseudomonas sp. LDC-5 was amplified by PCR and cloned in E. coli (Qiagen EZ competent cells). The recombinant E. coli was analysed and confirmed for its expression of phaC1 gene by phase contrast microscopy, Western blot analysis and spectral studies (Fourier-transform infrared spectroscopy). It was further evaluated for its accumulation in different carbon and nitrogen sources. The accumulation of PHA (3.4 g l(-1)) was enhanced in the medium supplemented with glycerol and fish peptone compared to the other carbon and nitrogen sources used in this study. CONCLUSIONS: This study would enable the reduction of cost of PHA production. SIGNIFICANCE AND IMPACT OF THE STUDY: An important part of this study is that E. coli harbouring partial phaC1 gene could accumulate medium chain length PHA significantly. The results demonstrated that the E. coli strain could be a potential candidate for the large-scale production of polymer. The conditions for the higher yield and productivity will be optimized in the next phase using fermentation studies.  相似文献   

6.
Highly active mutant of NADPH-dependent acetoacetyl-CoA reductase (PhaB) was expressed in Nicotiana tabacum cv. Bright Yellow-2 cultured cells to produce poly(3-hydroxybutyrate) [P(3HB)]. The mutated PhaB increased P(3HB) content by three-fold over the control, indicating that the mutant was a versatile tool for P(3HB) production. Additionally, the PhaB-catalyzed reaction was suggested to be a rate-limiting step of P(3HB) biosynthesis in tobacco BY-2 cells.  相似文献   

7.
Production of polyhydroxyalkanoates by Pseudomonas nitroreducens   总被引:3,自引:0,他引:3  
A strain coded AS 1.2343 was isolated from oil-contaminated soil in an oil-field in North China Tianjian City and it was identified as Pseudomonas nitroreducens. The strain demonstrated some unusual ability to synthesize polyhydroxybutyrate (PHB) homopolymer from medium-chain-length (mcl) fatty acids including hexanoate and octanoate. While polyhydroxyalkanoates (PHA) consisting of mcl hydroxyalkanoate (HA) monomers such as hydroxyoctanoate (HO) and hydroxydecanoate (HD) were the major compositions when butyrate, decanoate, lauric acid and tetradecanoic acid were used as substrates for the cell growth, respectively. PHA was accumulated up to 77% of the cell dry weight when growth was conducted in lauric acid, it appeared that the HA contents in the PHA would not be much affected by the changing of the lauric acid concentration. Varying the concentration ratio of butyrate to octanoate could change the composition of PHA accumulated by the strain. Yet PHB homopolymer was always the only polyester synthesized by the strain, regardless of the octanoate concentration change. Additionally, the ratio of carbon to nitrogen (C/N) in butyrate media was found to have effects on the PHA monomer content, as C/N increased from 2 to 100, content of HB decreased from 100% to 7%. PHA polyester synthesized by cells of Pseudomonas nitroreducens AS 1.2343 was a blend polymers consisting of acetone-insoluble HB and acetone-soluble mcl HA monomers.  相似文献   

8.
A library of 20 000 transposon (Tn5) mutants of the gram-negative bacterium Pseudomonas putida CA-3 was generated and screened for adverse affects in polyhydroxyalkanoates (PHA) accumulation. Two mutants of interest were characterized phenotypically. CA-3-126, a mutant disrupted in a stress-related protein Clp protease subunit ClpA, demonstrated greater decreases in PHA accumulation compared with the wild type at reduced and elevated temperatures under PHA-accumulating growth conditions. CA-3-M, which is affected in the aminotransferase class I enzyme, accumulated reduced levels of PHA relative to the wild type and had lower growth yields on all carbon sources tested. Mutant CA-3-M produced up to 10-fold higher levels of lipopolysaccharide relative to the wild type and exhibited 1.2-fold lower aminotransferase activity with phenylalanine as a substrate compared with the wild-type strain. The composition of the lipopolysaccharide produced by the mutant differed from that produced by the wild-type strain. Growth and PHA accumulation by CA-3-M was the same as the wild type when the nitrogen concentration in the medium was increased to 265 mg N L−1.  相似文献   

9.
紫色杆菌CV31532中群体感应系统产生的信号分子C6-HSL是由cviI基因编码合成的。在限氮条件下,以D-葡萄糖酸钠、果糖、葡萄糖为唯一碳源时,紫色杆菌CV31532均产生聚-3-羟基丁酸,且以D-葡萄糖酸钠为唯一碳源时积累量最高。利用气相色谱分析发现,紫色杆菌CV31532培养48 h的PHA积累量显著高于其群体感应合成酶突变株CV026 PHA的积累量;通过薄层层析分析发现紫色杆菌CV31532合成信号分子的量在48 h显著提高;外源添加C6-HSL信号分子可显著提高突变体CV026 PHA的积累量。由此推测,紫色杆菌群体感应系统参与调控胞内PHA的合成。  相似文献   

10.
Poly(hydroxybutyrate) (PHB) has become an attractive biomaterial in research and development for past few years. It is natural bio-based aliphatic polyester produced by many types of bacteria. Due to its biodegradable, biocompatible, and eco-friendly nature, PHB can be used in line with bioactive species. However, high production cost, thermal instability, and poor mechanical properties limit its desirable applications. So there is need to incorporate PHB with other materials or biopolymers for the development of some novel PHB based biocomposites for value addition. Many attempts have been employed to incorporate PHB with other biomaterials (or biopolymers) to develop sustainable biocomposites. In this review, some recent developments in the synthesis of PHB based biocomposites and their biomedical, packaging and tissue engineering applications have been focused. The development of biodegradable PHB based biocomposites with improved mechanical properties could be used to overcome its native limitations hence to open new possibilities for industrial applications.  相似文献   

11.
Aim:  To test the Bacillus strains for their abilities to produce polyhydroxybutyrate (PHB) from different sugars and biowaste (Pea-shells).
Methods and Results:  Six Bacillus strains were checked for their ability to produce PHB from GM2 medium supplemented with different sugars at the rate of 1% (w/v) and from biowaste and GM2 (BW : M) combinations (3 : 7, 1 : 1, 7 : 3). Glucose supplemented GM2 medium resulted in maximum PHB production of 435 mg l−1 constituting 31–62% w/w of the total cell dry mass. Substituting GM2 medium to the extent of 50% with biowaste (pea-shell slurry) resulted in 945–1205 mg l−1 PHB (55–65% w/w). Optimization for additional nitrogen supplementation, inoculum size resulted in a final PHB production of 3010–3370 mg l−1 equivalent to 300 g kg−1 biowaste (dry wt).
Conclusion:  The Bacillus strains were able to produce PHB from biowaste (Pea-shells) as cheap source of substrate.
Significance and Impact of the Study:  This is the first report on usage of pea-shells as feed for PHB production, opening new possibilities for its use for production of PHB and Bacillus as potential candidate for the purpose.  相似文献   

12.
聚羟基脂肪酸酯(Polyhydroxyalkanoates,PHAs)作为一类新型的生物高分子材料,因其多样的材料性质与高度的生物可降解性日益受到关注。使用乳酸链球菌素(Nisin),一种被公认为安全的天然食品防腐剂,制备了具有高效、持久抗菌效应的PHA塑料。首先采用溶剂浇铸的方法将Nisin整合到正3-羟基丁酸-3羟基己酸共聚酯(PHBHHx),一种具备高度生物相容性的PHA中,从而获得了具有抗菌效应的PHBHHx薄膜。激光共聚焦显微镜观察表明Nisin在PHBHHx中呈颗粒状均匀分布。随后以条件致病菌藤黄微球菌Micrococcus luteus为测试菌株,通过琼脂扩散法,测定PHBHHx薄膜抗菌效应对Nisin含量的依赖关系;在液体培养条件下测量PHBHHx薄膜的Nisin释放效果与抗菌效应。结果表明Nisin可从PHBHHx薄膜顺利释放且Nisin的含量高于25μg/g时即表现出显著的抑菌效果且可长时间维持。该研究为工业化生产具有抗菌效应的PHA奠定了重要的技术基础,拓展了PHA在医学和食品领域的应用潜力。  相似文献   

13.
Bacillus cereus and Bacillus megaterium both accumulate polyhydroxyalkanoate (PHA) but their PHA biosynthetic gene (pha) clusters that code for proteins involved in PHA biosynthesis are different. Namely, a gene encoding MaoC-like protein exists in the B. cereus-type pha cluster but not in the B. megaterium-type pha cluster. MaoC-like protein has an R-specific enoyl-CoA hydratase (R-hydratase) activity and is referred to as PhaJ when involved in PHA metabolism. In this study, the pha cluster of B. cereus YB-4 was characterized in terms of PhaJ’s function. In an in vitro assay, PhaJ from B. cereus YB-4 (PhaJYB4) exhibited hydration activity toward crotonyl-CoA. In an in vivo assay using Escherichia coli as a host for PHA accumulation, the recombinant strain expressing PhaJYB4 and PHA synthase led to increased PHA accumulation, suggesting that PhaJYB4 functioned as a monomer supplier. The monomer composition of the accumulated PHA reflected the substrate specificity of PhaJYB4, which appeared to prefer short chain-length substrates. The pha cluster from B. cereus YB-4 functioned to accumulate PHA in E. coli; however, it did not function when the phaJYB4 gene was deleted. The B. cereus-type pha cluster represents a new example of a pha cluster that contains the gene encoding PhaJ.  相似文献   

14.
A mathematical model is proposed for predicting the copolymer composition of the microbially synthesized polyhydroxyalkanoate (PHA) copolymers. Based on the biochemical reactions involved in the precursor formation and polymerization pathways, the model correlates the copolymer composition with the cultivation conditions, the enzyme levels and selectivity, and the metabolic pathways. It suggests the following points: (1) in the case of a sole carbon source, the copolymer composition depends mainly on the topology of the metabolic pathways and the selectivity of both the enzymes involved in the precursor formation and the polymerization route; (2) the copolymer composition can be varied in a wide range via alteration of the flux ratio of different types of monomers channeled from two or more independent and simultaneous pathways; (3) the enzymes which should be over-expressed or inhibited to obtain the desired copolymer composition can be predicted. For example, inhibition of the beta-oxidation pathway will increase the content of the monomer units with longer chain length. To test the model, various experiments were envisaged by varying cultivation time, concentration and chain length of the sole carbon source, and molar ratio of the cosubstrates. The predictions from the model agree well with the experimental results. Therefore, the proposed model will be useful in predicting the PHA copolymer composition under different biochemical reaction conditions. In other words, it can provide a guide for the synthesis of desired PHA copolymers.  相似文献   

15.
The effect of the different carbon sources acetate, acetate/glucose or glucose on the enhanced biological phosphorus removal (EBPR) process was studied by experiments under alternating anaerobic–aerobic conditions in one sequencing batch reactor for each carbon source. The glucose was consumed completely within the first 30 min of the anaerobic phase whereas acetate degradation was slow and incomplete. Phosphate was released independently of the carbon source during the whole anaerobic phase. The highest phosphate release (27 mg P l−1) and polyhydroxyalkanoate (PHA) storage (20 mg C g−1 dry matter (DM)) during the anaerobic phase as well as the highest polyphosphate (poly-P) (8 mg P g−1 DM) and glycogen storage (17 mg C g−1 DM) during the aerobic phase were observed with acetate. In contrast to other investigations, glycogen storage did not increase with glucose as substrate but was significantly smaller than with acetate. The PHA composition was also influenced strongly by the carbon source. The polyhydroxyvalerate (PHV) portion of the PHA was maximal 17% for acetate and 82% for glucose. Due to the strong influence of the carbon source on the PHA concentration and composition, PHA storage seems to regulate mainly the phosphate release and uptake. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
17.
王梦汝  席威  李正军 《生物工程学报》2020,36(12):2695-2706
海生杆菌属首次于1997年鉴定,迄今包括18个物种,其中10个已完成全基因组序列测定。文中总结了海生杆菌属的菌种特征,并从碳源利用、聚羟基脂肪酸酯代谢和芳香族化合物降解三个方面对基因组测序数据进行了分析。研究发现,海生杆菌属具有完整的糖酵解途径和三羧酸循环,缺乏木糖利用基因。所有海生杆菌属菌种均含有Ⅰ型和Ⅲ型聚羟基脂肪酸酯合成酶的编码基因,表明该菌属可能具有普遍的聚羟基脂肪酸酯合成能力。海生杆菌属含有芳香族化合物的降解途径,苯、苯酚和苯甲酸可由不同的酶催化生成邻苯二酚,再由邻位断裂途径降解为3-酮己二酸,邻苯二酚也可由间位断裂途径降解为丙酮酸和乙酰辅酶A。基因组测序数据分析加深了对海生杆菌属代谢特征的认识,提示该菌属在聚羟基脂肪酸酯合成和海洋芳香族污染物治理方面有一定的应用前景。  相似文献   

18.
19.
A thermophilic Streptomyces sp. capable of degrading various aliphatic polyesters was isolated from a landfill site. The isolate, Streptomyces sp. BCC23167, demonstrated rapid aerobic degradation of several polyesters, including polyhydroxyalkanoate copolymers, poly(ɛ-caprolactone) and polybutylene succinate at 50°C and neutral pH. The degrading activity was repressed by glucose and cellobiose, but tolerant to repression by other carbon substrates. Degradation of a commercial poly[(R)-3-hydroxybutyrate-co-3-hydroxyhexanoate] (PHBHx) by Streptomyces sp. BCC23167 progressed from surface to bulk as suggested by the slight decrease in polymer molecular weight. Differential scanning calorimetry analysis of PHBHx film degradation by Streptomyces sp. BCC23167 showed that relative crystallinity of the film increased slightly in the early stage of degradation, followed by a marked decrease later on. The surface morphology of degraded films was analyzed by scanning electron microscopy, which showed altered surface structure consistent with the changes in crystallinity. The isolate is thus of potential for application in composting technology for bio-plastic degradation.  相似文献   

20.
Short-chain-length medium-chain-length polyhydroxyalkanoate (SCL-MCL PHA) copolymers are promising as bio-plastics with properties ranging from thermoplastics to elastomers. In this study, the hybrid pathway for the biosynthesis of SCL-MCL PHA copolymers was established in recombinant Escherichia coli by co-expression of β-ketothiolase (PhaA Re ) and NADPH-dependent acetoacetyl-CoA reductase (PhaB Re ) from Ralstonia eutropha together with PHA synthases from R. eutropha (PhaC Re ), Aeromonas hydrophila (PhaC Ah ), and Pseudomonas putida (PhaC2 Pp ) and with (R)-specific enoyl-CoA hydratases from P. putida (PhaJ1 Pp and PhaJ4 Pp ), and A. hydrophila (PhaJ Ah ). When glycerol supplemented with dodecanoate was used as primary carbon source, E. coli harboring various combinations of PhaABCJ produced SCL-MCL PHA copolymers of various monomer compositions varying from C4 to C10. In addition, polymer property analysis suggested that the copolymers produced from this recombinant source have thermal properties (lower glass transition and melting temperatures) superior to polyhydroxybutyrate homopolymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号