首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The Na(+)-F(1)F(0)-ATPase operon of Acetobacterium woodii was recently shown to contain, among eleven atp genes, those genes that encode subunit a and b, a gene encoding a 16-kDa proteolipid (subunit c(1)), and two genes encoding 8-kDa proteolipids (subunits c(2) and c(3)). Because subunits a, b, and c(1) were not found in previous enzyme preparations, we re-determined the subunit composition of the enzyme. The genes were overproduced, and specific antibodies were raised. Western blots revealed that subunits a, b, and c(1) are produced and localized in the cytoplasmic membrane. Membrane protein complexes were solubilized by dodecylmaltoside and separated by blue native-polyacrylamide gel electrophoresis, and the ATPase subunits were resolved by SDS-polyacrylamide gel electrophoresis. N-terminal sequence analyses revealed the presence of subunits a, c(2), c(3), b, delta, alpha, gamma, beta, and epsilon. Biochemical and immunological analyses revealed that subunits c(1), c(2), and c(3) are all part of the c-oligomer, the first of a F(1)F(0)-ATPase that contains 8- and 16-kDa proteolipids.  相似文献   

5.
In photosynthetic organisms many processes are light dependent and sensing of light requires light‐sensitive proteins. The supposed eyespot photoreceptor protein Babo1 (formerly Vop1) has previously been classified as an opsin due to the capacity for binding retinal. Here, we analyze Babo1 and provide evidence that it is no opsin. Due to the localization at the basal bodies, the former Vop1 and Cop1/2 proteins were renamed V.c. Babo1 and C.r. Babo1. We reveal a large family of more than 60 Babo1‐related proteins from a wide range of species. The detailed subcellular localization of fluorescence‐tagged Babo1 shows that it accumulates at the basal apparatus. More precisely, it is located predominantly at the basal bodies and to a lesser extent at the four strands of rootlet microtubules. We trace Babo1 during basal body separation and cell division. Dynamic structural rearrangements of Babo1 particularly occur right before the first cell division. In four‐celled embryos Babo1 was exclusively found at the oldest basal bodies of the embryo and on the corresponding d‐roots. The unequal distribution of Babo1 in four‐celled embryos could be an integral part of a geometrical system in early embryogenesis, which establishes the anterior–posterior polarity and influences the spatial arrangement of all embryonic structures and characteristics. Due to its retinal‐binding capacity, Babo1 could also be responsible for the unequal distribution of retinoids, knowing that such concentration gradients of retinoids can be essential for the correct patterning during embryogenesis of more complex organisms. Thus, our findings push the Babo1 research in another direction.  相似文献   

6.
Numerous single nucleotide polymorphisms (SNPs), which have been identified as susceptibility factors for Parkinson's disease (PD) as per genome‐wide association studies, have not been fully characterized for PD patients in China. This study aimed to replicate the relationship between 12 novel SNPs of 12 genes and PD risk in southern Chinese population. Twelve SNPs of 12 genes were detected in 231 PD patients and 249 controls, using the SNaPshot technique. Meta‐analysis was used to assess heterogeneity of effect sizes between this study and published data. The impact of SNPs on gene expression was investigated by analysing the SNP‐gene association in the expression quantitative trait loci (eQTL) data sets. rs8180209 of SNCA (allele model: P = .047, OR = 0.77; additive model: P = .047, OR = 0.77), rs2270968 of MCCC1 (dominant model: P = .024, OR = 1.52), rs7479949 of DLG2 (recessive model; P = .019, OR = 1.52), rs10748818 of GBF1 (additive model: P < .001, OR = 0.37), and rs4771268 of MBNL2 (recessive model: P = .003, OR = 0.48) were replicated to be significantly associated with the increased risk of PD. Noteworthy, a meta‐analysis of previous studies suggested rs8180209, rs2270968, rs7479949 and rs4771268 were in line with those of our cohort. Our study replicated five novel functional SNPs in SNCA, MCCC1, DLG2, GBF1 and MBNL2 could be associated with increased risk of PD in southern Chinese population.  相似文献   

7.
8.
Three chlorophyll c-type pigments were separated by reversed-phase high Performance liquid chromatography and thin-layer chromatography from pigment extracts of the prymnesiophyte, Prymnesium parvum Carter. Based on spectral characteristics, retention times, and comparison with reference pigments isolated from the diatom Phaeodactylum tricornutum Bohlin, two of these pigments were identijied as chlorophyll c1 and c2. The other pigment was identified by its absorption spectrum and thin-layer chromatography retention times as the newly described chlorophyll c3. However, in other prymnesiophytes so far examined, chlorophyll c1 and chlorophyll c3 were present with no chlorophyll cl. The discovery of chlorophyll c3 with chlorophyll c1 and chlorophyll c3 in Prymnesium parvum therefore represents the first report of this combination of pigments in prymnesiophytes.  相似文献   

9.
We separated chlorophylls c1 c2, and c3 of marine phytoplankton together with other pigments by a modification of the commonly applied reversed-phase-C18-high-performance liquid chromatography (RP-C18-HPLC) method. However, the chlorophyll c-like pigment 2,4, Mg-divinylpheoporphyrin as monomethyl ester, co-eluted with chlorophyll c1. The method involves optimization of the mobile phase by using a very high ion strength solvent in combination with a high carbon loaded RP-C18 column. Fingerprints of the various taxonomic groups of algae can thus be developed in a single run, including separation of the carotenoids lutein and zeaxanthin.  相似文献   

10.
Two different inhibitory domains, N-terminus and central domain, keep FOXM1c almost inactive despite its strong transactivation domain. Here, we demonstrate that cyclin E/Cdk2, cyclin A/Cdk2, and cyclin A/Cdk1 activate FOXM1c. Cyclin E/Cdk2 does not target its transactivation domain or its DNA-binding domain. Instead, its activating effect strictly depends on the presence of either the central domain or the N-terminus of FOXM1c and thus is completely lost if both inhibitory domains are deleted. Cyclin E/Cdk2 activates FOXM1c by releasing its transactivation domain from the repression by these two inhibitory domains. However, it does not directly increase the transactivation potential of the TAD. The DNA-binding is not affected by cyclin E/Cdk2, neither directly nor indirectly. These two activating effects of cyclin E/Cdk2 via central domain and N-terminus are additive. Cyclin A/Cdk2 and cyclin A/Cdk1 show similar characteristics. GSK-3alpha, another proliferation-associated kinase, represses FOXM1c.  相似文献   

11.
The hydrophilic α‐tocopherol derivative, 2,2,5,7,8‐pentamethyl‐6‐hydroxychromane (PMC), is a promising alternative to vitamin E in clinical applications. Critical vascular inflammation leads to vascular dysfunction and vascular diseases, including atherosclerosis, hypertension and abdominal aortic aneurysms. In this study, we investigated the mechanisms of the inhibitory effects of PMC in vascular smooth muscle cells (VSMCs) exposed to pro‐inflammatory stimuli, lipopolysaccharide (LPS) combined with interferon (IFN)‐γ. Treatment of LPS/IFN‐γ‐stimulated VSMCs with PMC suppressed the expression of inducible nitric oxide synthase (iNOS) and matrix metalloproteinase‐9 in a concentration‐dependent manner. A reduction in LPS/IFN‐γ‐induced nuclear factor (NF)‐κB activation was also observed in PMC‐treated VSMCs. The translocation and phosphorylation of p65, protein phosphatase 2A (PP2A) inactivation and the formation of reactive oxygen species (ROS) were significantly inhibited by PMC in LPS/IFN‐γ‐activated VSMCs. However, neither IκBα degradation nor IκB kinase (IKK) or ribosomal s6 kinase‐1 phosphorylation was affected by PMC under these conditions. Both treatments with okadaic acid, a PP2A‐selective inhibitor, and transfection with PP2A siRNA markedly reversed the PMC‐mediated inhibition of iNOS expression, NF‐κB‐promoter activity and p65 phosphorylation. Immunoprecipitation analysis of the cellular extracts of LPS/IFN‐γ‐stimulated VSMCs revealed that p65 colocalizes with PP2A. In addition, p65 phosphorylation and PP2A inactivation were induced in VSMCs by treatment with H2O2, but neither IκBα degradation nor IKK phosphorylation was observed. These results collectively indicate that the PMC‐mediated inhibition of NF‐κB activity in LPS/IFN‐γ‐stimulated VSMCs occurs through the ROS‐PP2A‐p65 signalling cascade, an IKK‐IκBα‐independent mechanism. Therapeutic interventions using PMC may therefore be beneficial for the treatment of vascular inflammatory diseases.  相似文献   

12.
We recently identified neuregulin‐1 (NRG1) as a novel target of Notch1 required in Notch‐dependent melanoma growth. ERBB3 and ERBB4, tyrosine kinase receptors specifically activated by NRG1, have been shown to be either elevated in melanoma cell lines and tumors or to be mutated in 20% of melanomas, respectively. While these data support key roles of NRG1 and its receptors in the pathogenesis of melanoma, whether ERBB3 and ERBB4 display redundant or exclusive functions is not known. Here, we show that ERBB3 and ERBB4 inhibition results in distinct outcomes. ERBB3 inhibition ablates the cellular responses to NRG1, results in AKT inactivation and leads to cell growth arrest and apoptotic cell death. In contrast, ERBB4 knockdown mildly affects cell growth, has no effects on cell survival and, importantly, does not alter the responses to NRG1. Finally, we identified ERBB2 as a key coreceptor in NRG1‐dependent ERBB3 signaling. ERBB2 forms a complex with ERBB3, and its inhibition recapitulates the phenotypes observed upon ERBB3 ablation. We propose that an NRG1‐ERBB3‐ERBB2 signaling unit operates in melanoma cells where it promotes growth and survival.  相似文献   

13.
Abnormal autophagy may contribute to neurodegeneration in Parkinson's disease (PD). However, it is largely unknown how autophagy is dysregulated by oxidative stress (OS), one of major pathogenic causes of PD. We recently discovered the potential autophagy regulator gene family including Tnfaip8/Oxi‐α, which is a mammalian target of rapamycin (mTOR) activator down‐regulated by OS in dopaminergic neurons (J. Neurochem., 112, 2010 , 366). Here, we demonstrate that the OS‐induced Tnfaip8 l1/Oxi‐β could increase autophagy by a unique mechanism that increases the stability of tuberous sclerosis complex 2 (TSC2), a critical negative regulator of mTOR. Tnfaip8 l1/Oxi‐β and Tnfaip8/Oxi‐α are the novel regulators of mTOR acting in opposition in dopaminergic (DA) neurons. Specifically, 6‐hydroxydopamine (6‐OHDA) treatment up‐regulated Tnfaip8 l1/Oxi‐β in DA neurons, thus inducing autophagy, while knockdown of Tnfaip8 l1/Oxi‐β prevented significantly activation of autophagic markers by 6‐OHDA. FBXW5 was identified as a novel binding protein for Tnfaip8 l1/Oxi‐β. FBXW5 is a TSC2 binding receptor within CUL4 E3 ligase complex, and it promotes proteasomal degradation of TSC2. Thus, Tnfaip8 l1/Oxi‐β competes with TSC2 to bind FBXW5, increasing TSC2 stability by preventing its ubiquitination. Our data show that the OS‐induced Tnfaip8 l1/Oxi‐β stabilizes TSC2 protein, decreases mTOR phosphorylation, and enhances autophagy. Therefore, altered regulation of Tnfaip8 l1/Oxi‐β may contribute significantly to dysregulated autophagy observed in dopaminergic neurons under pathogenic OS condition.

  相似文献   


14.
The RAF inhibitor vemurafenib achieves remarkable clinical responses in mutant BRAF melanoma patients. However, vemurafenib is burdened by acquired drug resistance and by the side effects associated with its paradoxical activation of the ERK1/2 pathway in wild‐type BRAF cells. This paradoxical effect has driven the development of a new class of RAF inhibitors. Here, we tested one of these selective, non‐paradox‐inducing RAF inhibitors termed paradox‐breaker‐04 (PB04) or PLX7904. Consistent with its design, PB04 is able to efficiently inhibit activation of ERK1/2 in mutant BRAF melanoma cells but does not hyperactivate ERK1/2 in mutant RAS‐expressing cells. Importantly, PB04 inhibited ERK1/2 phosphorylation in mutant BRAF melanoma cells with acquired resistance to vemurafenib/PLX4720 that is mediated by a secondary mutation in NRAS. Consistent with ERK1/2 reactivation driving the re‐acquisition of malignant properties, PB04 promoted apoptosis and inhibited entry into S phase and anchorage‐independent growth in mutant N‐RAS‐mediated vemurafenib‐resistant cells. These data indicate that paradox‐breaker RAF inhibitors may be clinically effective as a second‐line option in a cohort of acquired vemurafenib‐resistant patients.  相似文献   

15.
16.
17.
18.
Plasmodesmata (PD), unique to the plant kingdom, are structurally complex microchannels that cross the cell wall to establish symplastic communication between neighbouring cells. Viral intercellular movement occurs through PD. To better understand the involvement of PD in viral infection, we conducted a quantitative proteomic study on the PD‐enriched fraction from Nicotiana benthamiana leaves in response to infection by Turnip mosaic virus (TuMV). We report the identification of a total of 1070 PD protein candidates, of which 100 (≥2‐fold increase) and 48 (≥2‐fold reduction) are significantly differentially accumulated in the PD‐enriched fraction, when compared with protein levels in the corresponding healthy control. Among the differentially accumulated PD protein candidates, we show that an α‐expansin designated NbEXPA1, a cell wall loosening protein, is PD‐specific. TuMV infection downregulates NbEXPA1 mRNA expression and protein accumulation. We further demonstrate that NbEXPA1 is recruited to the viral replication complex via the interaction with NIb, the only RNA‐dependent RNA polymerase of TuMV. Silencing of NbEXPA1 inhibits plant growth and TuMV infection, whereas overexpression of NbEXPA1 promotes viral replication and intercellular movement. These data suggest that NbEXPA1 is a host factor for potyviral infection. This study not only generates a PD‐proteome dataset that is useful in future studies to expound PD biology and PD‐mediated virus–host interactions but also characterizes NbEXPA1 as the first PD‐specific cell wall loosening protein and its essential role in potyviral infection.  相似文献   

19.
Trypanosomatids are the etiologic agents of various infectious diseases in humans. They diverged early during eukaryotic evolution and have attracted attention as peculiar models for evolutionary and comparative studies. Here, we show a meticulous study comparing the incorporation and detection of the thymidine analogs BrdU and EdU in Leishmania amazonensis, Trypanosoma brucei, and Trypanosoma cruzi to monitor their DNA replication. We used BrdU‐ and EdU‐incorporated parasites with the respective standard detection approaches: indirect immunofluorescence to detect BrdU after standard denaturation (2 M HCl) and “click” chemistry to detect EdU. We found a discrepancy between these two thymidine analogs due to the poor detection of BrdU, which is reflected on the estimative of the duration of the cell cycle phases G1, S, and G2. To solve this discrepancy, we increase the exposure of incorporated BrdU using different concentrations of HCl. Using a new value for HCl concentration, we re‐estimated the phases G1, S, G2 + M, and cytokinesis durations, confirming the values found by this approach using EdU. In conclusion, we suggest that the studies using BrdU with standard detection approach, not only in trypanosomatids but also in others cell types, should be reviewed to ensure an accurate estimation of DNA replication monitoring.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号