首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fidelity rates of pair-bonded individuals are of considerable interest to behavioral and population biologists as they can influence population structure, mating rates, population productivity, and gene flow. Estimates of fidelity rates calculated from direct observations of pairs in consecutive breeding seasons may be biased because (i) individuals that are not seen are assumed to be dead, (ii) variation in the detectability of individuals is ignored, and (iii) pair status must be known with certainty. This can lead to a high proportion of observations being ignored. This approach also restricts the way variation in fidelity rates for different types of individuals, or the covariation between fidelity and other vital rates (e.g., survival) can be analyzed. In this study, we develop a probabilistic multievent capture–mark–recapture (MECMR) modeling framework for estimating pair fidelity rates that accounts for imperfect detection rates and capture heterogeneity, explicitly incorporates uncertainty in the assessment of pair status, and allows estimates of state-dependent survival and fidelity rates to be obtained simultaneously. We demonstrate the utility of our approach for investigating patterns of fidelity in pair-bonded individuals, by applying it to 30 years of breeding data from a wild population of great tits Parus major Linnaeus. Results of model selection supported state-dependent recapture, survival, and fidelity rates. Recapture rates were higher for individuals breeding with their previous partner than for those breeding with a different partner. Faithful birds that were breeding with the same partner as in the previous breeding season (i.e., at t − 1) experienced substantially higher survival rates (between t and t + 1) and were also more likely to remain faithful to their current partner (i.e., to remain in the faithful state at t + 1). First year breeders were more likely to change partner than older birds. These findings imply that traditional estimates, which do not account for state-dependent parameters, may be both inaccurate and biased, and hence, inferences based on them may conceal important biological effects. This was demonstrated in the analysis of simulated capture histories, which showed that our MECMR model was able to estimate state-dependant survival and pair fidelity rates in the face of varying state-dependant recapture rates robustly, and more accurately, than the traditional method. In addition, this new modeling approach provides a statistically rigorous framework for testing hypothesis about the causes and consequences of fidelity to a partner for natural populations. The novel modeling approach described here can readily be applied, either in its current form or via extension, to other populations and other types of dyadic interactions (e.g., between nonpaired individuals, such as parent–offspring relationships, or between individuals and locations, such as nest-site fidelity).  相似文献   

2.
Many studies of socially monogamous birds discuss the adaptive role of between‐season partner change, but only a handful of them refer to the benefits of pair fidelity in terms of increased survival. Moreover, there are no studies describing the benefits of within‐season mate retention. Our data relating to an urban population of European blackbirds Turdus merula enabled us to test the dependence of survival on pair faithfulness. Because blackbirds divorce within and between seasons, we were able to test the influence of pair faithfulness on their within‐ and between‐season survival and mate fidelity. For this purpose, we used a multievent capture–mark–recapture (MECMR) statistical model, which is based on recapture rates and different pair states (faithful to mate, paired with new partner, or dead). Our study indicated that between‐ and within‐season survival depends on pair states: pair‐bond duration increases survival to the next capture occasion in both sexes. We found that the pair‐bond duration to the current partner increased the chances of being with the same partner during the next breeding occasion, although we failed to find any within‐season pair‐bond influence for females. Our results showed sex differences in mating at the end of the season: females had a much smaller chance of breeding with the current new partner in the next year. This study has demonstrated that within‐ and between‐season survival is dependent on mate retention, and we discuss this in the context of how searching for a new partner could affect the birds’ survival.  相似文献   

3.
In seasonal environments variation in food abundance in the non‐breeding season is thought to affect songbird population dynamics. In a unique tit‐sea buckthorn berry system we can estimate the berry abundance and both the tit consumption and population dynamics. Six hundred nest boxes were available to great and blue tits Cyanistes caeruleus for breeding in spring and roosting in winter. We followed the dynamics including the recapture histories of individually marked great tits from 2008 to 2014. In each year we estimated 1) the winter sea buckthorn berry availability, 2) an index of berry consumption in December based on the colour of the faeces of roosting birds, 3) the number of breeding great and blue tits, 4) both recapture probability and the return rate of the great tits and 5) immigration rates. December berry abundance positively predicted the number of breeding pairs of both species in the subsequent season and great tit return rates in the second half of the winter. There was support for a sex specific berry effect on the adult return rate in the great tit: female return rate was associated less strongly to berry abundance than male return rate. This skewed the sex ratio of the local breeders in the following breeding season. Intriguingly, annual berry consumption in December was not related to berry abundance, and individuals consuming more berries tended to have slightly lower return rates. Reproductive rate was not related to berry abundance. There was hardly support for a relation between immigration rates of first year breeders and berry abundance. Taken together these results imply that berry stock not only affected population size but also the population composition through sex specific exchange with the surroundings. Since population density covaried with berry abundance, density dependent effects provide an alternative explanation for the patterns observed.  相似文献   

4.
A standard approach to model how selection shapes phenotypic traits is the analysis of capture–recapture data relating trait variation to survival. Divergent selection, however, has never been analyzed by the capture–recapture approach. Most reported examples of differences between urban and nonurban animals reflect behavioral plasticity rather than divergent selection. The aim of this paper was to use a capture–recapture approach to test the hypothesis that divergent selection can also drive local adaptation in urban habitats. We focused on the size of the black breast stripe (i.e., tie width) of the great tit (Parus major), a sexual ornament used in mate choice. Urban great tits display smaller tie sizes than forest birds. Because tie size is mostly genetically determined, it could potentially respond to selection. We analyzed capture/recapture data of male great tits in Barcelona city (N = 171) and in a nearby (7 km) forest (N = 324) from 1992 to 2008 using MARK. When modelling recapture rate, we found it to be strongly influenced by tie width, so that both for urban and forest habitats, birds with smaller ties were more trap‐shy and more cautious than their larger tied counterparts. When modelling survival, we found that survival prospects in forest great tits increased the larger their tie width (i.e., directional positive selection), but the reverse was found for urban birds, with individuals displaying smaller ties showing higher survival (i.e., directional negative selection). As melanin‐based tie size seems to be related to personality, and both are heritable, results may be explained by cautious personalities being favored in urban environments. More importantly, our results show that divergent selection can be an important mechanism in local adaptation to urban habitats and that capture–recapture is a powerful tool to test it.  相似文献   

5.
We sequenced the control region of the mitochondrial DNA from a sample of six European blue tit populations to investigate the phylogeography of Parus species. Along a transect from Barcelona, Spain to Oulu, Finland, the blue tit showed a different phylogeographic structure than the great tit and the willow tit. The southernmost sample from Barcelona consisted of two widely divergent maternal lineages (nucleotide divergence, π = 0.30%), a situation also found earlier in the French Alps. The more northern populations had a relatively uniform structure (π = 0.19%) with distinctive marks of a growing population, thus resembling the great tit populations (π = 0.19%). The amount of genetic variation among blue tits is lower than in the willow tit (π = 0.53%). This probably reflects a smaller long-term effective population size in the great tit and the blue tit than in the willow tit. The different genetic structure of the Barcelona population vs. the rest had an influence on the estimated population parameters, which are calculated based on the assumptions of genetic equilibrium of the populations.  相似文献   

6.
Predicting climate change impacts on population size requires detailed understanding of how climate influences key demographic rates, such as survival. This knowledge is frequently unavailable, even in well‐studied taxa such as birds. In temperate regions, most research into climatic effects on annual survival in resident passerines has focussed on winter temperature. Few studies have investigated potential precipitation effects and most assume little impact of breeding season weather. We use a 19‐year capture–mark–recapture study to provide a rare empirical analysis of how variation in temperature and precipitation throughout the entire year influences adult annual survival in a temperate passerine, the long‐tailed tit Aegithalos caudatus. We use model averaging to predict longer‐term historical survival rates, and future survival until the year 2100. Our model explains 73% of the interannual variation in survival rates. In contrast to current theory, we find a strong precipitation effect and no effect of variation in winter weather on adult annual survival, which is correlated most strongly to breeding season (spring) weather. Warm springs and autumns increase annual survival, but wet springs reduce survival and alter the form of the relationship between spring temperature and annual survival. There is little evidence for density dependence across the observed variation in population size. Using our model to estimate historical survival rates indicates that recent spring warming has led to an upward trend in survival rates, which has probably contributed to the observed long‐term increase in the UK long‐tailed tit population. Future climate change is predicted to further increase survival, under a broad range of carbon emissions scenarios and probabilistic climate change outcomes, even if precipitation increases substantially. We demonstrate the importance of considering weather over the entire annual cycle, and of considering precipitation and temperature in combination, in order to develop robust predictive models of demographic responses to climate change. Synthesis Prediction of climate change impacts demands understanding of how climate influences key demographic rates. In our 19‐year mark‐recapture study of long‐tailed tits Aegithalos caudatus, weather explained 73% of the inter‐annual variation in adult survival; warm springs and autumns increased survival, wet springs reduced survival, but winter weather had little effect. Robust predictions thus require consideration of the entire annual cycle and should not focus solely on temperature. Unexpectedly, survival appeared not to be strongly density‐dependent, so we use historical climate data to infer that recent climate change has enhanced survival over the four decades in which the UK long‐tailed tit population has more than doubled. Furthermore, survival rates in this species are predicted to further increase under a wide range of future climate scenarios.  相似文献   

7.
8.
Survival of juveniles during the postfledging period can be markedly low, which may have major consequences on avian population dynamics. Knowing which factors operating during the nesting phase affect postfledging survival is crucial to understand avian breeding strategies. We aimed to obtain a robust set of predictors of postfledging local survival using the great tit (Parus major) as a model species. We used mark–recapture models to analyze the effect of hatching date, temperatures experienced during the nestling period, fledging size and body mass on first‐year postfledging survival probability of great tit juveniles. We used data from 5192 nestlings of first clutches ringed between 1993 and 2010. Mean first‐year postfledging survival probability was 15.2%, and it was lower for smaller individuals, as well as for those born in either very early or late broods. Our results stress the importance of choosing an optimum hatching period, and raising large chicks to increase first‐year local survival probability in the studied population.  相似文献   

9.
Quantitative genetic analyses have been increasingly used to estimate the genetic basis of life‐history traits in natural populations. Imperfect detection of individuals is inherent to studies that monitor populations in the wild, yet it is seldom accounted for by quantitative genetic studies, perhaps leading to flawed inference. To facilitate the inclusion of imperfect detection of individuals in such studies, we develop a method to estimate additive genetic variance and assess heritability for binary traits such as survival, using capture–recapture (CR) data. Our approach combines mixed‐effects CR models with a threshold model to incorporate discrete data in a standard ‘animal model’ approach. We employ Markov chain Monte Carlo sampling in a Bayesian framework to estimate model parameters. We illustrate our approach using data from a wild population of blue tits (Cyanistes caeruleus) and present the first estimate of heritability of adult survival in the wild. In agreement with the prediction that selection should deplete additive genetic variance in fitness, we found that survival had low heritability. Because the detection process is incorporated, capture–recapture animal models (CRAM) provide unbiased quantitative genetics analyses of longitudinal data collected in the wild.  相似文献   

10.
During the breeding season, great tits show aggression to protect their nest from intra‐ and interspecific intruders. Aggression is a labile trait that can be plastically expressed as a result of individual differences (e.g., personality), seasonal gradients in the costs and benefits of aggression, or other environmental components (e.g., number of competitors). Competitors may try to take over great tit nests, because the number of suitable nesting sites is limited, and great tits may guard high quality territories. Taking over a great tit nest may be especially fruitful in early phenological stages (egg laying) when great tits frequent their nests less often. However, great tits may compensate for this vulnerability by being more aggressive toward intruders during early nesting stages, a pattern that has already been established in an intraspecific context. Previous studies have shown that interspecific intruders were most likely to die from great tit aggression during great tit egg laying, suggesting great tits may also be more aggressive during this phase in an interspecific context. Here, I tested this hypothesis with simulated territorial intrusions in great tit territories using taxidermized blue tits Cyanistes caeruleus (hereafter called blue tit models). Great tit aggression (number of calls and approach distance toward blue tit model) was assayed during egg laying, incubation, and chick rearing in the breeding season of 2014. Although sample size was low due to a high fraction of non‐responders (n = 44 out of 89 assays across 26 out of 35 individuals), I found that great tits showed a seasonal decline in aggressiveness, which is congruent with intraspecific results on this study species. I discuss my findings in the context of differential adjustment to climate change between interspecific competitors.  相似文献   

11.
We investigated the possible causes of the evolution of sexual size and shape dimorphism in the great tit (Parus major) by using two different approaches. First, we used the equilibrium approach, i.e. analysing current selection to see whether it was possible to find directional selection in the direction of the dimorphism, or stabilising selection maintaining dimorphism at its current level. Second, we used the historical approach, i.e. putting the degree of dimorphism in a phylogenetic perspective to analyse what kind of changes (if any) have occurred. This was carried out in the following way: (i) we described the level of sexual dimorphism in a population of Swedish great tits by means of path model. (ii) We used the path model design to analyse survival and reproductive selection in this population. (iii) We compared the level of dimorphism in relation to size in the great tit with that of the closest congener, the blue tit P. caeruleus. (iv) We compared the amount of interspecific morphological variation with that which would be expected under a drift model. We found no evidence of either stabilising or directional survival or reproductive selection. Size and shape variation in the great tit seemed unrelated to fitness in adults. Dimorphism was somewhat greater in the great tit compared to the blue tit, but only with an amount predictable by its larger size. In terms of phenotypic standard deviations, the great tit was not more dimorphic than the blue tit, although it was larger. The amount of interspecific variance with regard to size was lower or equal to that expected by the drift model, showing that long-term directional selection for an increase in size and dimorphism is improbable. These results agree with recent theoretical findings that size and dimorphism should be related and that strong conservatism with regard to dimorphism is to be expected. They also agree with the view that in equilibrium populations, fitness components (if there are many of them) should appear neutral with regard to total fitness.  相似文献   

12.
Sleep is ubiquitous in animals, but there is great inter‐ and intraspecific variation in the daily amount of sleep that is needed. Chronic sleep curtailment or experimental sleep deprivation are known to impair health and performance of individuals, but not much is known about the fitness consequences of naturally occurring variation in sleep behaviour. Here we test for assortative mating in sleep behaviour and for correlations between sleep phenotypes and reproductive success and survival in a free‐living blue tit population. We found that partners of a social breeding pair were mated assortatively in regard to standardized awakening time, i.e. awakening time relative to that of other birds of the same sex in the population. We found no evidence for assortative mating for other sleep parameters. In female blue tits no sleep parameter that we measured was significantly correlated with lay date or clutch size. Females that had extra‐pair young in their brood did not differ in awakening time, or in any other sleep parameter, compared to females without extra‐pair young. In males, the probability of siring extra‐pair young was related to sleep onset and sleep duration, but not as predicted. Males that began to sleep earlier and slept longer were more likely to sire extra‐pair offspring. None of the sleep parameters were significantly correlated with local survival of first‐year birds. Our results suggest that there is no strong effect of variation in sleep behaviour on fitness in blue tits, at least under natural conditions. Such a relationship might only become evident when natural sleep patterns are experimentally disturbed, or when sleep quality is affected by anthropogenic noise or light pollution.  相似文献   

13.
Summary Density and breeding success of the great tit Parus major, blue tit Parus caeruleus and collared flycatcher Ficedula albicollis were studied in nest box colony in oak forest over a period of 19 years.Intraspecific density dependent clutch size reduction was found with blue tit and great tit. In interspecific relation the high density of blue tits reduced the clutch size of great tits.In the hatching period neither intraspecific nor interspecific density dependence were showed between the tits when the third competitive species, collared flycatcher was present. The collared flycatcher significantly reduced the hatching success of both tit species and the number of fledglings of great tit.The effects of the great tits and combined density of the great and blue tits on the hatching failure and number of fledglings of collared flycatcher were found when the density of the tits was high. There were not significant relationships to the single density of blue tits.The temporal variability of the competition of the three bird species is discussed.  相似文献   

14.
The density of great tit Parus major L. and blue tit Parus caeruleus L. was artificially increased by placing nest-box colonies for these species in the vicinity of the nests of breeding tawny owls during 1993–1997. Bird prey composition in the owl nests, the proportion of parents disappearing from the breeding tit populations and the reproductive performance of the widowed parents were analysed. The frequency of predation on tits by tawny owls was greater in areas where tit density had been artificially increased. Owls preyed more on tits during the feeding period of owlets than during the incubation period and more in years when snow covered the ground during the incubation period than when it did not. Mortality due to predation was male biased and more females lost their mates in populations breeding near tawny owl nests. Reproductive performance of the widowed parents was lower and their body weights were lighter at the end of the nestling period than those found in birds rearing youngs with their mates. Predation by owls increased the between-year turnover in the breeding tit population: widowed parents did not return to the nesting site for the next breeding season.  相似文献   

15.
Major histocompatibility complex (Mhc) genes are frequently used as a model for adaptive genetic diversity. Although associations between Mhc and disease resistance are frequently documented, little is known about the fitness consequences of Mhc variation in wild populations. Further, most work to date has involved testing associations between Mhc genotypes and fitness components. However, the functional diversity of the Mhc, and hence the mechanism by which selection on Mhc acts, depends on how genotypes map to the functional properties of Mhc molecules. Here, we test three hypotheses that relate Mhc diversity to fitness: (i) the maximal diversity hypothesis, (ii) the optimal diversity hypothesis and (iii) effect of specific Mhc types. We combine mark–recapture methods with analysis of long‐term breeding data to investigate the effects of Mhc class I functional diversity (Mhc supertypes) on individual fitness in a wild great tit (Parus major) population. We found that the presence of three different Mhc supertypes was associated with three different components of individual fitness: survival, annual recruitment and lifetime reproductive success (LRS). Great tits possessing Mhc supertype 3 experienced higher survival rates than those that did not, whereas individuals with Mhc supertype 6 experienced higher LRS and were more likely to recruit offspring each year. Conversely, great tits that possessed Mhc supertype 5 had reduced LRS. We found no evidence for a selective advantage of Mhc diversity, in terms of either maximal or optimal supertype diversity. Our results support the suggestion that specific Mhc types are an important determinant of individual fitness.  相似文献   

16.
The temporal mismatch hypothesis suggests that fitness is related to the degree of temporal synchrony between the energetic needs of the offspring and their food supply. The hypothesis has been a basis in studying the influence of climate warming on nature. This study enhances the knowledge on prevalence of temporal mismatches and their consequences in boreal populations, and questions the role of the temporal mismatch hypothesis as the principal explanation for the evolution of timing of breeding. To test this, we examined if synchrony with caterpillar prey or timing of breeding per se better explains reproductive output in North European parid populations. We compared responses of temperate-origin species, the great tit (Parus major) and the blue tit (Cyanistes caeruleus), and a boreal species, the willow tit (Poecile montanus). We found that phenologies of caterpillars and great tits, but not of blue tits, have advanced during the past decades. Phenologies correlated with spring temperatures that may function as cues about the timing of the food peak for great and blue tits. The breeding of great and blue tits and their caterpillar food remained synchronous. Synchrony explained breeding success better than timing of breeding alone. However, the synchrony effect arose only in certain conditions, such as with high caterpillar abundances or high breeding densities. Breeding before good synchrony seems advantageous at high latitudes, especially in the willow tit. Thus, the temporal mismatch hypothesis appears insufficient in explaining the evolution of timing of breeding.  相似文献   

17.
We conducted an experiment to test whether great tits (Parus major) base their decisions of clutch defence on past investment or future benefits. Results were obtained by manipulation of future benefits. Great tit pairs of an experimental group with reduced clutch-size and thus diminished benefits defended their offspring against a live raptor significantly less than a comparable, non-manipulated control group with the same amount of past investment (clutch-size, incubation stage, time of year). While in the females the difference between the two groups was obvious from the beginning of a trial, the difference in the males developed only during the course of a trial, suggesting that the male bases its response on the female's response deficit. A more onerous explanation of the female signaling the male the egg loss by using a language-like symbol is not supported by the data. The experiment thereby permits the conclusion that at least the great tit female avoids committing the Concorde fallacy in the strict sense.  相似文献   

18.
We analysed variation of the mitochondrial control region from willow tits through its Palaearctic distribution range. Although we found high amount of genetic variation (π=1.114%), there was almost no differentiation between subspecies or geographical localities. This may be because of a combination of several ecological and genetic factors, including a relatively homogenic habitat through the distribution range, lack of geographical barriers, high gene flow and a large long‐term effective population size. On the contrary, in the songar tit, which is sometimes considered to be conspecific with the willow tit, the mitochondrial lineages seem to correlate with the geographical locality and are clearly distinct from the willow tit. We concluded that the common ancestors of willow and songar tits existed some 1.5–2 Myr ago in the south‐eastern Asia. After the last Ice Ages, the willow tit expanded all through the Palaearctic, whereas the songar tit remained in eastern Asia.  相似文献   

19.
The separation of abiotic and biotic factors affecting populations and communities is an important step in understanding how climate change can influence ecological processes, but quantifying their relative contribution to community changes is a challenge. We assessed the effect of temperature and species interactions on the population dynamics of a forest bird community with a hierarchical dynamic population model in a Bayesian framework. We used a long‐term time‐series (1956–2012) of four secondary cavity‐nesting birds with similar food and nesting requirements but different migration habits, to analyse the effects of the four species population size and the local weather fluctuations on each species’ population dynamics. We found clear evidence of a negative effect of two resident species (blue tit and great tit) on a long‐distance migrant (pied flycatcher). Among the residents we only found a competition effect of the great tit on the marsh tit. The birds showed opposite responses to weather: the pied flycatcher favoured colder springs whereas the blue tit and great tit favoured warmer springs. Although alternative mechanisms cannot be ruled out, our results suggest that the resident species (blue tit and great tit) could adjust to increasing spring temperature while the migrant species (pied flycatcher) could not, leading progressively to the exclusion of the pied flycatcher from the area. These results point out the potential role of competitive interactions by providing insightful clues, call for refined research, and support recent efforts to include population dynamics in species distribution models.  相似文献   

20.
Like British great tits, Belgian blue tits have a lower winter body mass when sparrowhawks are present. Since body mass affects manoeuvrability in small birds, tits may balance the risks of starvation and the risk of hawk predation by varying the amount of extra fat carried during winter. Predation pressure by sparrowhawks on young and inexperienced fledglings is at least as intense as that on the adults during winter. We therefore expected that tit fledgling body mass could also be reduced in the presence of sparrowhawks. In the years after one pair of sparrowhawks settled in a study plot, the mean body mass of blue tit fledglings was lower compared with that in years when there were no sparrowhawks. Furthermore, the shape of the curve relating juvenile survival to fledging mass changed, because the survival of the heaviest fledglings was reduced, which altered the selection differential of juvenile survival as a function of body mass from directional to stabilizing. Of seven published studies on the fledgling body mass–survival relation in tits, all three of the studies conducted in the absence of sparrowhawks showed the highest survival rates for the heaviest young, whereas in all four studies with sparrowhawks present this was no longer the case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号