首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The precise measurement of esophageal pressure (Pes) as a reflection of pleural pressure (Ppl) is crucial to the measurement of lung mechanics in the newborn. The fidelity of Pes as a measurement of Ppl is determined by the occlusion test in which, during respiratory efforts against an occlusion at the airway opening, changes in pressure (delta Pao) (Pao is assumed to be equal to alveolar pressure) are shown to be equal to changes in Pes (delta Pes). Eight intubated premature infants (640-3,700 g) with chest wall distortion were studied using a water-filled catheter system to measure Pes. During the occlusion test, all patients had a finite region of the esophagus where delta Pes equaled delta Pao, which corresponded to points in the esophagus above the cardia but below the carina. In conclusion, even in the presence of chest wall distortion, a liquid-filled catheter with the tip between the cardia and carina can provide an accurate measurement of Ppl, even in the very small premature infant with chest wall distortion.  相似文献   

2.
The esophageal balloon technique for measuring pleural surface pressure (Ppl) has recently been shown to be valid in recumbent positions. Questions remain regarding its validity at lung volumes higher and lower than normally observed in upright and horizontal postures, respectively. We therefore evaluated it further in 10 normal subjects, seated and supine, by measuring the ratio of esophageal to mouth pressure changes (delta Pes/delta Pm) during Mueller, Valsalva, and occlusion test maneuvers at FRC, 20, 40, 60, and 80% VC with the balloon placed 5, 10, and 15 cm above the cardia. In general, delta Pes/delta Pm was highest at the 5-cm level, during Mueller maneuvers and occlusion tests, regardless of posture or lung volume (mean range 1.00-1.08). At 10 and 15 cm, there was a progressive increase in delta Pes/delta Pm with volume (from 0.85 to 1.14). During Valsalva maneuvers, delta Pes/delta Pm also tended to increase with volume while supine (range 0.91-1.04), but was not volume-dependent while seated. Qualitatively, observed delta Pes/delta Pm fit predicted corresponding values (based on lung and upper airway compliances). Quantitatively there were discrepancies probably due to lack of measurement of esophageal elastance and to inhomogeneities in delta Ppl. At every lung volume in both postures, there was at least one esophageal site where delta Pes/delta Pm was within 10% of unity.  相似文献   

3.
The measurement of pulmonary mechanics has been developed extensively for adults, and these techniques have been applied directly to neonates and infants. However, the compliant chest wall of the infant frequently predisposes to chest wall distortion, especially when there is a low dynamic lung compliance (CL,dyn). We describe a technique of directly measuring the static chest wall compliance (Cw,st), developed initially in the newborn lamb and subsequently applied to the premature neonate with chest wall distortion. The mean CL,dyn in seven intubated newborn lambs in normoxia was 2.45 +/- 0.41 ml.cmH2O-1.kg-1, whereas Cw,st was 11.81 +/- 0.25 ml.cmH2O-1.kg-1. These values did not change significantly in seven animals breathing through a tight-fitting face mask or with hypercapnia-induced tachypnea. For the eight premature infants the mean CL,dyn was 1.35 +/- 0.36 ml.cmH2O-1.kg-1, whereas the mean Cw,st was 3.16 +/- 1.01 ml.cmH2O-1.kg-1. This study shows that, under relaxed conditions when measurements of static compliance are performed, the chest wall is more compliant than the lung. The measurement of Cw,st may thus be used to determine the contribution of the respiratory musculature in stabilizing the chest wall.  相似文献   

4.
While some experimental data suggest that erythropoietin (EPO) influences respiratory mechanics, reports on scientific trials are lacking. In the present work, respiratory mechanics were measured using the end-inflation occlusion method in control and EPO treated anaesthetised and positive-pressure ventilated rats. Causing an abrupt inspiratory flow arrest, the end-inflation occlusion method makes it possible to measure the ohmic airway resistance and the respiratory system elastance. It was found that EPO induces a significant decrement in the ohmic airway resistance, not noted in control animals, 20 and 30min after intraperitoneal EPO injection. The elastic characteristics of the respiratory system did not vary. Hypotheses about the mechanism (s) explaining these results were addressed. In particular, additional experiments have indicated that the decrement in airway resistance could be related to an increase in nitric oxide production induced by EPO. Spontaneous increments in plasmatic erythropoietin levels, such as those that take place in association with hypoxia and/or blood loss, appear to be related to the decrement in airway resistance, allowing pulmonary ventilation to increase without altering respiratory mechanics leading to deleterious increments in energy dissipation during breathing.  相似文献   

5.
To study the effects of continuous positive airway pressure (CPAP) on lung volume, and upper airway and respiratory muscle activity, we quantitated the CPAP-induced changes in diaphragmatic and genioglossal electromyograms, esophageal and transdiaphragmatic pressures (Pes and Pdi), and functional residual capacity (FRC) in six normal awake subjects in the supine position. CPAP resulted in increased FRC, increased peak and rate of rise of diaphragmatic activity (EMGdi and EMGdi/TI), decreased peak genioglossal activity (EMGge), decreased inspiratory time and inspiratory duty cycle (P less than 0.001 for all comparisons). Inspiratory changes in Pes and Pdi, as well as Pes/EMGdi and Pdi/EMGdi also decreased (P less than 0.001 for all comparisons), but mean inspiratory airflow for a given Pes increased (P less than 0.001) on CPAP. The increase in mean inspiratory airflow for a given Pes despite the decrease in upper airway muscle activity suggests that CPAP mechanically splints the upper airway. The changes in EMGge and EMGdi after CPAP application most likely reflect the effects of CPAP and the associated changes in respiratory system mechanics on the afferent input from receptors distributed throughout the intact respiratory system.  相似文献   

6.
We present a method to assess cross-sectional area (CSA) changes of the extrathoracic airways (EA) by using an inductive plethysmograph (IP) band placed around the upper part of the neck. Measurements of mouth pressure (Pm) (or flow rate, V) and neck CSA changes during respiratory efforts against a high (or infinite) resistance have shown a highly significant relationship between Pm changes (or V changes, respectively), reflecting CSA changes of the EA and CSA changes of the neck. Simultaneous measurements of CSA of the neck (by IP) and of EA (by computerized tomography) during sustained inspiratory and expiratory efforts against a closed airway showed a high correlation between changes in the former and latter structures. Changes in CSA of the neck were larger with positive than negative transmural pressures, in keeping with the known larger compliance of this airway during expiration. We found this method helpful to assess the behavior of the EA during obstructive apnea episodes, hypopneas, and snoring.  相似文献   

7.
The interrupter technique is used to determine airway and tissue resistance. Their accuracy is influenced by the technical properties of the interrupter device and the compliance of the respiratory system. We investigated the influence of valve characteristics and respiratory system compliance on the accuracy of determining airway and tissue resistance by means of a computer simulation. With decreasing compliance we found increasing errors in both airway and tissue resistance determination of up to 34 and 71%, respectively. On this basis we developed a new occlusion valve, with special emphasis on rapid closing time and tightness in the closed state to improve the accuracy of resistance determination. The newly developed occlusion device greatly improves the accuracy of airway and tissue resistance determination. We conclude that respiratory system compliance is a limiting factor for the accuracy of the interrupter technique. To apply the interrupter technique in patients with extremely low respiratory system compliances, we need sophisticated technical devices.  相似文献   

8.
Movements of the suprasternal fossa during spontaneous breathing monitored with the surface inductive plethysmograph (SIP) have been shown to reflect changes of intrapleural pressure in conscious humans. Calibration of this device in anesthetized intubated dogs was accomplished by adjusting the electrical gain of its analog waveform to be equivalent to changes of airway pressure during inspiratory efforts against an occluded airway. This procedure, denoted the occlusion test, was also used to identify the site of esophageal balloon catheter placement for its recording of intrapleural pressure deflections. The validity of SIP-derived estimates of inspiratory and expiratory pulmonary resistances and lung compliance was established by finding close agreement with measurements obtained with intraesophageal pressure changes during 1) unimpeded spontaneous breathing, 2) inspiratory resistive loading, 3) bronchoprovocation with aerosolized carbachol, 4) mechanical ventilatory modalities, and 5) induced pulmonary edema. Therefore, movements of the suprasternal fossa with respiration can be reliably transformed into quantitative or semiquantitative changes of intrapleural pressure in anesthetized intubated dogs during major alterations of pulmonary mechanics.  相似文献   

9.
To study the dynamics of respiratory drive and pressure in patients with occlusive apneas, diaphragmatic electromyogram (EMGdi), esophageal pressure (Pes), and genioglossal electromyogram (EMGge) were monitored during nocturnal sleep in five patients. Both EMGs were analyzed as peak moving time average, and Pes was quantitated as the peak inspiratory change from base line. During the ventilatory phase both EMGs decreased proportionally. The decrease in Pes was less than the decrease observed in EMGdi, and Pes generated for a given EMGdi increased during the preapneic phase in spite of the proportional decrease in EMGdi and EMGge during this period. We conclude that negative inspiratory pressures which lead to the passive collapse of oropharyngeal walls are dependent on both respiratory and upper airway muscle activity and that occlusive apneas of non-rapid-eye-movement (NREM) sleep do occur in spite of proportional changes observed in the activity of both muscle groups. The preapneic increase in negative inspiratory pressures generated for a given respiratory muscle activity is most likely due to the decrease in upper airway muscle activity that is associated with an increase in oropharyngeal resistance.  相似文献   

10.
Eight patients with occlusive sleep apnea were monitored during non-rapid-eye-movement (NREM) sleep to study the factors that contribute to negative inspiratory pressure generation and thus upper airway occlusion. End-expiratory lung volume assessed by respiratory inductive plethysmography [sum of end-expiratory levels (SUM EEL)] increased early and decreased late during the ventilatory phases (P less than 0.0001, one-way analysis of variance). Inspiratory change in esophageal pressure (Pes) and peak inspiratory diaphragmatic and genioglossal electromyograms (EMGdi and EMGge) decreased while the inspiratory pressure generated for a given diaphragmatic activity (Pes/EMGdi) increased during the preapneic phase (P less than 0.0001, for all). Multiple regression analysis with Pes/EMGdi as the dependent variable (R2 = 0.90) indicated that both the changes in SUM EEL and EMGge significantly contributed to the model (P less than 0.008 and 0.004, respectively). These results indicate that end-expiratory lung volume fluctuates during NREM sleep in patients with occlusive apnea and suggest that these changes along with the changes in upper airway muscle activity contribute to the generation of negative inspiratory pressure, leading to the passive collapse of the upper airways.  相似文献   

11.
Effective use of high-frequency oscillatory ventilation (HFOV) may require maintenance of adequate lung volume to optimize gas exchange. To determine the impact of inflation during HFOV, sustained inflation was applied at pressures of 5, 10, and 15 cmH2O above mean airway pressure for 3, 10, and 30 s to 15 intubated, paralyzed, anesthetized rabbits after saline lavage to induce surfactant deficiency. Arterial blood gases were recorded in all rabbits while static compliance, resistance, time constant, and changes in functional residual capacity were recorded using the interrupter technique and plethysmograph in seven rabbits. Parameters were recorded before and 2 min after sustained inflation. Arterial PO2, compliance of the respiratory system, and functional residual capacity increased after sustained inflation at pressure levels of at least 10 cmH2O and 10-s duration. As the presence or duration of a sustained inflation was increased, oxygenation improved (P less than or equal to 0.01), but arterial PCO2 increased as longer sustained inflations were used (P less than or equal to 0.005). Sustained inflations of 5 cmH2O above mean airway pressure or of 3-s duration were ineffective. We conclude that either a critical pressure or duration of sustained inflation is needed to improve oxygenation and pulmonary mechanics during HFOV.  相似文献   

12.
Mean inspiratory pressure (Pi), estimated from the occlusion pressure at the mouth and the inspiratory time, is useful as a noninvasive estimate of respiratory muscle effort during spontaneous breathing in normal subjects and patients with chronic obstructive pulmonary disease. The aim of this study was to compare the Pi with respect to mean esophageal pressure (Pes) in patients with restrictive disorders. Eleven healthy volunteers, 12 patients with chest wall disease, 14 patients with usual interstitial pneumonia, and 17 patients with neuromuscular diseases were studied. Pi, Pes, and mean transdiaphragmatic pressure were simultaneously measured. Tension-time indexes of diaphragm (TTdi) and inspiratory muscles (TTmu) were also determined. In neuromuscular patients, significant correlations were found between Pi and Pes, Pi and transdiaphragmatic pressure, and TTmu and TTdi. A moderate agreement between Pi and Pes and between TTmu and TTdi was found. No significant correlation between these parameters was found in the other patient groups. These findings suggest that Pi is a good surrogate for the invasive measurement of respiratory muscle effort during spontaneous breathing in neuromuscular patients.  相似文献   

13.
Dynamic lung compliance (CL), inspiratory pulmonary resistance (RL), and functional residual capacity (FRC) were measured in 10 unanesthetized 48 h-old newborn monkeys and seven 21-day-old infant monkeys during acute exposures to an equivalent level of hypoxemia. End-expiratory airway occlusions were performed and the pressure developed by 200 ms (P0.2) was utilized as an index of central respiratory drive. P0.2 demonstrated a sustained increase throughout the period of hypoxemia on day 2 despite the fact that minute ventilation (VI) initially increased but then fell back to base-line levels. Dynamic lung compliance fell and FRC increased by 5 min of hypoxemia in the newborns. The 21-day-old monkeys exhibited a sustained increase in both VI and P0.2 throughout the hypoxic period with no change in CL and FRC. RL did not change at either postnatal age during hypoxemia. These data indicate that the neonatal monkey is subject to changes in pulmonary mechanics (decreased CL and increased FRC) during hypoxemia and that these changes are eliminated with maturation.  相似文献   

14.
The precise contribution of the CO2-dependent respiratory rhythm to sinus arrhythmia in eupnea is unclear. The respiratory rhythm and sinus arrhythmia were measured in 12 normal, unanesthetized subjects in normocapnia and hypocapnia during mechanical hyperventilation with positive pressure. In normocapnia (41 +/- 1 mmHg), the respiratory rhythm was always detectable from airway pressure and inspiratory electromyogram activity. The amplitude of sinus arrhythmia (138 +/- 21 ms) during mechanical hyperventilation with positive pressure was not significantly different from that in eupnea. During the same mechanical hyperventilation pattern but in hypocapnia (24 +/- 1 mmHg), the respiratory rhythm was undetectable and the amplitude of sinus arrhythmia was significantly reduced (to 40 +/- 5 ms). These results show a greater contribution to sinus arrhythmia from the respiratory rhythm during hypocapnia caused by mechanical hyperventilation than previously indicated in normal subjects during hypocapnia caused by voluntary hyperventilation. We discuss whether the respiratory rhythm provides the principal contribution to sinus arrhythmia in eupnea.  相似文献   

15.
In eight tracheotomized adult rabbits placed in the supine position, we employed a catheter-tip piezoresistive pressure transducer to measure esophageal pressure (Pes) and assessed the validity of taking the changes in Pes to be the changes in pleural pressure (Ppl). We applied an occlusion test in which the tracheal cannula was occluded during either spontaneous inspiratory efforts or body surface oscillations ranging from 3 to 50 Hz. The relationship between Pes and airway opening pressure (Pao) was recorded. In all instances, the changes in Pes and Pao were virtually identical in both amplitude and phase. We conclude that, as evaluated by the occlusion test, a catheter-tip pressure transducer placed in the esophagus of rabbits can give adequate estimation of local pleural changes up to at least 50 Hz.  相似文献   

16.
The influence of inspiratory and expiratory flow magnitude, lung volume, and lung volume history on respiratory system properties was studied by measuring transfer impedances (4-30 Hz) in seven normal subjects during various constant flow maneuvers. The measured impedances were analyzed with a six-coefficient model including airway resistance (Raw) and inertance (Iaw), tissue resistance (Rti), inertance (Iti), and compliance (Cti), and alveolar gas compressibility. Increasing respiratory flow from 0.1 to 0.4 1/s was found to increase inspiratory and expiratory Raw by 63% and 32%, respectively, and to decrease Iaw, but did not change tissue properties. Raw, Iti, and Cti were larger and Rti was lower during expiration than during inspiration. Decreasing lung volume from 70 to 30% of vital capacity increased Raw by 80%. Cti was larger at functional residual capacity than at the volume extremes. Preceding the measurement by a full expiration rather than by a full inspiration increased Iaw by 15%. The data suggest that the determinants of Raw and Iaw are not identical, that airway hysteresis is larger than lung hysteresis, and that respiratory muscle activity influences tissue properties.  相似文献   

17.
Double-chamber plethysmography is a well established noninvasive method of assessing airflow obstruction in small lab animals. It allows measurement of the specific airway resistance (sRaw), which unlike enhanced pause (Penh), is a meaningful airway mechanics parameter. Since sRaw is measured in spontaneously breathing mice, a limitation of the method is the inability to exclude nasal resistance changes. We recently showed that mice are not truly obligate nasal breathers and that after nasal occlusion, nasally breathing mice can transition to an oral mode of breathing. We now show that it is experimentally possible to algebraically separate the average nasal and pulmonary (including laryngeal) components of total airway resistance change by a series of measurements made across groups of mice breathing nasally or orally, assuming that oral resistance remains constant. Using this approach, we show that nasal resistance change comprises one-half or more of the total resistance change during methacholine challenge. Inhibition of mucin secretion from airway goblet cells attenuates pulmonary but not nasal airway hyperresponsiveness (AHR), and nasal AHR in a murine model of rhinitis may be related to edema.  相似文献   

18.
This study investigated the relationship among resistive load magnitude (DeltaR), the cortical evoked potential P(1) peak amplitude of the respiratory-related evoked potential (RREP), mouth pressure (Pm), esophageal pressure (Pes), transdiaphragmatic pressure (Pdi), and resistive load magnitude estimation (ME) in human subjects. The RREP, Pdi, Pes, Pm, and ME were recorded in response to three DeltaR values. The RREP was recorded from C(3) and C(4), referenced to the vertex C(Z). The group means of the Pdi, Pm, ME, and RREP P(1) amplitude increased with increases in the DeltaR. A log-log plot of the P(1) amplitudes showed a relationship with ME as did Pes, Pdi, and Pm. There were linear log-log relationships between C(Z)-C(3) P(1) amplitude, C(Z)-C(4) P(1) amplitude, and Pdi to ME. Pdi had a linear log-log relationship with C(Z)-C(3) and C(Z)-C(4). These results support the hypothesis that the estimated magnitude of the respiratory load is related to the P(1) amplitude of the RREP. Pm, Pes, and Pdi are mechanically related and correlated with the P(1) peak amplitude, suggesting that the mechanoreceptors mediating the P(1) peak of the RREP are activated by changes in mechanical forces related to the inspiratory pump.  相似文献   

19.
This study was designed to investigate the influence of hypoxia-evoked augmented breaths (ABs) on respiratory-related tongue protrudor and retractor muscle activities and inspiratory pump muscle output. Genioglossus (GG) and hyoglossus (HG) electromyogram (EMG) activities and respiratory-related tongue movements were compared with peak esophageal pressure (Pes; negative change in pressure during inspiration) and minute Pes (Pes x respiratory frequency = Pes/min) before and after ABs evoked by sustained poikilocapnic, isocapnic, and hypercapnic hypoxia in spontaneously breathing, anesthetized rats. ABs evoked by poikilocapnic and isocapnic hypoxia triggered long-lasting (duration at least 10 respiratory cycles) reductions in GG and HG EMG activities and tongue movements relative to pre-AB levels, but Pes was reduced transiently (duration of <10 respiratory cycles) after ABs. Adding 7% CO(2) to the hypoxic inspirate had no effect on the frequency of evoked ABs, but this prevented long-term declines in tongue muscle activities. Bilateral vagotomy abolished hypoxia-induced ABs and stabilized drive to the tongue muscles during each hypoxic condition. We conclude that, in the rat, hypoxia-evoked ABs 1) elicit long-lasting reductions in protrudor and retractor tongue muscle activities, 2) produce short-term declines in inspiratory pump muscle output, and 3) are mediated by vagal afferents. The more prolonged reductions in pharyngeal airway vs. pump muscle activities may lead to upper airway narrowing or collapse after spontaneous ABs.  相似文献   

20.
Airway anesthesia with aerosolized lidocaine has been associated with an increase in minute ventilation (VE) during CO2 inhalation. The increase in VE may be due to increased neuromuscular output or decreased mechanical load on breathing. To evaluate this we measured VE, breathing pattern, mouth occlusion pressure, and lung mechanics in 20 normal subjects during room-air breathing and then inhalation of 6% CO2-94% O2, before and after airway anesthesia. Measurements of lung mechanics included whole-lung resistance, dynamic and static compliance, and functional residual capacity. Airway anesthesia had no detectable effect on any measurements during room-air breathing. During CO2 inhalation, airway anesthesia produced increases in VE and mean inspiratory flow rate (VT/TI) and more negative inspiratory pleural pressure but had no detectable effect on lung mechanics or mouth occlusion pressure. Pleural pressure was more negative during the latter 25% of inspiration. We concluded that airway receptors accessible to airway anesthesia play a role in determining neuromuscular output during CO2 inhalation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号