首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
稳态视觉诱发电位(steady-state visual evoked potential,SSVEP)不同于瞬态视觉诱发电位,有其独特的产生机理。当用两种不同频率的闪光同时刺激时,每种频率闪光诱发的SSVEP之间是否会相互影响?它们与对应单一频率闪光刺激时产生的SSVEP的关系怎样?作者用!波段频率8.3Hz与"波段频率20Hz的闪光分别及同时刺激10个被试的双眼,发现在同时刺激时,每种频率闪光的SSVEP比对应单频刺激时的SSVEP略小,但位置分布无明显变化。这说明不同频率SSVEP的产生网络是彼此独立的,在被同时激活时,每个网络产生的信号并不相互影响。  相似文献   

2.
微眼动是视觉注视过程中幅度最大、速度最快的眼动,可以消除由于神经系统适应性而产生的视觉衰退现象,在视觉信息处理过程中发挥着重要作用.基于微眼动与视觉感知功能的相关性,设计实验研究猕猴完成显性、隐性注意任务以及不同难度显性注意任务时,视觉注视情况下微眼动的差异.通过对不同难度显性注意任务下微眼动的参数进行比较,发现随着任务难度的增加,微眼动的幅度、速率和频率都被抑制.另一方面,对比不同类型的视觉感知任务(显性注意和隐性注意),发现在相似的实验范式下,隐性注意对微眼动的频率有明显的抑制作用,但幅度和频率没有得到一致的结果,这表明视觉注意任务类型的不同或将导致猕猴完成任务的策略不同.这些工作将为今后进一步研究微眼动产生的神经机制以及视觉注意过程中眼动的作用机制奠定良好的基础.  相似文献   

3.
在认知神经科学研究中,Go/NoGo模型是一种非常有效的研究方法。在本试验中,以两只猕猴为研究对象,采用Go/NoGo模型,以不同的视觉线索作为刺激来研究相关认知行为。结果表明猕猴能够很快学会Go/NoGo视觉分辨任务,而且对NoGo任务的完成要优于对Go任务的完成。本实验建立了一种有效的猕猴Go/NoGo视觉分辨实验的方法及计算机控制系统,为进一步记录神经元活动建立了良好的基础。  相似文献   

4.
在认知神经科学研究中,Go/NoGo模型是一种非常有效的研究方法。在本试验中,以两只猕猴为研究对象,采用Go/NoGo模型,以不同的视觉线索作为刺激来研究相关认知行为。结果表明猕猴能够很快学会Go/NoGo视觉分辨任务,而且对NoGo任务的完成要优于对Go任务的完成。本实验建立了一种有效的猕猴Go/NoGo视觉分辨实验的方法及计算机控制系统, 为进一步记录神经元活动建立了良好的基础。  相似文献   

5.
由于情绪信息在个体社交生活中的重要地位,情绪面孔的注意偏向问题已成为当今注意研究领域中的一个热点问题。然而,目前对于情绪面孔注意偏向加工机制的问题还存在很大争论。即使采用相似的实验程序和刺激材料,不同研究者获得的研究结果仍不一致或存在冲突。部分结果表明,愤怒面孔会自动吸引注意,表现愤怒优势效应;相反,越来越多的证据支持存在注意偏向的是快乐面孔而非愤怒面孔,即存在快乐优势效应。本文对支持不同优势效应的行为和认知神经科学证据进行整合,指出刺激材料选择、实验程序设定以及加工进程这三个方面的差异可能是造成这两种优势冲突的主要原因。根据既往研究的对比分析,未来还需要进一步对实验材料和程序进行控制,并结合认知神经科学技术手段对愤怒和快乐优势效应的加工机制进一步深入研究,以解决其背后的争论。  相似文献   

6.
汉字识别的跨感觉通路ERP注意成分研究   总被引:1,自引:0,他引:1  
采用提高非注意纯度的“跨通路延迟反应”实验模式 ,观察汉字形音判断的跨通路事件相关电位 (ERP) ,研究N1和早期注意成分 (Nd1 ) .被试为 1 5名青年正常人 .结果发现 ,N1在头皮上的分布存在明显的通路间差异 :既与非语言实验结果不同 ,也与英语实验结果不同 ,可能反映出汉字加工的脑机制特征 .注意加工部位随语言 /非语言、听觉 /视觉通路、偏差刺激 /标准刺激 3种条件的不同而变化 ,具有可塑性 .早期注意效应发生在刺激本身诱发的外源性成分之前 ,支持注意的早期选择学说 .根据N1与Nd1的关系 ,支持注意使N1增大者不是外源性成分 ,而是重叠于外源性成分中的内源性成分的观点  相似文献   

7.
穿颅电刺激被认为可以无创调节大脑的神经活动,为研究特定脑区与某一认知功能间的因果关系提供了可能.近些年,对穿颅电刺激作用机制和其对认知、运动功能调控的研究方面取得了很多重要进展.在这篇综述中,我们总结了以往关于穿颅直流电刺激、穿颅交流电刺激和穿颅随机噪声电刺激三种刺激方式的发展历史及其作用机制,同时总结了其对感知觉(主要是视觉知觉)、注意和记忆等认知功能的调控,并对未来的研究方向进行了展望.  相似文献   

8.
穿颅电刺激被认为可以无创调节大脑的神经活动,为研究特定脑区与某一认知功能间的因果关系提供了可能.近些年,对穿颅电刺激作用机制和其对认知、运动功能调控的研究方面取得了很多重要进展.在这篇综述中,我们总结了以往关于穿颅直流电刺激、穿颅交流电刺激和穿颅随机噪声电刺激三种刺激方式的发展历史及其作用机制,同时总结了其对感知觉(主要是视觉知觉)、注意和记忆等认知功能的调控,并对未来的研究方向进行了展望.  相似文献   

9.
目的 老龄化是日益严重的社会性问题。老年人的认知功能,如注意等,出现了明显的衰退。探究老化过程中视觉注意调控网络的改变有助于理解老年人认知功能衰退的神经机制,并为寻找潜在的干预方式提供理论基础。方法 本研究采用经典的双目标注意任务:被试仅需全程注视屏幕中心的黑十字。黑十字左右两侧13.5°视角度会呈现两个相同的视觉圆点,800~1 200 ms后其中随机一个目标会发生改变或者不变。通过采集该视觉注意任务期间的脑电活动信号,比较青年人与老年人在视觉目标改变和不变两种条件下的大脑活动。结果 实验发现在青年人中,额叶、顶叶和颞叶等脑区的电极记录到的神经电活动特征对视觉目标是否改变存在显著性差别,而老年人的脑活动对该视觉目标改变无显著性变化。此外,还发现该脑网络的变化在青年人和老年人中均存在性别差异。结论 注意任务下老年人脑网络难以对外界视觉信息输入做出及时响应,老化过程伴随视觉注意调控网络(额叶、顶叶和颞叶等)功能的衰退,该脑网络的变化存在性别差异。本研究为老化引起视觉注意调控网络损伤提供了新的证据。  相似文献   

10.
动物对不同的感觉刺激产生不同的行为反应,这对动物生存至关重要。关于其神经机制的研究,之前的工作多集中在感觉系统信息处理方面。但视觉刺激所包含的行为意义是怎样被大脑处理的,大脑处理后又如何根据刺激的行为意义调控行为的发生尚不清楚。为了更好地解析行为选择的神经机制,中国科学院神经科学研究所杜久林组姚园园等利用斑马鱼的逃跑环路为模型,研究了不同行为意义的视觉刺激引起不同行为反应的神经机制。首先,他们发现斑马鱼仅对危险性而非非危险性视觉刺激产生逃跑行为,且这一行为控制发生在视觉信息由视觉中枢向逃跑命令神经元传递的阶段(即视觉-运动信息转换阶段)。其次,发现下丘脑多巴胺能神经元和后脑甘氨酸能抑制性神经元组成"开关"样功能模块控制这一行为选择。进而,他们发现这一"开关"样功能模块对危险性和非危险性视觉刺激的不同控制是由这些神经元的视觉反应特性实现的。这一工作揭示了神经调质系统在行为选择中的作用,增加了人们对感觉–运动信息转换控制的认识。该工作发现的神经调质系统响应感觉刺激这一功能特点可能是大脑中一种普遍存在的神经机制,即神经调质系统接受和处理感觉刺激所携带的行为意义,进而通过调节感觉-运动神经通路,帮助动物作出相应的行为选择。这一工作为课题组提出的"Bi-modal Brain Function Hypothesis"提供了进一步的实验证据。  相似文献   

11.
Since the discovery of steady-state visually evoked potential (SSVEP), it has been used in many fields. Numerous studies suggest that there exist three SSVEP neural networks in different frequency bands. An obvious phenomenon has been observed, that the amplitude and phase of SSVEP can be modulated by a cognitive task. Previous works have studied this modulation on separately activated SSVEP neural networks by a cognitive task. If two or more SSVEP neural networks are activated simultaneously in the process of a cognitive task, is the modulation on different SSVEP neural networks the same? In this study, two different SSVEP neural networks were activated simultaneously by two different frequency flickers, with a working memory task irrelevant to the flickers being conducted at the same time. The modulated SSVEP waves were compared with each other and to those only under one flicker in previous studies. The comparison results show that the cognitive task can modulate different SSVEP neural networks with a similar style.  相似文献   

12.
Previous studies have shown that the amplitude and phase of the steady-state visual-evoked potential (SSVEP) can be influenced by a cognitive task, yet the mechanism of this influence has not been understood. As the event-related potential (ERP) is the direct neural electric response to a cognitive task, studying the relationship between the SSVEP and ERP would be meaningful in understanding this underlying mechanism. In this work, the traditional average method was applied to extract the ERP directly, following the stimulus of a working memory task, while a technique named steady-state probe topography was utilized to estimate the SSVEP under the simultaneous stimulus of an 8.3-Hz flicker and a working memory task; a comparison between the ERP and SSVEP was completed. The results show that the ERP can modulate the SSVEP amplitude, and for regions where both SSVEP and ERP are strong, the modulation depth is large.  相似文献   

13.
Hayden BY  Gallant JL 《Neuron》2005,47(5):637-643
Attention can facilitate visual processing, emphasizing specific locations and highlighting stimuli containing specific features. To dissociate the mechanisms of spatial and feature-based attention, we compared the time course of visually evoked responses under different attention conditions. We recorded from single neurons in area V4 during a delayed match-to-sample task that controlled both spatial and feature-based attention. Neuronal responses increased when spatial attention was directed toward the receptive field and were modulated by the identity of the target of feature-based attention. Modulation by spatial attention was weaker during the early portion of the visual response and stronger during the later portion of the response. In contrast, modulation by feature-based attention was relatively constant throughout the response. It appears that stimulus onset transients disrupt spatial attention, but not feature attention. We conclude that spatial attention reflects a combination of stimulus-driven and goal-driven processes, while feature-based attention is purely goal driven.  相似文献   

14.
Empirical mode decomposition (EMD) has recently been introduced as a local and fully data-driven technique for the analysis of non-stationary time-series. It allows the frequency and amplitude of a time-series to be evaluated with excellent time resolution. In this article we consider the application of EMD to the analysis of neuronal activity in visual cortical area V4 of a macaque monkey performing a visual spatial attention task. We show that, by virtue of EMD, field potentials can be resolved into a sum of intrinsic components with different degrees of oscillatory content. Low-frequency components in single-trial recordings contribute to the average visual evoked potential (AVEP), whereas high-frequency components do not, but are identified as gamma-band (30–90 Hz) oscillations. The magnitude of time-varying gamma activity is shown to be enhanced when the monkey attends to a visual stimulus as compared to when it is not attending to the same stimulus. Comparison with Fourier analysis shows that EMD may offer better temporal and frequency resolution. These results support the idea that the magnitude of gamma activity reflects the modulation of V4 neurons by visual spatial attention. EMD, coupled with instantaneous frequency analysis, is demonstrated to be a useful technique for the analysis of neurobiological time-series.  相似文献   

15.
The difference in parameters of visually guided and memory-guided saccades was shown. Increase in the memory-guided saccade latency as compared to that of the visually guided saccades may indicate the deceleration of saccadic programming on the basis of information extraction from the memory. The comparison of parameters and topography of evoked components N1 and P1 of the evoked potential on the signal to make a memory- or visually guided saccade suggests that the early stage of the saccade programming associated with the space information processing is performed predominantly with top-down attention mechanism before the memory-guided saccade and bottom-up mechanism before the visually guided saccade. The findings show that the increase in the latency of the memory-guided saccades is connected with decision making at the central stage of the saccade programming. We proposed that wave N2, which develops in the middle of the latent period of the memory-guided saccades, is correlated with this process. Topography and spatial dynamics of components N1, P1 and N2 testify that the memory-guided saccade programming is controlled by the frontal mediothalamic system of selective attention and left-hemispheric brain mechanisms of motor attention.  相似文献   

16.
A number of studies have shown that emotionally arousing stimuli are preferentially processed in the human brain. Whether or not this preference persists under increased perceptual load associated with a task at hand remains an open question. Here we manipulated two possible determinants of the attentional selection process, perceptual load associated with a foreground task and the emotional valence of concurrently presented task-irrelevant distractors. As a direct measure of sustained attentional resource allocation in early visual cortex we used steady-state visual evoked potentials (SSVEPs) elicited by distinct flicker frequencies of task and distractor stimuli. Subjects either performed a detection (low load) or discrimination (high load) task at a centrally presented symbol stream that flickered at 8.6 Hz while task-irrelevant neutral or unpleasant pictures from the International Affective Picture System (IAPS) flickered at a frequency of 12 Hz in the background of the stream. As reflected in target detection rates and SSVEP amplitudes to both task and distractor stimuli, unpleasant relative to neutral background pictures more strongly withdrew processing resources from the foreground task. Importantly, this finding was unaffected by the factor 'load' which turned out to be a weak modulator of attentional processing in human visual cortex.  相似文献   

17.
Search and rescue, autonomous construction, and many other semi-autonomous multirobot applications can benefit from proximal interactions between an operator and a swarm of robots. Most research on proximal interaction is based on explicit communication techniques such as gesture and speech. This study proposes a new implicit proximal communication technique to approach the problem of robot selection. We use electroencephalography (EEG) signals to select the robot at which the operator is looking. This is achieved using steady-state visually evoked potential (SSVEP), a repeatable neural response to a regularly blinking visual stimulus that varies predictively based on the blinking frequency. In our experiments, each robot was equipped with LEDs blinking at a different frequency, and the operator’s SSVEP neural response was extracted from the EEG signal to detect and select the robot without requiring any conscious action by the user. This study systematically investigates several parameters affecting the SSVEP neural response: blinking frequency of the LED, distance between the robot and the operator, and color of the LED. Based on these parameters, we study two signal processing approaches and critically analyze their performance on 10 subjects controlling a set of physical robots. Our results show that despite numerous artifacts, it is possible to achieve a recognition rate higher than 85 % on some subjects, while the average over the ten subjects was 75 %.  相似文献   

18.
How do humans perceive the passage of time and the duration of events without a dedicated sensory system for timing? Previous studies have demonstrated that when a stimulus changes over time, its duration is subjectively dilated, indicating that duration judgments are based on the number of changes within an interval. In this study, we tested predictions derived from three different accounts describing the relation between a changing stimulus and its subjective duration as either based on (1) the objective rate of changes of the stimulus, (2) the perceived saliency of the changes, or (3) the neural energy expended in processing the stimulus. We used visual stimuli flickering at different frequencies (4–166 Hz) to study how the number of changes affects subjective duration. To this end, we assessed the subjective duration of these stimuli and measured participants'' behavioral flicker fusion threshold (the highest frequency perceived as flicker), as well as their threshold for a frequency-specific neural response to the flicker using EEG. We found that only consciously perceived flicker dilated perceived duration, such that a 2 s long stimulus flickering at 4 Hz was perceived as lasting as long as a 2.7 s steady stimulus. This effect was most pronounced at the slowest flicker frequencies, at which participants reported the most consistent flicker perception. Flicker frequencies higher than the flicker fusion threshold did not affect perceived duration at all, even if they evoked a significant frequency-specific neural response. In sum, our findings indicate that time perception in the peri-second range is driven by the subjective saliency of the stimulus'' temporal features rather than the objective rate of stimulus changes or the neural response to the changes.  相似文献   

19.
Stimulus expectation can modulate neural responses in early sensory cortical regions, with expected stimuli often leading to a reduced neural response. However, it is unclear whether this expectation suppression is an automatic phenomenon or is instead dependent on the type of task a subject is engaged in. To investigate this, human subjects were presented with visual grating stimuli in the periphery that were either predictable or non-predictable while they performed three tasks that differently engaged cognitive resources. In two of the tasks, the predictable stimulus was task-irrelevant and spatial attention was engaged at fixation, with a high load on either perceptual or working memory resources. In the third task, the predictable stimulus was task-relevant, and therefore spatially attended. We observed that expectation suppression is dependent on the cognitive resources engaged by a subjects’ current task. When the grating was task-irrelevant, expectation suppression for predictable items was visible in retinotopically specific areas of early visual cortex (V1-V3) during the perceptual task, but it was abolished when working memory was loaded. When the grating was task-relevant and spatially attended, there was no significant effect of expectation in early visual cortex. These results suggest that expectation suppression is not an automatic phenomenon, but dependent on attentional state and type of available cognitive resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号