首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compound 48/80, an anti-calmodulin agent, reduces the maximum effect of ATP and does not affect the apparent affinity for ATP of the high-affinity site of the Ca2+-ATPase from calmodulin-bound membranes of human red cells. In the same preparation, 48/80 reduces more than 50-times the apparent affinity for ATP of the low-affinity site with little change in the maximum effect of the nucleotide at this site of the Ca2+-ATPase. The effects of compound 48/80 are independent of the concentration of Ca2+ between 30 and 200 microM. The apparent affinity of the low-affinity site of the Ca2+-ATPase for ATP is almost 100-fold less in calmodulin-stripped membranes than in calmodulin-bound membranes. In calmodulin-stripped membranes, exogenous calmodulin increases the apparent affinity for ATP up to the control values. These results indicate that apart from increasing the apparent affinity of the transport site for Ca2+, calmodulin also increases the apparent affinity of the regulatory site of the Ca2+-ATPase for ATP. Since this effect is exerted within the physiological ranges of ATP concentrations, it may participate in the physiological regulation of Ca2+ pumping by calmodulin.  相似文献   

2.
(1) The effects of treatments that mimic calmodulin in increasing the apparent affinity for Ca2+ were tested to see whether, like calmodulin, they also change the activation of the Ca2+-ATPase from human red cell membranes by ATP at the low-affinity site. (2) Short incubations with either trypsin or acidic phospholipids such as phosphatidylserine increased the apparent affinity for ATP at the low-affinity site. (3) Under conditions in which it increased the apparent affinity of the Ca2+-ATPase for Ca2+, EGTA failed to change the activation by ATP. (4) As in calmodulin-bound Ca2+-ATPase, compound 48/80 inhibited the activity of the enzyme in the presence of phosphatidylserine by lowering the apparent affinity for ATP at the low-affinity site, leaving the maximum velocity of the enzyme unaltered. (5) Compound 48/80 also inhibited the Ca2+-ATPase after partial proteolysis, but in this case it lowered the maximum activity, leaving the apparent affinity of the enzyme for ATP at the low-affinity site unaltered. (6) Inhibition of the Ca2+-ATPase by compound 48/80 in the absence of calmodulin suggests that the inhibitor can act directly on the enzyme.  相似文献   

3.
(1) Compound 48/80, an anti-calmodulin agent, reduces the maximum effect of ATP and does not affect the apparent affinity for ATP of the high-affinity site of the Ca2+-ATPase from calmodulin-bound membranes of human red cells. (2) In the same preparation, 48/80 reduces more than 50-times the apparent affinity for ATP of the low-affinity site with little change in the maximum effect of the nucleotide at this site of the Ca2+-ATPase. (3) The effects of compound 48/80 are independent of the concentration of Ca2+ between 30 and 200 μM. (4) The apparent affinity of the low-affinity site of the Ca2+-ATPase for ATP is almost 100-fold less in calmodulin-stripped membranes than in calmodulin-bound membranes. In calmodulin-stripped membranes, exogenous calmodulin increases the apparent affinity for ATP up to the control values. (5) These results indicate that apart from increasing the apparent affinity of the transport site for Ca2+, calmodulin also increases the apparent affinity of the regulatory site of the Ca2+-ATPase for ATP. Since this effect is exerted within the physiological ranges of ATP concentrations, it may participate in the physiological regulation of Ca2+ pumping by calmodulin.  相似文献   

4.
In this work we report an unusual pattern of activation by calmodulin on the (Ca2+ + Mg2+)-ATPase from basolateral membranes of kidney proximal tubule cells. The activity of the ATPase depleted of calmodulin is characterized by a high Ca2+ affinity (Km = 2.2-3.4 microM) and a biphasic dependence on ATP concentration. The preparation responded to the addition of calmodulin by giving rise to a new Ca2+ site of very high affinity (Km less than 0.05 microM). Calmodulin antagonists had diverse effects on ATPase activity. Compound 48/80 inhibited calmodulin-stimulated activity by 70%, whereas calmidazolium did not modify this component. In the absence of calmodulin, 48/80 still acted as an antagonist, increasing the Km for Ca2+ to 5.7 microM and reducing enzyme turnover by competing with ATP at the low affinity regulatory site. Calmidazolium did not affect Ca2+ affinity, but it did displace ATP from the regulatory site. At fixed Ca2+ (30 microM) and ATP (5 mM) concentrations, Pi protected against 48/80 and potentiated inhibition by calmidazolium. At 25 microM ATP, Pi protected against calmidazolium inhibition. We propose that the effects of ATP and Pi arise because binding of the drugs to the ATPase occurs mainly on the E2 forms.  相似文献   

5.
The effects of the condensation product of N-methyl-p-methoxyphenethylamine with formaldehyde (compound 48/80) and ruthenium red on the partial reactions of the catalytic cycle of the sarcoplasmic reticulum Ca2+-ATPase of skeletal muscle were studied. The ATPase activity and both Ca2+ and Sr2+ uptake were inhibited by compound 48/80 when oxalate was used as a precipitating agent. The degree of inhibition decreased when oxalate was replaced by orthophosphate as the precipitating anion. Both the fast Ca2+ efflux and the synthesis of ATP observed during reversal of the Ca2+ pump were inhibited by compound 48/80. Inhibition of the reversal of the Ca2+ pump was caused by a competition between compound 48/80 and orthophosphate for the phosphorylation site of the enzyme. The fast Ca2+ release promoted by arsenate was impaired by compound 48/80. Ruthenium red competes with Ca2+ for the high affinity binding site of the Ca2+-ATPase, but did not interfere with the binding of Ca2+ to the low affinity binding site of the enzyme. In presence of Ca2+ concentrations higher than 5 microM, ruthenium red in concentrations up to 200 microM had no effect on both ATPase activity and Ca2+ uptake. However, the fast Ca2+ efflux promoted by arsenate and the fast Ca2+ efflux coupled with the synthesis of ATP observed during the reversal of the Ca2+ pump were inhibited by ruthenium red, half-maximal inhibition being attained in presence of 10-20 microM ruthenium red. In contrast to the effect of compound 48/80, ruthenium red did not inhibit the phosphorylation of the enzyme by orthophosphate. The ATP in equilibrium with Pi exchange catalyzed by the Ca2+-ATPase in the absence of transmembrane Ca2+ gradient was also inhibited by ruthenium red.  相似文献   

6.
The erythrocyte Ca2+-ATPase shifts reversibly between two states, the calmodulin-deficient A-state and the calmodulin-saturated B-state, dependent on calcium and calmodulin. The effects on this system of the four drugs, trifluoperazine, compound 48/80, TMB-8 and verapamil were studied. All four drugs inhibited the maximum activity of the B -state Ca2+-ATPase and, in addition, trifluoperazine and compound 48/80 in higher doses inhibited the A-state. Furthermore, the four drugs decreased the calmodulin sensitivity of the Ca2+-ATPase in the order of decreasing effect: trifluoperazine greater than compound 48/80 greater than TMB-8 greater than verapamil. In the same order of decreasing effect the drugs increased the time required for full calmodulin activation of the A-state of Ca2+-ATPase, whereas the drugs had only small effects on the rate of deactivation of the B-state, caused by dissociation of calmodulin from the enzyme. It is discussed whether the effects on calmodulin activation were caused by a reduction of free calmodulin due to the formation of drug-calmodulin complexes or whether the drugs, especially trifluoperazine, compound 48/80 and TMB-8, by binding to the Ca2+-ATPase, decreased the rate constants for association of calmodulin and enzyme.  相似文献   

7.
Comparison of the effects of calmodulin on the Ca2+-ATPase activity and on the steady-state level of the phosphoenzyme, indicates that activation of the Ca2+-ATPase is mainly due to an increase in the turnover of the phosphoenzyme and does not require occupation of the regulatory site of the Ca2+-ATPase by ATP.  相似文献   

8.
The effect of phospholipids was tested on the p-nitrophenylphosphatase activity of the Ca2+ pump. Acidic phospholipids like phosphatidylserine and phosphatidylinositol inhibited the phosphatase activity, while neutral phospholipids like phosphatidylcholine did not. This result contrasts sharply with the known activating effect of acidic phospholipids on the Ca2(+)-ATPase activity of the pump. It is known that the phosphatase activity of the Ca2+ pump can be elicited either by calmodulin and Ca2+ or by ATP and Ca2+. Unlike calmodulin, acidic phospholipids failed to stimulate the phosphatase activity. Furthermore, calmodulin-activated phosphatase was completely inhibited by acidic phospholipids. Maximal inhibition of the ATP-activated phosphatase was only 70%. Inhibition by acidic phospholipids was non-competitive regarding to calmodulin, suggesting that acidic phospholipids and calmodulin do not bind to the same domain of the pump. The presence of Ca2+ was essential for the inhibition, and the apparent affinity for Ca2+ for this effect was increased by acidic phospholipids. Results are consistent with the idea that acidic phospholipids stabilize an enzyme-Ca complex lacking phosphatase activity.  相似文献   

9.
The Ca2+ affinity of (Mg2+ + Ca2+)-ATPase in human red blood cells is regulated by a number of intracellular factors, including the association of the enzyme with the cytosolic Ca2+ binding protein, calmodulin. Ghosts prepared by hypotonic lysis in the presence of 0.1 mM CaCl2, or by a gradual stepwise hemolysis procedure, contain an EDTA-extractable protein whose effects are mimicked by calmodulin, whereas ghosts prepared by extensive washes in the absence of added CaCl2 lack calmodulin and contain only a high molecular weight heat stable activator. Purified calmodulin from human red cells or bovine brain shifts the apparent Ca2+ affinity of (Mg2+ + Ca2+)-ATPase activity in extensively washed ghosts to a high Ca2+ affinity state. The shift was most apparent in ghosts in which the Ca2+ affinity was decreased by EDTA treatment. Calmodulin increased the velocity of (Mg2+ + Ca2+)-ATPase in the EDTA-treated ghosts about 36-fold at a low (1.4 microM) Ca2+ concentration, compared with 6-fold before EDTA treatment. The maximum shift in apparent Ca2+ affinity occurred only in the presence of saturating concentrations of calmodulin. It is concluded that red cell calmodulin confers to the Ca2+ transport ATPase the ability to increase its apparent Ca2+ affinity, as well as its maximum velocity, in response to increases in intracellular Ca2+.  相似文献   

10.
The hydrolysis of p-nitrophenyl phosphate catalyzed by the erythrocyte membrane Ca2+-ATPase is stimulated by low concentrations of the compound 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), a classic inhibitor of anion transport. Enhancement of the phosphatase activity varies from 2- to 6-fold, depending on the Ca2+ and calmodulin concentrations used. Maximum stimulation of the pNPPase activity in ghosts is reached at 4-5 microM DIDS. Under the same conditions, but with ATP rather than pNPP as the substrate, the Ca2+-ATPase activity is strongly inhibited. Activation of pNPP hydrolysis by DIDS is equally effective for both ghosts and purified enzyme, and therefore is independent of its effect as an anion transport inhibitor. Binding of the activator does not change the Ca2+ dependence of the pNPPase activity. Stimulation is partially additive to the activation of the pNPPase activity elicited by calmodulin and appears to involve a strong affinity binding or covalent binding to sulfhydryl groups of the enzyme, since activation is reversed by addition of dithiothreitol but not by washing. The degree of activation of pNPP hydrolysis is greater at alkaline pH values. DIDS decreases the apparent affinity of the enzyme for pNPP whether in the presence of Ca2+ alone or Ca2+ and calmodulin or in the absence of Ca2+ (with 5 microM DIDS the observed Km shifts from 4.8 +/- 1.4 to 10.1 +/- 2.6, from 3.8 +/- 0.4 to 7.0 +/- 0.8, and from 9.3 +/- 0.7 to 15.5 +/- 1.1 mM, respectively). However, the pNPPase rate is always increased (as above, from 3.6 +/- 0.6 to 11.2 +/- 1.7, from 4.4 +/- 0.5 to 11.4 +/- 0.9, and from 2.6 +/- 0.6 to 18.6 +/- 3.9 nmol mg-1 min-1, in the presence of Ca2+ alone or Ca2+ and calmodulin or in the absence of Ca2+, respectively). ATP inhibits the pNPPase activity in the absence of Ca2+, both in the presence and in the absence of DIDS. Therefore, kinetic evidence indicates that DIDS does more than shift the enzyme to the E2 conformation. We propose that the transition from E2 to E1 is decreased and a new enzyme conformer, denoted E2*, is accumulated in the presence of DIDS.  相似文献   

11.
Digestion of red cell membranes with chymotrypsin elicited p-nitrophenylphosphatase activity. During digestion, the p-nitrophenylphosphatase appeared in parallel with the activation of the Ca(2+)-ATPase (in the absence of calmodulin). The chymotrypsin-activated p-nitrophenylphosphatase was inhibited by C20W, a 20 amino acid peptide modelled after the sequence of the calmodulin-binding site of the red cell Ca2+ pump (Vorherr et al. (1990) Biochemistry 29, 355-365). On the contrary, the (ATP + Ca(2+)-dependent p-nitrophenylphosphatase activity of intact red cell membranes was not affected by C20W. Ca2+ inhibited the chymotrypsin-induced p-nitrophenylphosphatase (Ki for Ca2+ = 2 microM). In the absence of ATP, C20W and Ca2+ did not interact in apparent affinity as inhibitors of this activity. On the other hand, in the presence of 2 mM ATP, Ca2+ antagonized the inhibition produced by C20W. The results are consistent with the idea that the calmodulin-binding site is an 'autoinhibitory domain' of the Ca2+ pump, and that removal of this domain by proteolysis, or its modification by calmodulin binding is the reason for the activation of both the ATPase and the p-nitrophenylphosphatase activity of the pump. The results presented in this paper give new information about the mechanism of the two kinds of p-nitrophenylphosphatase and about the nature of the apparent competition between C20W and Ca2+.  相似文献   

12.
In an initial attempt to use calmodulin antagonists as probes to study the role of calmodulin in the modulation of Ca2+ uptake activity in the endoplasmic reticulum of rat liver, we noticed that W7 had a differential effect on the Ca2+ uptake and Ca2+-ATPase activities. To test the specificity of this effect and explore the underlying mechanism, we examined the effects of W7 on Ca2+ accumulation and release by endoplasmic reticulum in both permeabilized hepatocytes and a subcellular membrane fraction (microsomes) enriched in endoplasmic reticulum. W7 reduced the steady-state Ca2+ accumulation in both preparations in a dose-dependent fashion but the half-maximal inhibitory concentrations were different for Ca2+ accumulation (90 microM) and Ca2+-ATPase activity (500 microM). Kinetic analysis indicated that the inhibition of both Ca2+ uptake and Ca2+-ATPase activity by W7 was noncompetitive with respect to Ca2+ and ATP. Addition of W7 did not enhance the rate of Ca2+ efflux from microsomes after Ca2+ influx had been terminated. The effect of W7 was apparently not related to its calmodulin antagonist properties as the phenomenon could not be demonstrated with the other more specific calmodulin antagonists, calmidazolium or compound 48/80. A similar observation with W7 has also been reported with the endoplasmic reticulum of pancreatic islets (B. A. Wolf, J. R. Colca, and M. L. McDaniel (1986) Biochem. Biophys. Res. Commun. 141, 418-425). We concluded that the effects of W7 on microsomal Ca2+ handling were not the result of increased membrane permeability to Ca2+ but rather were due to dissociation of Ca2+ uptake from Ca2+-ATPase activity.  相似文献   

13.
(1) The response of the Ca2+-ATPase activity from human red cell membranes to ATP concentrations can be represented by the sum of two Michaelis-like curves: one with a Km of 2.5 micrometer and the other with a Km of 145 micrometer. (2) The maximum Ca2+-ATPase activity elicited by occupation of the site with lower Km represents about 10% of the activity attainable at non-limiting ATP concentrations. (3) 30--50% of the Ca2+-ATPase activity with lower Km remains in the absence of Mg2+ . Mg2+ increases V and the maximum effect of Ca2+, having no effect on the apparent affinities for ATP and Ca2+. (4) The large increase in Ca2+-ATPase activity which results from the occupation of the site with higher Km only takes place when Mg2+ is present. (5) Results are compatible with the idea that the Ca2+-ATPase from human red cell membranes has two classes of site for ATP binding, both of which are occupied when the enzyme catalyzes the hydrolysis of ATP at maximum rate. (6) The properties of the high affinity site suggest that this is the catalytic site of the Ca2+-ATPase. It is proposed that binding of ATP at the low affinity site regulates the turnover of the system.  相似文献   

14.
Kinetic and regulatory properties of the plasma membrane Ca(2+)-ATPase activity from chicken (nucleated) erythrocytes were studied and compared to those from pig (anucleated) erythrocytes. In the absence of known activators: (1) Ca(2+) affinity for the Ca(2+)-ATPase activity from nucleated erythrocytes was 12-fold higher than that from pig erythrocytes, and thus the enzyme is sensitive to physiological Ca(2+) concentrations; (2) the enzyme from chicken erythrocytes showed two apparent Km values for ATP, as compared to one apparent Km value displayed by pig erythrocytes; (3) Ca(2+)-ATPase inserted in chicken erythrocyte membranes showed a low sensitivity to activation by phosphatidylinositol-4-phosphate; (4) when p-NPP was used as substrate, the activity of chicken erythrocytes was high, similar to that attained by pig erythrocytes, but barely sensitive to activation by dimethylsulfoxide and calmodulin. ATP hydrolysis was 10-fold lower than that displayed by pig erythrocytes and the maximal velocity was activated three-fold by calmodulin. The enzyme was insensitive to alkaline phosphatase treatment and showed a single phosphorylation band in electrophoresis, ruling out the possibility of previous modulation by endogenous kinases and/or by partial proteolysis. The differences may be attributed to some endogenous modulator, to distinct isoforms, or to a difference in the E(1)/E(2) states of the enzyme.  相似文献   

15.
Compound 48/80 (48/80), a mixture of polycationic compounds was fractionated using affinity chromatography on calmodulin-Sepharose. Unfractionated 48/80 and various fractions were tested for their potential inhibitory effects on ATPase activities of isolated human red blood cell membranes. ATPase activities tested included: Mg2+-ATPase, the Na+/K+-pump ATPase, and the Ca2+-pump ATPase in both its basal (calmodulin-independent) and calmodulin-activated state. Neither 48/80 nor its various fractions were very potent or efficacious inhibitors of the Mg2+-ATPase or the Na+/K+-pump ATPase. In agreement with previous reports, 48/80 was found to be an inhibitor of the calmodulin-activated Ca2+-pump ATPase. By contrast, we found that unfractionated, as well as some fractionated, material inhibited both the basal (calmodulin-independent) and calmodulin-activated Ca2+-pump ATPase activity. A fraction designated as Fraction III bound to calmodulin-Sepharose in the presence of Ca2+ and low salt and was eluted in the absence of Ca2+ and 0.15 M NaCl. By gel filtration, Fraction III had an apparent average molecular weight of 2064 (1320 for unfractionated material). Fraction III was the most potent inhibitor of the Ca2+-pump ATPase with IC50 values for the basal and calmodulin-activated forms of the enzyme of 0.6 and 1.2 micrograms/ml, respectively. Inhibition by Fraction III was cooperative with n apparent values of 2.4 and 5.7, respectively, for the basal and calmodulin-activated forms of the enzyme. Thus, binding of 48/80 constituents to calmodulin can not fully account for the observed data. Direct interaction of 48/80 constituent(s) with the enzyme and/or the lipid portion of the membrane is suggested.  相似文献   

16.
(1) The effects of calmodulin binding on the rates of Ca2+-dependent phosphorylation and dephosphorylation of the red-cell Ca2+ pump, have been tested in membranes stripped of endogenous calmodulin or recombined with purified calmodulin. (2) In Mg2+-containing media, phosphorylation and dephosphorylation rates are accelerated by a large factor (at 0°C), but the steady-state level of phosphoenzyme is unaffected by calmodulin binding (at 0°C and 37°C). In Mg2+-free media, slower rates of phosphoenzyme formation and hydrolysis are observed, but both rates and the steady-state phosphoenzyme level are raised following calmodulin binding. (3) At 37°C and 0°C, the rate of (Ca2+ + Mg2+)-ATPase activity is stimulated maximally by 6–7-fold, following calmodulin binding. At 37°C the apparent Ca2+ affinity for sustaining ATP hydrolysis is raised at least 20-fold, Km(Ca) ? 10 μM (—calmodulin) and Km(Ca) < 0.5 μM (+ calmodulin), but at 0°C the apparent Ca2+ affinity is very high in calmodulin-stripped membranes and little or no effect of calmodulin is observed (Km(Ca) ? 3–4 · 10-8 M). (Ca2+ + Mg2+)-ATPase activity in calmodulin activated membranes and at saturating ATP levels, is sharply inhibited by addition of calcium in the range 50–2000 μM. (4) A systematic study of the effects of the nucleotide species MgATP, CaATP and free ATP on (Ca2+ + Mg2+)-ATPase activity in calmodulin-activated membranes reveals: (a) In the 1–10 μmolar concentration range MgATP, CaATP and free ATP appear to sustain (Ca2+ + Mg2+)-ATPase activity equally effectively. (b) In the range 100–2000 μM, MgATP accelerates ATP hydrolysis (Km(MgATP) ? 360 μM), and CaATP is an inhibitor (Ki(CaATP) ? 165 μM), probably competing with MgATP fo the regulatory site. (5) The results suggest that calmodulin binding alters the conformational state of the Ca2+- pump active site, producing a high (Ca2+ + Mg2+)-ATPase activity, high Ca2+ affinity and regulation of activity by MgATP.  相似文献   

17.
D Kosk-Kosicka  T Bzdega 《Biochemistry》1990,29(15):3772-3777
The study was performed on the purified human erythrocyte Ca2(+)-ATPase to test whether or not calmodulin promotes enzyme oligomerization. Two physiologically significant modes of activation of this enzyme were considered, by calmodulin binding to monomeric enzyme and by enzyme oligomerization [Kosk-Kosicka & Bzdega (1988) J. Biol. Chem. 263, 18184]; it was not clear whether the two modes were interdependent or operated independently. Fluorescence resonance energy transfer (FRET) between separately labeled Ca2(+)-ATPase molecules was used to monitor oligomerization. No change in energy transfer efficiency was observed upon subsequent addition of calmodulin at different enzyme concentrations. Lack of decrease in the enzyme concentration at which the half-maximal oligomerization occurred indicated that calmodulin did not facilitate oligomerization. The calmodulin inhibitor compound 48/80 had no effect on either the Ca2(+)-ATPase activity of oligomers or the extent of oligomerization measured by FRET while it drastically decreased the calmodulin-stimulated activity of the monomeric Ca2(+)-ATPase. The findings demonstrate that calmodulin is not involved in the oligomerization-induced activation pathway; it neither promotes oligomerization nor stimulates the Ca2(+)-ATPase activity of oligomers. We have demonstrated that calmodulin added before mixing donor- and acceptor-labeled enzyme populations prevented the occurrence of energy transfer. This inhibition of the formation of mixed donor-acceptor enzyme oligomers by calmodulin was dose dependent. Also, the reversal of the inhibition by compound 48/80 proceeded in a dose-dependent manner. Further, calmodulin prevented the apparent decrease of energy transfer efficiency that resulted from dilution of mixed donor-acceptor enzyme oligomers with unlabeled enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A Ca2(+)-dependent ATP-hydrolytic activity was detected in the crude membrane ghost of the promastigote or vector form of the protozoal parasite Leishmania donovani, the pathogen responsible for kala azar. The Ca2(+)-ATPase was purified to apparent homogeneity after solubilization with deoxycholate. The enzyme consists of two subunits of Mr = 51,000 and 57,000 and has an apparent molecular weight of 215,000 +/- 12,000. The enzyme activity is exclusively dependent on Ca2+, and the pure enzyme can hydrolyze 1.6 mumol of ATP/min/mg of protein. The apparent Km for Ca2+ is 35 nM, which is further reduced to 12 nM in the presence of heterologous calmodulin. The enzyme is sensitive to vanadate, but is insensitive to oligomycin and ouabain. The enzyme is strongly associated with the plasma membrane and has its catalytic site oriented toward the cytoplasmic face. The enzyme spans across the plasma membrane as surface labeling with radioiodine shows considerable radioactivity in the completely purified enzyme. The localization and orientation of this high affinity, calmodulin-sensitive Ca2(+)-ATPase suggest some role of this enzyme in Ca2+ movement in the life cycle of this protozoal parasite.  相似文献   

19.
Calmodulin Affinity for Brain Coated Vesicle Proteins   总被引:4,自引:2,他引:2  
A systematic characterization of the affinity of calmodulin for brain coated vesicles was undertaken. Binding of 125I-labeled calmodulin to coated vesicles was saturable and competed with unlabeled calmodulin, but not with troponin-C. Scatchard analysis revealed one high-affinity, low-capacity binding site, KD = 3.9 +/- 0.6 nM, Bmax = 16.3 +/- 2.4 pmol/mg, and one low-affinity, high-capacity binding site, KD = 102 +/- 15.0 nM, Bmax = 151 +/- 23.0 pmol/mg. Radioimmunoassay revealed that coated vesicles contain 1.05 microgram calmodulin/mg protein. Because this value remained constant even after removal of clathrin, the major coat protein, from the coated vesicle, it is apparent that calmodulin is associated with the vesicle per se rather than with its clathrin lattice. When a Triton X-100-treated extract of coated vesicles was passed through a Sepharose 4B-calmodulin affinity column, polypeptides with Mrs (molecular weights) of 100,000, 55,000, and 30,000 bound in a Ca2+-dependent manner. A 30,000 Mr protein doublet purified from coated vesicles was completely eluted by EGTA from the calmodulin affinity column, confirming that this protein doublet represents one of the coated vesicle calmodulin binding sites. Because calmodulin stimulated [Ca2+-Mg2+]-ATPase activity as well as Ca2+ uptake in coated vesicles, it is postulated that the 100,000 and 55,000 Mr calmodulin binding proteins represent the [Ca2+-Mg2+]-ATPase complex, the other coated vesicle calmodulin binding site.  相似文献   

20.
The effect of the calmodulin antagonist, compound 48/80, on the Ca2+ release from skeletal muscle sarcoplasmic reticulum was investigated. Both the Ca2+ release by reversal of the Ca2+ pump and the Ca2+ release by the Mg2(+)-controlled Ca2+ channel were studied. It was observed that, when reversal of the pump is inoperative and Mg2+ is not present in the reaction medium, 48/80 stimulates Ca2+ release from the vesicles. In contrast, in the presence of Mg2+, which blocks the Ca2+ channel, 48/80 inhibits Ca2+ release induced by ADP and Pi. This effect is strong at low concentrations of Pi (approximately 1 mM), whereas high concentrations (approximately 15 mM) protect the system against the drug. Furthermore, it was observed that 48/80 has a maximum effect on the channel-mediated Ca2+ release at concentrations of about 20 micrograms/ml, whereas maximal inhibition of the pump-mediated Ca2+ release occurs at concentrations of about 60-80 micrograms/ml. The results indicate that both the Ca2+ channel complex and the Ca2(+)-ATPase may be target systems for the effects of 48/80 on the Ca2+ transport activity of sarcoplasmic reticulum. However, the Ca2+ channel is more sensitive to the drug, suggesting an involvement of calmodulin on this mechanism of Ca2+ release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号