共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The exercise pressor reflex is believed to be evoked, in part, by multiple metabolic stimuli that are generated when blood supply to exercising muscles is inadequate to meet metabolic demand. Recently, ATP, which is a P2 receptor agonist, has been suggested to be one of the metabolic stimuli evoking this reflex. We therefore tested the hypothesis that blockade of P2 receptors within contracting skeletal muscle attenuated the exercise pressor reflex in decerebrate cats. We found that popliteal arterial injection of pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS; 10 mg/kg), a P2 receptor antagonist, attenuated the pressor response to static contraction of the triceps surae muscles. Specifically, the pressor response to contraction before PPADS averaged 36 +/- 3 mmHg, whereas afterward it averaged 14 +/- 3 mmHg (P < 0.001; n = 19). In addition, PPADS attenuated the pressor response to postcontraction circulatory occlusion (P < 0.01; n = 11). In contrast, popliteal arterial injection of CGS-15943 (250 micro g/kg), a P1 receptor antagonist, had no effect on the pressor response to static contraction of the triceps surae muscles. In addition, popliteal arterial injection of PPADS but not CGS-15943 attenuated the pressor response to stretch of the calcaneal (Achilles) tendon. We conclude that P2 receptors on the endings of thin fiber muscle afferents play a role in evoking both the metabolic and mechanoreceptor components of the exercise pressor reflex. 相似文献
4.
K M VanBenthuysen G D Swanson J V Weil 《Journal of applied physiology (Bethesda, Md. : 1985)》1984,57(3):874-880
We tested the hypothesis that humoral factors contribute to the onset of exercise hyperpnea in an electrically induced model of isocapnic exercise in alpha-chloralose-anesthetized dogs. A cannula placed in the inferior vena cava (IVC) permitted hindlimb venous blood to flow either directly to the lungs or through a variable-length extracorporeal circuit. Mean transit times (MTT) of blood from exercising hindlimbs were measured from the arrival at the pulmonary artery of green dye injected into the saphenous vein. Onset of hyperpnea was determined by the half time of the ventilatory response (T 1/2), the time required to reach 50% of the steady-state ventilation. In seven dogs, T 1/2 was directly related to MTT (P less than 0.001), suggesting that blood-borne substances released at the onset of exercise contribute to the hyperpneic response. The T 1/2-MTT relation persisted following L2 cord transection (n = 4), suggesting that intraspinal afferents are not required for this response. Chemoreceptor denervation (n = 4) slowed the onset of exercise hyperpnea but did not alter the T 1/2-MTT relation. In this model of electrically induced "exercise" in which neurogenic influences have been minimized, humoral factors alone may stimulate ventilation sufficiently to produce arterial isocapnia. 相似文献
5.
6.
7.
Naoto Fujii Yasushi Honda Keiji Hayashi Hideaki Soya Narihiko Kondo Takeshi Nishiyasu 《Journal of applied physiology》2008,104(4):998-1005
We tested the hypothesis that, in humans, hyperthermic hyperpnea elicited in resting subjects differs from that elicited during submaximal, moderate-intensity exercise. In the rest trial, hot-water legs-only immersion and a water-perfused suit were used to increase esophageal temperature (T(es)) in 19 healthy male subjects; in the exercise trial, T(es) was increased by prolonged submaximal cycling [50% peak O(2) uptake (Vo(2))] in the heat (35 degrees C). Minute ventilation (Ve), ventilatory equivalent for Vo(2) (Ve/Vo(2)) and CO(2) output (Ve/Vco(2)), tidal volume (Vt), and respiratory frequency (f) were plotted as functions of T(es). In the exercise trial, Ve increased linearly with increases (from 37.0 to 38.7 degrees C) in T(es) in all subjects; in the rest trial, 14 of the 19 subjects showed a T(es) threshold for hyperpnea (37.8 +/- 0.5 degrees C). Above the threshold for hyperpnea, the slope of the regression line relating Ve and T(es) was significantly greater for the rest than the exercise trial. Moreover, the slopes of the regression lines relating Ve/Vo(2), Ve/Vco(2), and T(es) were significantly greater for the rest than the exercise trial. The increase in Ve reflected increases in Vt and f in the rest trial, but only f in the exercise trial, after an initial increase in ventilation due to Vt. Finally, the slope of the regression line relating T(es) and Vt or f was significantly greater for the rest than the exercise trial. These findings indicate that hyperthermic hyperpnea does indeed differ, depending on whether one is at rest or exercising at submaximal, moderate intensity. 相似文献
8.
9.
Peng CW Chen JJ Cheng CL Grill WM 《American journal of physiology. Regulatory, integrative and comparative physiology》2008,294(2):R660-R672
The reciprocal activities of the bladder and external urethral sphincter (EUS) are coordinated by descending projections from the pontine micturition center but are subjected to modulation by peripheral afferent inputs. Transection of the somatic pudendal nerve innervating the striated EUS decreases voiding efficiency and increases residual urine in the rat. The reduction in voiding efficiency was attributed to the lack of phasic bursting activity of the EUS following denervation. However, transection of the pudendal nerve also eliminates somatic sensory feedback that may play a role in voiding. We hypothesized that feedback from pudendal afferents is required for efficient voiding and that the loss of pudendal sensory activity contributes to the observed reduction in voiding efficiency following pudendal nerve transection. Quantitative cystometry in urethane anesthetized female rats following selective transection of pudendal nerve branches, following chemical modulation of urethral afferent activity, and following neuromuscular blockade revealed that pudendal nerve afferents contributed to efficient voiding. Sensory feedback augmented bladder contraction amplitude and duration, thereby increasing the driving force for urine expulsion. Second, sensory feedback was necessary to pattern appropriately the EUS activity into alternating bursts and quiescence during the bladder contraction. These findings demonstrate that the loss of pudendal sensory activity contributes to the reduction in voiding efficiency observed following pudendal nerve transection, and illustrate the importance of urethral sensory feedback in regulating bladder function. 相似文献
10.
11.
N J Russell H E Raybould D Trenchard 《Journal of applied physiology (Bethesda, Md. : 1985)》1984,56(6):1550-1558
The respiratory response to hypercapnia has been investigated in 10 anesthetized rabbits by use of a rebreathing technique. The responses were obtained in three situations: with one intact vagus nerve (control), during differential block of conduction, and after vagotomy. Differential block was achieved using anodal hyperpolarization by application of a direct current to the cervical vagus nerve. Great care was taken during the differential block to establish that all impulse conduction in myelinated fibers of the cervical vagus nerve was abolished but that the nonmyelinated fibers conducted normally. Additionally, in five more rabbits the nature of the differential block was confirmed from single-fiber recordings of activity in both myelinated and nonmyelinated fibers. The same increase in tidal volume in response to hypercapnia was present in all three experimental situations, indicating that it was not vagally mediated. The increase in frequency in response to hypercapnia in the control state was abolished by vagotomy but preserved when only the nonmyelinated fibers were functioning during the differential block. This increased frequency response, attributable to decreases in both inspiratory and expiratory durations, was usually enhanced during the differential block, despite the slower deeper pattern of breathing attributed to loss of activity in myelinated fibers. The implications of this reflex increase in frequency in response to hypercapnia, mediated by nonmyelinated vagal endings in the lung, are discussed. 相似文献
12.
13.
Philippe Haouzi 《Journal of applied physiology》2006,100(3):1079-82; discussion 1082-3
14.
W R See M E Schlaefke H H Loeschcke 《Journal of applied physiology (Bethesda, Md. : 1985)》1983,54(2):453-459
In seven anesthetized cats central chemosensitivity was eliminated (cold block) and peripheral chemoreceptors were either stimulated or eliminated (sectioned) to test whether nonchemical vagal afferents can maintain rhythmic ventilation and to determine the relative contribution of the carotid and aortic chemoreceptors to ventilatory drive without central chemosensitivity. Elimination of all chemical afferents invariably induced apnea, whereas ventilation was reduced from 533 to 159 ml X min-1 during cold block of central chemosensitivity and to 478 ml X min-1 after sectioning both sinus nerves. Cold block with only the aortic chemoreceptors and vagal afferents intact produced apnea in four of six cases tested. Stimulation of peripheral chemoreceptors during cold block remained effective and interrupted apnea in three of the four cats with only aortic chemoreceptors intact. We conclude that the nonchemical vagal respiratory afferents alone are unable to maintain rhythmic ventilation. Respiratory rhythm generation is, under the conditions of our experiments, critically dependent on sufficient afferent input from chemical afferents. Of these, central chemosensitivity plays the major role, followed by carotid body and, least importantly, by aortic afferents. 相似文献
15.
Guo ZL Longhurst JC 《American journal of physiology. Heart and circulatory physiology》2000,278(3):H843-H852
A number of metabolites produced during abdominal ischemia can stimulate and/or sensitize visceral afferents. The precise mechanisms whereby these metabolites act are uncertain. Other studies have shown that the adenylate cyclase-cAMP system may be involved in the activation of sensory neurons. Therefore, we hypothesized that cAMP contributes to the activation of ischemically sensitive abdominal visceral afferents. Single-unit activity of abdominal visceral C fibers was recorded from the right thoracic sympathetic chain in anesthetized cats before and during 7 min of abdominal ischemia. Forty-six percent of ischemically sensitive C fibers responded to intra-arterial injection of 8-bromo-cAMP (0.35-1. 0 mg/kg), an analog of cAMP, with responses during ischemia increasing from 0.50 +/- 0.06 to 0.84 +/- 0.08 impulses/s (P < 0.05, n = 11 C fibers). Conversely, an inhibitor of adenylate cyclase, 2', 5'-dideoxyadenosine (DDA; 0.1 mg/kg iv), attenuated ischemia-induced increase in activity of afferents from 0.66 +/- 0.10 to 0.34 +/- 0. 09 impulses/s (P < 0.05; n = 8). Furthermore, whereas exogenous PGE(2) (3-4 microg/kg ia) augmented the ischemia-induced increase in activity of afferents (P < 0.05, n = 10), treatment with DDA (0.1 mg/kg iv) substantially reduced the increase in discharge activity of afferents during ischemia, which was augmented by PGE(2) (1.45 +/- 0.24 vs. 0.70 +/- 0.09 impulses/s, -DDA vs. +DDA; P < 0.05) in six fibers. A time control group (n = 4), however, demonstrated similar increases in the activity of afferents with repeated administration of PGE(2). These data suggest that cAMP contributes to the activation of abdominal visceral afferents during ischemia, particularly to the action of PGs on activation and/or sensitization of these endings. 相似文献
16.
17.
Ziaul Hasan 《Current opinion in neurobiology》1992,2(6):824-829
The conventional notion that peripheral muscle-related signals provide the basis for resistance to external perturbations is no longer sufficient. Proprioceptive information seems to be required for spatial steering of multi-joint movements, and also for temporal coordination among the joints in certain tasks. In rhythmic movements, peripheral and centrally generated signals appear to interact in a complementary manner. The complex effects of proprioceptive afferents on motor output continue to be delineated vigorously. Global effects of local perturbation in multi-joint contexts are emerging as being particularly significant. 相似文献
18.
19.
D'Esposito M 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2007,362(1481):761-772
Working memory refers to the temporary retention of information that was just experienced or just retrieved from long-term memory but no longer exists in the external environment. These internal representations are short-lived, but can be stored for longer periods of time through active maintenance or rehearsal strategies, and can be subjected to various operations that manipulate the information in such a way that makes it useful for goal-directed behaviour. Empirical studies of working memory using neuroscientific techniques, such as neuronal recordings in monkeys or functional neuroimaging in humans, have advanced our knowledge of the underlying neural mechanisms of working memory. This rich dataset can be reconciled with behavioural findings derived from investigating the cognitive mechanisms underlying working memory. In this paper, I review the progress that has been made towards this effort by illustrating how investigations of the neural mechanisms underlying working memory can be influenced by cognitive models and, in turn, how cognitive models can be shaped and modified by neuroscientific data. One conclusion that arises from this research is that working memory can be viewed as neither a unitary nor a dedicated system. A network of brain regions, including the prefrontal cortex (PFC), is critical for the active maintenance of internal representations that are necessary for goal-directed behaviour. Thus, working memory is not localized to a single brain region but probably is an emergent property of the functional interactions between the PFC and the rest of the brain. 相似文献