首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three elongation factors, EF-1 alpha, EF-1 beta gamma and EF-2, have been isolated from wheat germ. EF-1 alpha and EF-2 are single polypeptides with molecular weights of approximately 52,000 and 102,000, respectively. The most highly purified preparations of EF-1 beta gamma contain four polypeptides with molecular weights of approximately 48,000, 46,000 and 36,000, 34,000. EF-1 alpha supports poly(U)-directed binding of Phe-tRNA to wheat germ ribosomes and catalyzes the hydrolysis of GTP in the presence of ribosomes, poly(U), and Phe-tRNA. EF-2 catalyzes the hydrolysis of GTP in the presence of ribosomes alone and is ADP-ribosylated by diphtheria toxin to the extent of 0.95 mol of ADP-ribose/mol of EF-2. EF-1 beta gamma decreases the amount of EF-1 alpha required for polyphenylalanine synthesis about 20-fold. EF-1 beta gamma enhances the ability to EF-1 alpha to support the binding of Phe-tRNA to the ribosomes and enhances the GTPase activity of EF-1 alpha. Wheat germ EF-1 alpha, EF-1 beta gamma, and EF-2 support polyphenylalanine synthesis on rabbit reticulocyte ribosomes as well as on yeast ribosomes.  相似文献   

2.
The modes of action of a Vero toxin (VT2 or Shiga-like toxin II) from Escherichia coli, of ricin, and of alpha-sarcin were compared. Elongation factor 1 (EF1) and GTP-dependent Phe-tRNA binding to ribosomes in the presence of poly(U) was inhibited by these three toxins, but EF1 and guanylyl (beta, gamma-methylene)-diphosphate-dependent Phe-tRNA binding was inhibited by alpha-sarcin only. EF1- and Phe-tRNA-dependent GTPase activity was inhibited by these toxins, but nonenzymatic binding of Phe-tRNA was not. The turnover rate of EF1 binding to ribosomes during Phe-tRNA binding was also decreased by these three toxins. The addition of EF1 recovered the inhibition of Phe-tRNA binding to ribosomes by VT2 and ricin but not by alpha-sarcin. The formation of and EF2- and GTP-dependent puromycin derivative of phenylalanine was inhibited slightly by the three toxins, indicating that translocation is not influenced significantly by them. EF2-dependent GTPase activity was stimulated by these toxins, and especially by VT2 and ricin. In contrast, the binding of EF2 to ribosomes was inhibited strongly by VT2 and ricin, and slightly by alpha-sarcin. The stimulation of EF2-dependent GTPase activity by the toxins may compensate for the decrease of EF2 binding to ribosomes which they caused during translocation. In total, these results indicate that VT2 and ricin inhibit protein synthesis through the disturbance of the turnover of EF1 binding to ribosomes during aminoacyl-tRNA binding to ribosomes, and that alpha-sarcin inhibits the synthesis through the inhibition of the binding of the complex of Phe-tRNA, EF1, and GTP to ribosomes.  相似文献   

3.
J A Langer  F Jurnak  J A Lake 《Biochemistry》1984,23(25):6171-6178
A complex between elongation factor Tu (EF-Tu), GTP, phenylalanyl-tRNA (Phe-tRNA), oligo(uridylic acid) [oligo(U)], and the 30S ribosomal subunit of Escherichia coli has been formed and isolated. Binding of the EF-Tu complex appears to be at the functionally active 30S site, by all biochemical criteria that were examined. The complex can be isolated with 0.25-0.5 copy of EF-Tu bound per ribosome. The binding is dependent upon the presence of both the aminoacyl-tRNA and the cognate messenger RNA. Addition of 50S subunits to the preformed 30S-EF-Tu-GTP-Phe-tRNA-oligo(U) complex ("30S-EF-Tu complex") causes a rapid hydrolysis of GTP. This hydrolysis is coordinated with the formation of 70S ribosomes and the release of EF-Tu. Both the release of EF-Tu and the hydrolysis of GTP are stoichiometric with the amount of added 50S subunits. 70S ribosomes, in contrast to 50S subunits, neither release EF-Tu nor rapidly hydrolyze GTP when added to the 30S-EF-Tu complexes. The inability of 70S ribosomes to react with the 30S-EF-Tu complex argues that the 30S-EF-Tu complex does not dissociate prior to reaction with the 50S subunit. The requirements of the 30S reaction for Phe-tRNA and oligo(U) and the consequences of the addition of 50S subunits resemble the reaction of EF-Tu with 70S ribosomes, although EF-Tu binding to isolated 30S subunits does not occur during the elongation microcycle. This suggests that the EF-Tu ternary complex binds to isolated 30S subunits at the same 30S site that is occupied during ternary complex interaction with the 70S ribosome.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Studies on elongation factor II from calf brain   总被引:4,自引:0,他引:4  
Elongation factor II (EF2) has been purified from calf brain, and its reactions with guanosine nucleotides and ribosomes have been studied. Its behavior is, in general, similar to that observed with EF2 from other eukaryote sources. Thus, in the presence of GTP or GDP, EF2 interacts with ribosomes to form a ribosome-EF2-GDP complex. Fusidic acid has little effect on the stability of this complex, which suggests that it is more stable than the corresponding complex from prokaryote systems. As assayed by a nitrocellulose filter technique, only GTP, GDP, dGTP and GDPCP are bound to ribosomes dependent on EF2. In the absence of ribosomes, an EF2-GTP or EF2-GDP complex can be detected. Fusidic acid at relatively high concentrations inhibits their formation, but diphtheria toxin in the presence of NAD does not. The EF2-GTP complex has been separated from unbound GTP by gel filtration, and the reactivity of the complex with ribosomes has been investigated. When EF2-GTP is incubated with ribosomes, GTP hydrolysis occurs, and evidence for a ribosome-EF2-GDP complex has been obtained. The results thus suggest that the EF2-GTP complex may be an intermediate in the binding of EF2 to ribosomes. Based on molecular sieve chromatography, it appears that the stability of these complexes is ribosome-EF2-GDP > EF2-GTP > EF2-GDP.  相似文献   

5.
70 S ribosomes were programmed with initiator tRNA and messenger oligonucleotides AUG(U)n and AUG(C)n, where n = 1, 2 or 3. The binding of the ternary complexes [Phe-tRNA X EF-Tu X GTP] and [Pro-tRNA X EF-Tu X GTP] to the programmed ribosomes was studied. If codon-anticodon interaction is restricted to only one basepair, the ternary complex leaves the ribosome before GTP hydrolysis. Two basepairs allow hydrolysis of GTP, but the aminoacyl-tRNA dissociates and is recycled, resulting in wastage of GTP. Three basepairs result in apparently stable binding of aminoacyl-tRNA to the ribosome. The antibiotic sparsomycin weakens the binding by an amount roughly equivalent to one messenger base, while viomycin has the reverse effect.  相似文献   

6.
The unusual nucleotide guanosine tetraphosphate, ppGpp, which appears following amino acid starvation in “stringent” strains of bacteria binds to the elongation factor EFTu with a dissociation constant of about 8 × 10?9m. ppGpp binds competitively with GDP and GTP, and EFTs catalyzes the exchange reaction of ppGpp with EFTu · GDP. ppGpp binds to EFTu about 50 times more tightly than does GTP, and, in the absence of elongation factor EFTs, it will effectively inhibit the formation of the ternary complex Phe-tRNA · EFTu · GTP. However, in the presence of EFTs there is rapid equilibration between EFTu · GTP and EFTu · ppGpp which allows EFTu to be rapidly and extensively incorporated into the stable ternary complex. A preliminary estimate of the constant for the dissociation of Phe-tRNA from the ternary complex is 10?810?9m. ppGpp inhibits the enzymatic binding of Phe-tRNA to ribosomes; however, EFTs reverses this inhibition. ppGpp moderately inhibits phenylalanine polymerization even in the presence of EFTs. This inhibition probably involves an interaction of ppGpp with elongation factor G, the translocation factor. It appears that in the intact cell ppGpp would not be an effective inhibitor of EFTu, and that little EFTu · ppGpp can exist in the cell.  相似文献   

7.
We have determined several kinetic parameters for the reaction of poly(U)-programmed ribosomes with ternary complexes of elongation factor Tu, GTP, and yeast Phe-tRNA analogs with different bases substituted for uridine in position 33. These analogs test whether disruption of the hydrogen bonds normally formed by uridine 33 and steric crowding in the anticodon loop are detrimental to tRNA function on the ribosome. Single-turnover kinetic studies of the reaction of these ternary complexes with ribosomes show that these Phe-tRNA analogs decrease the apparent rate of GTP hydrolysis (kGTP) and the ratio of peptide formed to GTP hydrolyzed. Thus, the substitution of uridine 33 affects not only the selection of a ternary complex by the ribosome but also the selection of an aminoacyl-tRNA in the proofreading reaction. The effects become greater as first one, and then the other, H-bond is disrupted. Steric crowding in the anticodon loop is also important, but does not have as great an effect on the rate constants. An analysis of the elementary rate constants which comprise the rate constant, kGTP, demonstrates that the reduction in kGTP results from a decreased rate of ternary complex association with the ribosome (k1) and that there is little or no effect on the rate of GTP cleavage (k2). An analysis of the rate constants involved in proofreading shows that all the modified (tRNAs have increased rates of aminoacyl-tRNA rejection (k4) but that the rate of peptide bond formation (k3) is unaffected.  相似文献   

8.
Dissociation of highly purified EF-1 alpha beta gamma (a high molecular weight form of polypeptide chain elongation factor-1) from pig liver into EF-1 alpha and EF-1 beta gamma at various temperatures was examined and the following results were obtained. (i) When dissociation of EF-1 alpha beta gamma was analyzed by gel filtration with Sephacryl S-200, it was found that in the absence of GTP, it did not dissociate at any temperature between 4 and 37 degrees C, whereas in the presence of GTP, it tended to dissociate with elevation of the temperature, and almost complete dissociation was observed at 32 degrees C. This indicated that the dissociation constant of EF-1 alpha beta gamma into EF-1 alpha and EF-1 beta gamma in the presence of GTP increased with increase in the temperature. (ii) When gel filtration was performed in the presence of both GTP and [14C]Phe-tRNA, the formation of a ternary complex of EF-1 alpha . GTP . [14C]Phe-tRNA from EF-1 alpha beta gamma was noted, and its amount was found to increase with elevation of the temperature. (iii) The amount of [14C]Phe-tRNA bound to ribosomes dependent on added EF-1 alpha beta gamma similarly increased with increase in the temperature, as in the case of ternary complex formation, whereas the binding of [14C]Phe-tRNA to ribosomes dependent on free EF-1 alpha proceeded fairly well even at 0 degrees C. From these results we concluded that among the reaction steps in the binding of [14C]Phe-tRNA to ribosomes dependent on EF-1 alpha beta gamma, dissociation of EF-1 alpha beta gamma to form EF-1 alpha . GTP and EF-1 beta gamma in the presence of GTP is the step which is strongly influenced by temperature.  相似文献   

9.
The numbers of sulphydryl groups on NH4Cl-washed rat liver polyribosomes in different functional states were measured under carefully standardized conditions with 14C-labelled N-ethylmaleimide and 35S-labelled 5,5-dithio-bis(2-nitrobenzoic acid). Ribosomes denatured with urea had 120 titratable sulphydryl groups, 60 on each subunit, whereas native ribosomes invariably showed fewer available sulphydryl groups. Ribosomes stripped of transfer RNA (S-type ribosomes) had 55 available sulphydryl groups. Ribosomes bearing the growing peptidyl-tRNA at the acceptor site had 41 sulphydryl groups available. If these A-type ribosomes were labelled with 14C-labelled N-ethylmaleimide and dissociated into subunits, 23 of the labelled sulphydryl groups were found on the 60 S subunit and 19 on the 40 S subunit. After translocation of the peptidyl-tRNA to the donor position on ribosomes (D ribosomes), the number of available sulphydryl groups increased to 72, of which 43 were on the 60 S subunit and 29 on the 40 S subunit. This demonstrates that both subunits participate in the change of peptidyl-tRNA from the A to D positions. When the D ribosomes were reacted with EF2 (elongation factor) and GTP, the available sulphydryl groups increased to 82; addition of EF2 alone or with GDP, GDPCP or ATP failed to cause this increase, which has accordingly been attributed to an energy-dependent conformational change in the ribosome.Ribosomes were reconstructed from subunits with poly(U) and Phe-tRNA. In the presence of poly(U) only, a ribosome with 55 available SH groups was formed, thus corresponding to the stripped ribosomes. When both poly(U) and Phe-tRNA were present, a ribosome was formed with 44 available sulphydryl groups, corresponding approximately to an A-type ribosome. Since no EF1 or GTP was used in reconstructing this ribosome, these data indicate that the conformation of A-type ribosomes is not dependent on EF1 or GTP, but is due to the presence of tRNA at the acceptor site.We therefore incline to the view that the observed changes in available SH groups reflect conformational changes, with an opening up of ribosome structure as it progresses from having the peptidyl-tRNA at the A position to the D position and then binds EF2 and GTP, followed by a restoration of the more compact from when the incoming aminoacyl-tRNA is then bound.  相似文献   

10.
Association constants for tRNA binding to poly(U) programmed ribosomes were assessed under standardized conditions with a single preparation of ribosomes, tRNAs, and elongation factors, respectively, at 15 and 10 mM Mg2+. Association constants were determined by Scatchard plot analysis (the constants are given in units of [10(7)/M] measured at 15 mM Mg2+): the ternary complex Phe-tRNA.elongation factor EF-Tu.GTP (12 +/- 3), Phe-tRNA (1 +/- 0.4), AcPhe-tRNA (0.7 +/- 0.3), and deacylated tRNA(Phe) (0.4 +/- 0.15) bind with decreasing affinity to the A site of poly(U)-programmed ribosomes. tRNA(Phe) (7.2 +/- 0.8) binds to the P site with higher affinity than AcPhe-tRNA (3.7 +/- 1.3). The affinity of the E site for deacylated tRNA(Phe) (1 +/- 0.2) is about the same as that of the A site for AcPhe-tRNA (0.7 +/- 0.3). At lower Mg2+ concentrations the affinity of the E site ligand becomes stronger relative to the affinities of the A site ligands. Phe-tRNA and ternary complexes can occupy the A site at 0 degrees C in the presence of poly(U) even if the P site is free, whereas, as already known, deacylated tRNA or AcPhe-tRNA bind first to the P site of programmed ribosomes. Hill plot analyses of the binding data confirm an allosteric linkage between A and E sites in the sense of a negative cooperativity.  相似文献   

11.
The present study has examined the requirements for the binding of rabbit reticulocyte elongation factor 1 (EF-1) to ribosomes under different assay conditions. When a centrifugation procedure was used to separate the ribosome EF-1 complex, the binding of EF-1 to ribosomes required GTP and Phe-tRNA, but not poly(U). The results suggested that undr these conditions a ternary complex, EF-1 . GTP . aminoacyl-tRNA, is necessary for the formation of a ribosome . EF-1 complex. However, when gel filtration was used to isolate the ribosome . EF-1 complex, only template and tRNA were required. These studie emphasize the fact that the procedure used to isolate the ribosome . EF-1 complex determines the requirements for stable complex formation. EF-1 can also interact with nucleic acids such as 28 S and 18 S rRNA, messenger RNA and DNA. In contrast to the binding to ribosomes, EF-1 binding to nucleic acids requires only Mg2+.  相似文献   

12.
Discrimination against the binding of noncognate aminoacyl (aa)-tRNAs by mRNA-programmed ribosomes is the outcome of two selection steps, one involving an aa-tRNA.EFTu.GTP complex, which occurs prior to and includes GTP hydrolysis, the other involving the aa-tRNA alone, which follows GTP hydrolysis. Conditions which lead to errors in protein synthesis have been found to influence the accuracy of one or both selection steps in a system measuring poly(U)-directed binding of Leu-tRNA2Leu. Streptomycin has a large effect only on the discrimination process following GTP hydrolysis, but the other pertubations of recognition studied, high [Mg2+], polyamines, the strA1 and ram1 mutations, affect both discrimination processes. The general result is consistent with the view that proofreading of aa-tRNA by ribosomes for the most part uses the same specificity determinants used in the initial selection of a ternary complex.  相似文献   

13.
The acidic proteins B-L13 (homologous to Escherichia coli protein L7/L12) and B-L8, from the 50 S subunit of Bacillus stearothermophilus ribosomes, form a stable complex. Trypsin digestion of ribosomes generates an N-terminal fragment of B-L13 (approximately residues 1 to 47) which can associate with B-L8, displacing intact B-L13, and bind to B-L13-deficient ribosomes. Displacement of B-L13 from the B-L8 · B-L13 complex by the B-L13 N-terminal fragment causes a change in gel electrophoretic mobility of the complex, and titration of the complex with fragment indicates unambiguously that it contains four molecules of B-L13. Evidence is presented that B-L13 forms a dimer in solution, and that the dimer associates intact with B-L8. Reconstituted 50 S subunits in which B-L13 is replaced by its N-terminal fragment have the same functional properties as 50 S subunits missing B-L13 altogether: polypeptide synthesis is reduced but not abolished; ability to bind elongation factor EF-G and GTP is severely reduced; and peptidyl transferase activity and ability to associate with a 30 S subunit · Phe-tRNA · poly(U) complex are unaffected (relative to intact 50 S subunits).  相似文献   

14.
A basic peptide with antiviral properties isolated from pokeweed is shown to inhibit the synthesis of globin and phenylalanine peptides on ribosomes isolated from rabbit reticulocytes. The inhibition appears to involve a specific effect of the peptide inhibitor on the larger ribosomal subunit that can be produced at a ratio of inhibitor to ribosomes of less than one to one. Ribosomes treated with the inhibitor have a reduced capacity to support enzymatic binding of Phe-tRNA to ribosomes and GTP hydrolysis caused by the elongation enzyme, EF-I. Treated ribosomes exhibit a concomitant capacity for increased GTP hydrolysis by EF-II but do not efficiently support EF-II-dependent binding of [3H]GTP. Such binding appears to involve the formation of an EF-II·GDP·ribosome complex. Thus, the inhibitor has an effect on GTP-dependent reaction carried out by both of the peptide elongation enzymes. The relation between these effects in the reticulocyte system is discussed in relation to the effects of siomycin or thiostrepton in blocking GTP hydrolysis by EF-T and EF-G on prokaryotic ribosomes.  相似文献   

15.
A low molecular weight form of the eukaryotic polypeptide chain elongation factor 1 (EF-1α) has been extensively purified from pig liver to give an apparently homogeneous preparation, which seemed to be analogous to the bacterial elongation factor, EF-Tu (Iwasaki, K., Nagata, S., Mizumoto, K., and Kaziro, Y. (1974) J. Biol. Chem. 249, 5008). Thus, the interaction of the purified EF-1α with guanine nucleotides as well as aminoacyl-tRNA has been investigated and the following results have been obtained. (1) EF-1α when kept in the absence of glycerol lost its activity to promote the binding of aminoacylt-RNA to ribosomes though it retained the ability to bind guanine nucleotides. However, the former activity could be stabilized by the addition of 25% (vv) glycerol to the solution. (2) EF-1α formed a binary complex with guanine nucleotides such as GTP, GDP, 5′-guanylyl methylenediphosphonate or 5′-guanylyl imidodiphosphate. The molar ratio of EF-1α to GTP or GDP in the binary complex was shown to be 1. (3) The presence of a ternary complex containing EF-1α, GTP and aminoacyl-tRNA was demonstrated by several methods, i.e., (i) an increased heat stability of EF-1α in the presence of GTP and Phe-tRNA, (ii) a decrease in the amount of the EF-1α·GTP complex in the presence of aminoacyl-tRNA, (iii) a protection of the ester linkage of Phe-tRNA from hydrolysis at alkaline pH by the presence of both EF-1α and GTP, and (iv) the isolation of the complex by gel filtration.  相似文献   

16.
Phe-tRNA from yeast has a highly modified nucleoside, called Y, adjacent to the 3′ side of its anticodon, that can be removed or replaced with proflavine. In a protein-synthesizing system from rabbit reticulocytes, poly (U)-directed binding and polyphenylalanine synthesis are low with these modified Phe-tRNA species relative to the corresponding values with unmodified Phe-tRNA. However, polymerization can be increased with relatively large amounts of elongation factor I. The modified Phe-tRNA species bound to the ribosomes with poly(U) either in the presence or absence of elongation factor I and GTP is immediately reactive in the peptidyl transferase reaction measured by the formation of diphenylalanine or phenylalanyl-puromycin. It appears to have been bound directly into the donor ribosomal site by either the nonenzymatic mechanism involving Mg2+ or by the enzymatic mechanism involving EF-I and GTP.  相似文献   

17.
D Ringer  S Chládek 《Biochemistry》1976,15(13):2759-2765
The mechanism of enzymatic binding of AAtRNA to the acceptor site Escherichia coli ribosomes has been studied using the following aminoacyl oligonucleotides as models of the 3' terminus of AA-tRNA: C-A-Phe, C-A-(2'-Phe)H, and C-A(2'H)Phe. T-psi-C-Gp was used as a model of loop IV of tRNA. The EF-T dependent binding of Phe-tRNA to ribosomes (in the presence of either GTP or GMPPCP) and the GTPase activity associated with EF-T dependent binding of the Phe-tRNA were inhibited by C-A-Phe,C-A(2'Phe)H, and C-A(2'H)Phe. These aminoacyl oligonucleotides inhibit both the formation of ternary complex EF-Tu-GTP-AA-tRNA and the interaction of this complex with the ribosomal A site. The uncoupled EF-Tu dependent GTPase (in the absence of AA-tRNA) was also inhibited by C-A-Phe, C-A(2'Phe)H, and C-A(2'H)Phe, while nonenzymatic binding of Phe-tRNA to the ribosomal A site was inhibited by C-A-Phe and C-A(2'-Phe)H, but not by C-A(2'H)Phe. The tetranucleotide T-psi-C-Gp inhibited both enzyme binding of Phe-tRNA and EF-T dependent GTP hydrolysis. However, inhibition of the latter reaction occured at a lower concentration of T-psi-C-Gp suggesting a specific role of T-psi-C-Gp loop of AA-tRNA in the GTPase reaction. The role of the 2' and 3' isomers of AA-tRNA during enzymatic binding to ribosomes is discussed and it is suggested that 2' leads to 3' transacylation in AA-tRNA is a step which follows GTP hydrolysis but precedes peptide bond formation.  相似文献   

18.
Thallium acetate (TIOAc) effectively stimulates poly(U)-directed Phe-tRNA binding to mouse ascitic tumour ribosomes under conditions when other ribosomal functions are completely blocked. The TI+ optimum is about 200 mM. The reaction is stimulated by EF-1, but not significantly by GTP. EF-1-dependent ribosomal GTPase is inhibited by T1+. The isolated Phe-tRNA . ribosome complex is relatively stable. The bound Phe-tRNA does not react with puromycin in the presence of 175 mM KCl. The complex formed in the presence of 90-100 mM TlOAc can, after isolation, be directly utilized for polyphenylalanine synthesis. The complex formed at 200 mM TlOAc is less active, apparently because of damage to the 60-S subunits. TlOAc at low concentrations (8 mM) stimulates K+ -containing poly(U)-translating systems, probably by stabilizing the translation complex.  相似文献   

19.
The fidelity of protein synthesis depends on the rate constants for the reaction of ribosomes with ternary complexes of elongation factor Tu (EF-Tu), GTP, and aminoacyl (aa)-tRNA. By measuring the rate constants for the reaction of poly(U)-programmed ribosomes with a binary complex of elongation factor (EF-Tu) and GTP we have shown that two of the key rate constants in the former reaction are determined exclusively by ribosome-EF-Tu interactions and are not affected by the aa-tRNA. These are the rate constant for GTP hydrolysis, which plays an important role in the fidelity of ternary complex selection by the ribosome, and the rate constant for EF-Tu.GDP dissociation from the ribosome, which plays an equally important role in subsequent proofreading of the aa-tRNA. We conclude that the fidelities of ternary complex selection and proofreading are fundamentally dependent on ribosome-EF-Tu interactions. These interactions determine the absolute value of the rate constants for GTP hydrolysis and EF-Tu.GDP dissociation. The ribosome then uses these rate constants as internal standards to measure, respectively, the rate constants for ternary complex and aa-tRNA dissociation from the ribosome. These rates, in turn, are highly dependent on whether the ternary complex and aa-tRNA are cognate or near-cognate to the codon being translated.  相似文献   

20.
Two species of elongation factor 1 (EF-1) differing in molecular weight have been obtained from the postribosomal supernatant fraction of yeast by chromatography on Sephadex G-200. These two forms are present in approximately equal amounts and both appear to be of cytoplasmic origin. Preparations of the higher and lower molecular weight forms of EF-1 catalyze the poly(U)-directed binding of N-acetylphenylalanylt-RNA (AcPhe-tRNA) to yeast ribosomes. The AcPhe-tRNA binding activity of these preparations is consistently lower than the phenylalanyl-tRNA (Phe-tRNA) binding activity and is more sensitive to N-ethylmaleimide. However, the AcPhe-tRNA binding activity co-purifies with EF-1 on phosphocellulose and has the same heat inactivation profile. Several lines of evidence indicate that the AcPhe-tRNA is bound to the acceptor site of the ribosomes. These and other data strongly suggest that yeast EF-1 is capable of catalyzing the binding of both Phe-tRNA and AcPhe-tRNA to ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号