共查询到20条相似文献,搜索用时 15 毫秒
1.
Rho-kinase is involved in mouse blastocyst cavity formation 总被引:1,自引:0,他引:1
Kawagishi R Tahara M Sawada K Ikebuchi Y Morishige K Sakata M Tasaka K Murata Y 《Biochemical and biophysical research communications》2004,319(2):643-648
During mammalian embryonic development, the formation and subsequent expansion of a fluid-filled cavity, the blastocoel, is crucial for successful implantation. Our present experiments were aimed at exploring the contribution of Rho-kinase, a downstream effector of the small GTP-binding protein RhoA, to mouse blastocoel formation. RT-PCR analysis showed that Rho-kinase mRNA is present throughout mouse preimplantation development. When 2-cell embryos were cultured in the presence of a specific inhibitor of Rho-kinase, Y-27632, they developed to the morula stage but failed to develop to the blastocyst stage. Y-27632 inhibited the formation of the blastocoel cavity from the morula stage, and this inhibitory effect was reversible when embryos were returned to medium without Y-27632. Moreover, Y-27632 reduced the rate of re-expansion of blastocysts collapsed by cytochalasin D upon transfer to the control medium. These results suggest that Rho-kinase is likely involved in blastocyst formation. 相似文献
2.
The Na(+)/H(+) exchanger-3 (NHE3) belongs to the mammalian NHE protein family and catalyzes the electro-neutral exchange of extracellular sodium for intracellular proton across cellular membranes. Its transport function is of essential importance for the maintenance of the body's salt and water homeostasis as well as acid-base balance. Indeed, NHE3 activity is finely regulated by a variety of stimuli, both acutely and chronically, and its transport function is fundamental for a multiplicity of severe and world-wide infection-pathological conditions. This review aims to provide a concise overview of NHE3 physiology and discusses the role of NHE3 in clinical conditions of prominent importance, specifically in hypertension, diabetic nephropathy, heart failure, acute kidney injury, and diarrhea. Study of NHE3 function in models of these diseases has contributed to the deciphering of mechanisms that control the delicate ion balance disrupted in these disorders. The majority of the findings indicate that NHE3 transport function is activated before the onset of hypertension and inhibited thereafter; NHE3 transport function is also upregulated in diabetic nephropathy and heart failure, while it is reported to be downregulated in acute kidney injury and in diarrhea. The molecular mechanisms activated during these pathological conditions to regulate NHE3 transport function are examined with the aim of linking NHE3 dysfunction to the analyzed clinical disorders. 相似文献
3.
The effect of exercise training on myocardial Na+/H+ exchanger-1 (NHE1) protein expression was examined. Adult female Sprague–Dawley rats were randomly divided into sedentary (S; n?=?8) and exercised (E; n?=?9) groups. Twenty-four hours after the last exercise bout, hearts were weighed and connected to an isolated perfused working heart apparatus for evaluation of cardiac functional performance. Heart weight and heart weight/body weight from E rats was significantly increased by 7.1 and 7.2 % (P?<?0.05), respectively, compared with S hearts. The E hearts displayed 15 % greater cardiac output and 35 % external cardiac work compared with the S group at both low and high workloads (P?<?0.05 for both parameters). Left ventricular tissue from the same hearts was homogenized and NHE1 and Na+/Ca2+ exchanger (NCX) content determined by Western blotting. E hearts had a 38 % (P?<?0.001) reduction in NHE1 content related to S hearts, and there was no difference in NCX content between groups. Cytochrome c oxidase activity in plantaris increased by 100 % (P?<?0.05) and was assessed as a marker of mitochondria content and to verify training status. Our data indicate that exercise training at an intensity that results in cardiac hypertrophy and improved performance is accompanied by decreased NHE1 content in heart. 相似文献
4.
Li XX Albrecht FE Robillard JE Eisner GM Jose PA 《American journal of physiology. Regulatory, integrative and comparative physiology》2000,278(4):R931-R936
The decreased natriuretic action of dopamine in the young has been attributed to decreased generation of cAMP by the activated renal D(1)-like receptor. However, sodium/hydrogen exchanger (NHE) 3 activity in renal brush-border membrane vesicles (BBMV) can be modulated independent of cytoplasmic second messengers. We therefore studied D(1)-like receptor regulation of NHE activity in BBMVs in 2-, 4-, and 12-wk-old (adult) rats. Basal NHE activity was least in 2-wk-old compared with 4- and 12-wk-old rats. D(1)-like agonist (SKF-81297) inhibition of NHE activity was also least in 2-wk-old (-1 +/- 9%, n = 3) compared with 4 (-15 +/- 5%, n = 6)- and 12 (-65 +/- 4%, n = 6)-wk-old rats. The decreased response to the D(1)-like agonist in BBMV was not caused by decreased D(1) receptors or NHE3 expression in the young. G(s)alpha, which inhibits NHE3 activity by itself, coimmunoprecipitated with NHE3 to the same extent in 2-wk-old and adult rats. G(s)alpha function was also not impaired in the young because guanosine 5'-O-(3-thiotriphosphate) decreased NHE activity to a similar extent in 4-wk-old and adult rats. Galpha(i-3) protein expression in BBMV also did not change with age. In contrast, Gbeta expression and the amount of Gbeta that coimmunoprecipitated with NHE3 in BBMV was greatest in 2-wk-old rats and decreased with age. Gbeta common antibodies did not affect D(1)-like agonist inhibition of NHE activity in adult rats (8%) but markedly increased it (48%)in 4-wk-old rats. We conclude that the decreased inhibitory effect of D(1)-like receptors on NHE activity in BBMV in young rats is caused, in part, by the increased expression and activity of the G protein subunit Gbeta/gamma. The direct regulation of NHE activity by G protein subunits may be an important step in the maturation of renal tubular ion transport. 相似文献
5.
6.
Chu TS Wu KD Wu MS Hsieh BS 《Biochemical and biophysical research communications》2000,271(3):807-811
Endothelin-1 (ET-1) acutely increases Na/H antiporter activity in OKPET(B)6 cells, an opossum kidney proximal tubule cell line transfected with ET(B) receptor cDNA. The purpose of the present study was to examine the chronic effect of ET-1 on Na/H antiporter activity in OKP cells and to examine whether Na/H exchanger (NHE)-3 mRNA and protein abundance are regulated by ET-1. Quiescent OKPET(B)6 cells were treated with 10 nM ET-1 for 3, 6 or 24 h and Na/H antiporter activity was assayed. The Na/H antiporter activity in 3-h ET-1-treated cells was not different from controls. However, Na/H antiporter activity was significantly decreased by 29% at 6 h and 72% at 24 h. The effect of ET-1 on Na/H antiporter activity was blocked by BQ788, an ET(B) receptor antagonist, but not BQ123, an ET(A) receptor antagonist. The NHE-3 mRNA abundance in ET-1-treated cells was not different from controls at 3 h. However, there was a significant decrease in NHE-3 mRNA abundance at 6 and 24 h. There was also a significant decrease in NHE-3 protein abundance at 6 and 24 h. In summary, ET-1 chronically inhibits NHE-3 in OKPET(B)6 cells. 相似文献
7.
Expression of HSG is essential for mouse blastocyst formation 总被引:1,自引:0,他引:1
Jiang GJ Pan L Huang XY Han M Wen JK Sun FZ 《Biochemical and biophysical research communications》2005,335(2):351-355
It has been shown recently that hyperplasia suppressor gene (HSG) is a powerful regulator for cell proliferation and has a critical role in mitochondrial fusion in many cells. However, little is known about its expression, localization, and function during oocyte maturation and early embryogenesis. In this study, with indirect immunofluorescent staining and Western blotting, we found that HSG was expressed in mouse oocytes and preimplantation embryos which primarily exhibited a submembrane distribution pattern in the cytoplasm. Moreover, HSG mainly associated with beta-tubulin during oocyte maturation and early embryonic development. When mouse zygotes were injected with HSG antisense plasmid and cultured in vitro, their capacity to form blastocysts was severely impaired. Our results indicate that HSG plays an essential role in mouse preimplantation development. 相似文献
8.
9.
Stimulation of platelets with thrombin, ADP and epinephrine has recently been shown to activate a Na+/H+ antiporter, with a resulting alkalinization of the cytoplasm. Unlike thrombin, however, epinephrine is incapable of directly activating phospholipase C, but is well known to potentiate the effects of thrombin on this enzyme and other subsequent steps of platelet activation. Therefore, we have studied the involvement of the Na+/H+ antiporter in this aspect of epinephrine action to see whether alkalinization of platelet cytosol could be a requirement for agonists to stimulate inositol phospholipid hydrolysis and mobilize cellular Ca2+ stores. Alpha-thrombin induced the rapid formation of inositol trisphosphate with a parallel mobilization of intracellular Ca2+ stores. Epinephrine alone had no effect on either of these parameters. The response to thrombin desensitized over a period of minutes, and after this had occurred, epinephrine was able to activate phospholipase C and induce the release of intracellular Ca2+. This showed that epinephrine was able to recouple thrombin receptors to phospholipase C, and this appeared to be mediated by the same mechanism which is involved in potentiation by epinephrine of thrombin-stimulation of phospholipase C. These effects of epinephrine were not altered by inhibition of the Na+/H+ antiporter with ethylisopropylamiloride or by use of the Na+/H+ ionophore, monensin. We conclude that epinephrine potentiates thrombin-induced responses by a mechanism which is unrelated to its effects on the Na+/H+ antiporter, and this is not a requirement for thrombin-induced phospholipase C activation. 相似文献
10.
Na(+)/H(+) exchanger isoform-1 (NHE1), the ubiquitous form of the Na(+)/H(+) exchanger, has increased activity in hypertensive patients and in animal models of hypertension. Furthermore, NHE1 is activated in cells stimulated with growth factors. We showed previously that activation of the exchanger is dependent on phosphorylation of serine 703 (Ser(P)(703)) by p90 ribosomal S6 kinase (RSK). Because the NHE1 sequence at Ser(P)(703) (RIGSDP) is similar to a consensus sequence (RSXSXP) specific for 14-3-3 ligands, we evaluated whether serum stimulated 14-3-3 binding to NHE1. Five different GST-NHE1 fusion proteins spanning amino acids 515-815 were phosphorylated by RSK and used as ligands in a far Western analysis; only those containing Ser(P)(703) exhibited high affinity 14-3-3 binding. In PS127A cells (NHE1-overexpressing Chinese hamster fibroblasts) stimulated with 20% serum, NHE1 co-precipitation with GST-14-3-3 fusion protein increased at 5 min (5.2 +/- 0.4-fold versus control; p < 0.01) and persisted at 40 min (3.9 +/- 0.3-fold; p < 0.01). We confirmed that binding occurs at the RIGSDP motif using PS120 (NHE1 null) cells transfected with S703A-NHE1 or P705A-NHE1 (based on data indicating that 14-3-3 binding requires phosphoserine and +2 proline). Serum failed to stimulate association of 14-3-3 with these mutants. A GST-NHE1 fusion protein was phosphorylated by RSK and used as a ligand to assess the effect of 14-3-3 on protein phosphatase 1-mediated dephosphorylation of Ser(P)(703). GST-14-3-3 limited dephosphorylation (66% of initial state at 60 min) compared with GST alone (27% of initial state; p < 0.01). The protective effect of GST-14-3-3 was lost in the GST-NHE1 P705A mutant. Finally, the base-line rate of pH recovery in acid-loaded cells was equal in unstimulated cells expressing wild-type or P705A-NHE1. However, activation of NHE1 by serum was dramatically inhibited in cells expressing P705A-NHE1 compared with wild-type (0.13 +/- 0.02 versus 0.48 +/- 0.06 mmol of H(+)/min/liter, p < 0.01). These data suggest that 14-3-3 binding to NHE1 participates in serum-stimulated exchanger activation, a new function for 14-3-3. 相似文献
11.
Hisayoshi Hayashi Katalin Szászi Natasha Coady-Osberg John Orlowski James L Kinsella Sergio Grinstein 《The Journal of biological chemistry》2002,277(13):11090-11096
Allosteric control of Na(+)/H(+) exchange by intracellular protons ensures rapid and accurate regulation of the intracellular pH. Although this allosteric effect was heretofore thought to occur almost instantaneously, we report here the occurrence of a slower secondary activation of the epithelial Na(+)/H(+) exchanger (NHE)-3 isoform. This slow activation mode developed over the course of minutes and was unique to NHE3 and the closely related isoform NHE5, but was not observed in NHE1 or NHE2. Activation of NHE3 was not due to increased density of exchangers at the cell surface, nor was it accompanied by detectable changes in phosphorylation. The association of NHE3 with the cytoskeleton, assessed by its retention in the detergent-insoluble fraction, was similarly unaffected by acidification. In contrast to the slow progressive activation elicited by acidification, deactivation occurred very rapidly upon restoration of the physiological pH. We propose that NHE3 undergoes a slow pH-dependent transition from a less active to a more active state, likely by changing its conformation or state of association. 相似文献
12.
Fujiwara Y Higuchi K Takashima T Hamaguchi M Hayakawa T Tominaga K Watanabe T Oshitani N Shimada Y Arakawa T 《American journal of physiology. Gastrointestinal and liver physiology》2006,290(4):G665-G673
Epidermal growth factor (EGF) is predominantly secreted by salivary glands and activates Na(+)/H(+) exchanger-1 (NHE-1), which regulates intracellular pH (pH(i)). We investigated the roles of EGF and NHE-1 in esophageal epithelial defense against acid using human esophageal epithelial cell lines and a rat chronic esophagitis model. Esophageal epithelial cells were incubated with acidified medium in the absence or presence of EGF. Cell viability and changes in pH(i) were measured. Chronic acid reflux esophagitis was induced in rats with and without sialoadenectomy. Esophageal lesion index, epithelial proliferation, and expression of EGF receptors and NHE-1 were examined. EGF protected esophageal epithelial cells against acid in a dose-dependent manner, and the cytoprotective effect of EGF was completely blocked by treatment with NHE-1 inhibitors. Tyrosine kinase, calmodulin, and PKC inhibitors significantly inhibited cytoprotection by EGF, whereas MEK, phosphatidylinositol 3-kinase, and PKA inhibitors had no effect. EGF significantly increased pH(i) recovery after NH(4)Cl pulse acidification, and this increase in pH(i) recovery was significantly blocked by inhibitors of calmodulin and PKC. Sialoadenectomy led to an increase in the severity of chronic esophagitis but affected neither epithelial proliferation nor expression of EGF receptors. Expression of NHE-1 mRNA was increased in esophagitis and upregulated in rats with sialoadenectomy. The increasing severity of esophagitis in rats with sialoadenectomy was prevented by exogenous administration of EGF. In conclusion, EGF protects esophageal epithelial cells against acid through NHE activation via Ca(2+)/calmodulin and the PKC pathway. Deficiency in endogenous EGF is associated with increased severity of esophagitis. EGF and NHE-1 play crucial roles in esophageal epithelial defense against acid. 相似文献
13.
14.
阿米洛利抑制NHE-1减轻低氧性肺动脉平滑肌细胞增殖 总被引:1,自引:0,他引:1
目的:研究Na^+/H^+交换抑制剂阿米洛利对低氧刺激的大鼠肺动脉平滑肌细胞(PASMCs)增殖的影响,以及Na^+/H^+交挟体-l(NHE-1)活性和表达的变化.方法:常氧(21%O2)或低氧(2%O2)条件下培养PASMCs,并分别给予浓度为1.653、3.125、6.25、12.5、25和50μmol/L.等不同浓度的阿米洛利,培养24h,采用MTT比色实验和免疫组化检测PCNA阳性细胞率的方法反映细胞增殖情况,同时采用激光共聚焦检测细胞内pH以反映Na^+/H^+交换体-1活性,RT—PCR法检测Na^+/H^+交换体-1mRNA的表达量.结果:低氧培养的PASMCs细胞内pH升高,NHE—1mRNA的表达增多,而阿米洛利可以降低细胞内pH,减少NHE—1mRNA的表达量。同时低氧较常氧培养MTT光吸收值较常氧培养明显升高。PCNA阳性细胞率明显增高,而给予阿米洛利时上述两个指标随药物浓度增加而逐渐下降。结论:低氧可以激活PASMCs细胞膜上的E—1,增加其mRNA水平表达量,使细胞内碱化,促进细胞增殖,而Na^+/H^+交换抑制剂阿米洛利可以抑制其活性,减少mRNA水平的表达,导致细胞内酸化,从而抑制细胞增殖,并且此抑制作用在3.125~50μmol/L.浓度范围内呈现明显的浓度依赖性。 相似文献
15.
Waditee R Buaboocha T Kato M Hibino T Suzuki S Nakamura T Takabe T 《Archives of biochemistry and biophysics》2006,450(1):113-121
Little information is available on the C-terminal hydrophilic tails of prokaryotic Na(+)/H(+) antiporters. To address functional properties of the C-terminal tail, truncation mutants in this domain were constructed. Truncation of C-terminal amino acid residues of NhaP1 type antiporter from Synechocystis PCC6803 (SynNhaP1) did not change the V(max) values, but increased the K(m) values for Na(+) and Li(+) about 3 to 15-fold. Truncation of C-terminal tail of a halotolerant cyanobacterium Aphanothece halophytica (ApNhaP1) significantly decreased the V(max) although it did not alter the K(m) values for Na(+). The C-terminal part of SynNhaP1 was expressed in E. coli and purified as a 16kDa soluble protein. Addition of purified polypeptide to the membrane vesicles expressing the C-terminal truncated SynNhaP1 increased the exchange activities. Change of Glu519 and Glu521 to Lys in C-terminal tail altered the pH dependence of Na(+)/H(+) and Li(+)/H(+) exchange activities. These results indicate that the specific acidic amino acid residues at C-terminal domain play important roles for the K(m) and the pH dependence of the exchange activity. 相似文献
16.
G. P. Gusev 《Journal of Evolutionary Biochemistry and Physiology》2001,37(6):595-603
Na+/H+ exchange is one of the major pathways of ion transport in cells of pro- and eukaryots and plays an important role in intracellular pH and cell volume regulation, in cell division, proliferation, as well as in epithelial transport processes. Since 1989, investigations on the molecular nature of this transporter have revealed six isoforms (NHE1–NHE6) in mammalian tissues. Most works on studies of properties of the Na/H antiporter and regulation of its activity have been carried out on mammalian tissues. This review summarizes results of studies on the Na+/H+ exchange in tissues of lower vertebrates. Of the greatest interest are investigations on the rainbow trout, whose erythrocytes were found to contain a Na+/H+ exchanger activated by catecholamines. This carrier in trout erythrocytes has been cloned and called beta-NHE ( ;NHE). Another exchanger isoform, atNHE, was isolated from the red blood cells of the giant salamander Amphiuma tridactulum. Isoforms of antiporter isolated from oocytes (XL-NHE) and renal cells of the clawed frog Xenopus laevis (XNHE) have also been described. 相似文献
17.
Wang H Ding T Brown N Yamamoto Y Prince LS Reese J Paria BC 《Developmental biology》2008,318(1):112-125
It is unknown whether or not tight junction formation plays any role in morula to blastocyst transformation that is associated with development of polarized trophoblast cells and fluid accumulation. Tight junctions are a hallmark of polarized epithelial cells and zonula occludens-1 (ZO-1) is a known key regulator of tight junction formation. Here we show that ZO-1 protein is first expressed during compaction of 8-cell embryos. This stage-specific appearance of ZO-1 suggests its participation in morula to blastocyst transition. Consistent with this idea, we demonstrate that ZO-1 siRNA delivery inside the blastomeres of zona-weakened embryos using electroporation not only knocks down ZO-1 gene and protein expressions, but also inhibits morula to blastocyst transformation in a concentration-dependent manner. In addition, ZO-1 inactivation reduced the expression of Cdx2 and Oct-4, but not ZO-2 and F-actin. These results provide the first evidence that ZO-1 is involved in blastocyst formation from the morula by regulating accumulation of fluid and differentiation of nonpolar blastomeres to polar trophoblast cells. 相似文献
18.
19.
The amiloride-sensitive Na+/H+ antiport in 3T3 fibroblasts 总被引:14,自引:0,他引:14
BALB/c 3T3 fibroblasts have an amiloride-sensitive Na+ uptake mechanism which is hardly detectable under normal physiological conditions. The activity of this Na+ transport system can be increased to a large extent by treatments that decrease the internal pH such as loss of intracellular NH4+ as NH3 or incubation with nigericin in the presence of a low external K+ concentration. These treatments have made possible an analysis of the interaction of the Na+/H+ antiport with amiloride and of the external pH dependence of the system. The addition of fetal bovine serum to quiescent 3T3 cells stimulates the initial rate of the amiloride-sensitive 22Na+ uptake by only 50%. However, after treatment of the cells with ammonia or nigericin, serum produces a 40-fold stimulation of the rate of the amiloride-sensitive 22Na+ uptake. Control experiments show that serum does not stimulate the activity of the Na+/H+ antiport by an indirect mechanism involving a depolarization of the membrane or a modification of the internal Ca2+ concentration. It is suggested that some serum component directly interacts with the Na+/H+ exchanger to modify its catalytic properties. 相似文献
20.
Thrombin-induced platelet aggregation is affected by external Na+ independently of the Na+/H+ exchange 总被引:1,自引:0,他引:1
Thrombin affects blood platelets by activation of Na+/H+ exchange and induction of aggregation, but the relationship between these effects is under debate. The present study attempts to clarify whether the activation of the exchanger activity is required for platelet aggregation. In apparent support of such a requirement, thrombin-induced aggregation is higher in Na+ medium than in N-methylglucamine+ medium and is inhibited by sphingosine, an inhibitor of protein kinase C known to regulate the Na+/H+ exchanger. However, the inhibition of aggregation by sphingosine occurs in both Na+-containing and Na+-free media, the aggregation is identical in Na+ and K+-containing media, and is not inhibited by 5-N-(3-aminophenyl)amiloride, at a concentration 10-fold higher than its Ki for platelet Na+/H+ exchange. Furthermore, at low concentration (0.005 U/ml) thrombin induces aggregation but does not activate the exchange. It is concluded that the activation of Na+/H+ exchange is not required for thrombin-induced platelet aggregation and that the apparent augmentation of aggregation by Na+ is due to an inhibitory effect of N-methylglucamine+. 相似文献