首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rho-kinase is involved in mouse blastocyst cavity formation   总被引:1,自引:0,他引:1  
During mammalian embryonic development, the formation and subsequent expansion of a fluid-filled cavity, the blastocoel, is crucial for successful implantation. Our present experiments were aimed at exploring the contribution of Rho-kinase, a downstream effector of the small GTP-binding protein RhoA, to mouse blastocoel formation. RT-PCR analysis showed that Rho-kinase mRNA is present throughout mouse preimplantation development. When 2-cell embryos were cultured in the presence of a specific inhibitor of Rho-kinase, Y-27632, they developed to the morula stage but failed to develop to the blastocyst stage. Y-27632 inhibited the formation of the blastocoel cavity from the morula stage, and this inhibitory effect was reversible when embryos were returned to medium without Y-27632. Moreover, Y-27632 reduced the rate of re-expansion of blastocysts collapsed by cytochalasin D upon transfer to the control medium. These results suggest that Rho-kinase is likely involved in blastocyst formation.  相似文献   

2.
Cyclic nucleotide phosphodiesterase (PDE) activity and cAMP amounts were measured in mouse preimplantation embryos at the 1-cell, 2-cell, 8-cell/morula, and mid-blastocyst stages. PDE activity remained constant between the 1-cell and 2-cell stages. It decreased by the 8-cell stage and continued to decrease by the mid blastocyst stage to about 14% of the 1- and 2-cell values. By contrast, cAMP amounts remained essentially constant at 0.05 fmole/embryo (0.3 microM) from the 1-cell to the blastocyst stage and increased to 0.175 fmole in the fully expanded blastocyst that was close to hatching. Measurements of embryo volume indicated that intracellular volume remained essentially constant up to the blastocyst stage. The morphological changes in cell shape that accompany differentiation of the trophectoderm and that are coupled with blastocoel expansion decreased the intracellular volume. This decrease resulted in an increase in the cAMP concentration to about 0.4 microM by the mid-blastocyst stage. Previous studies indicate that either cAMP or TGF-alpha/EGF can stimulate the rate of blastocoel expansion. Although TGF-alpha/EGF can elevate cAMP levels in other cell types, TGF-alpha, at a concentration that maximally stimulates the rate of blastocoel expansion, did not elevate cAMP in blastocysts. Thus, it was unlikely that elevation of cAMP is the mechanism by which TGF-alpha stimulates the rate of blastocoel expansion.  相似文献   

3.
The distribution of the cytokeratin network in the intact preimplantation mouse embryo and the role of cytokeratin filaments in trophectoderm differentiation were investigated by means of whole-mount indirect immunofluorescence microscopy and microinjection of anti-cytokeratin antibody. Assembled cytokeratin filaments were detected in some blastomeres as early as the compacted 8-cell stage. The incidence and organization of cytokeratin filaments increased during the morula stage, although individual blastomeres varied in their content of assembled filaments. At the blastocyst stage, each trophectoderm cell contained an intricate network of cytokeratin filaments, and examination of sectioned blastocysts confirmed that extensive arrays of cytokeratin filaments were restricted to cells of the trophectoderm. Microinjection of anticytokeratin antibody into individual mural trophectoderm cells of expanded blastocysts resulted in a dramatic rearrangement of the cytokeratin network in these cells. Moreover, antibody injection into 2-cell embryos inhibited assembly of the cytokeratin network during the next two days of development. Despite this disruption of cytokeratin assembly, the injected embryos compacted and developed into blastocysts with normal morphology and nuclear numbers. These results suggest that formation of an elaborate cytokeratin network in preimplantation mouse embryos is unnecessary for the initial stages of trophectoderm differentiation resulting in blastocyst formation.  相似文献   

4.
Inner cell mass (ICM) and trophectoderm cell lineages in preimplantation mouse embryos were studied by means of iontophoretic injection of horseradish peroxidase (HRP) as a marker. HRP was injected into single blastomeres at the 2- and 8-cell stages and into single outer blastomeres at the 16-cell and late morula (about 22- to 32-cell) stages. After injection, embryos were either examined immediately for localization of HRP (controls) or they were allowed to develop until the blastocyst stage (1 to 3.5 days of culture) and examined for the distribution of labeled cells. In control embryos, HRP was confined to one or two outer blastomeres. In embryos allowed to develop into blastocysts, HRP-labeled progeny were distributed into patches of cells, showing that there is limited intermingling of cells during preimplantation development. A substantial fraction of injected blastomeres contributed descendants to both ICM and trophectoderm (95, 58, 44, and 35% for injected 2-cell, 8-cell, 16-cell, and late morula stages, respectively). Although more than half of the outer cells injected at 16-cell and late morula stages contributed descendants only to trophectoderm (53 and 63%, respectively), some outer cells contributed also to the ICM lineage even at the late morula stage. Although the mechanism for allocation of outer cells to the inner cell lineage is unknown, our observation of adjacent labeled mural trophectoderm and presumptive endoderm cells implicated polarized cell division. This observation also suggests that mural trophectoderm and presumptive endoderm are derived from common immediate progenitors. These cells appear to separate into inner and outer layers during the fifth cleavage division. Our results demonstrate the usefulness of HRP as a cell lineage marker in mouse embryos and show that the allocation of cells to ICM or trophectoderm begins after the 2-cell stage and continues into late cleavage.  相似文献   

5.
Apicolateral tight junctions (TJs) between epithelial cells are multiprotein complexes regulating membrane polarity and paracellular transport and also contribute to signalling pathways affecting cell proliferation and gene expression. ZO-2 and other ZO family members form a sub-membranous scaffold for binding TJ constituents. We investigated ZO-2 contribution to TJ biogenesis and function during trophectoderm epithelium differentiation in mouse preimplantation embryos. Our data indicate that ZO-2 is expressed from maternal and embryonic genomes with maternal ZO-2 protein associated with nuclei in zygotes and particularly early cleavage stages. Embryonic ZO-2 assembled at outer blastomere apicolateral junctional sites from the late 16-cell stage. Junctional ZO-2 first co-localised with E-cadherin in a transient complex comprising adherens junction and TJ constituents before segregating to TJs after their separation from the blastocyst stage (32-cell onwards). ZO-2 siRNA microinjection into zygotes or 2-cell embryos resulted in specific knockdown of ZO-2 mRNA and protein within blastocysts. Embryos lacking ZO-2 protein at trophectoderm TJs exhibited delayed blastocoel cavity formation but underwent normal cell proliferation and outgrowth morphogenesis. Quantitative analysis of trophectoderm TJs in ZO-2-deficient embryos revealed increased assembly of ZO-1 but not occludin, indicating ZO protein redundancy as a compensatory mechanism contributing to the mild phenotype observed. In contrast, ZO-1 knockdown, or combined ZO-1 and ZO-2 knockdown, generated a more severe inhibition of blastocoel formation indicating distinct roles for ZO proteins in blastocyst morphogenesis.  相似文献   

6.
Embryos derived from calf oocytes were compared with adult cow oocyte-derived embryos (1) by studying the kinetics of embryo development using time-lapse cinematography (2) by evaluating the ratio between inner cell mass (ICM) and trophectoderm (TE) cells in blastocysts (3) by measuring the triglyceride content of the blastocysts. The rate of calf oocyte-derived embryos reaching the blastocyst stage was reduced (26 vs. 46% for adult derived embryos). Calf oocyte-derived embryos preferably arrested their development before the 9-cell stage. Those that developed into blastocysts had cleaved earlier to reach the 2-cell or 3-cell stages than embryos that arrested before the 9-cell stage. The 9-cell stage tended to appear later in calf oocyte-derived embryo that reached the blastocyst stage than in adult-derived embryos. This difference became significant at the morula stage. Accordingly, the fourth cell cycle duration was longer for calf oocyte-derived embryos. Day 8 blastocysts from both sources had similar total cell numbers (calf: 89 +/- 20; cow: 100 +/- 30) and cell distribution between TE and ICM. The triglyceride content of day 7 blastocysts was similar for both sources (64 +/- 15 vs. 65 +/- 6 ng/embryo, respectively). In conclusion, calf oocyte-derived embryos are characterized by a higher rate of developmental arrest before the 9-cell stage and by a longer lag phase preceding the major onset of embryonic genome expression. These changes might be related to insufficient "capacitation" of the calf oocyte during follicular growth. Despite these differences, modifications in the quality of the resulting blastocysts were not detected.  相似文献   

7.
The regulation of trophectoderm differentiation in mouse embryos was studied by inhibiting DNA synthesis with aphidicolin, a specific inhibitor of DNA polymerase alpha. Embryos were exposed to aphidicolin (0.5 micrograms/ml) for 16 h at various preimplantation stages and scored for their ability to form a blastocyst and develop beyond the blastocyst stage. Embryos were most sensitive to aphidicolin at the late 4-cell stage and became progressively less sensitive as they developed. Aphidicolin inhibited blastocyst formation by 70%, 100%, 77%, and 24% after treatment at the 2-cell, 4-cell, noncompacted 8-cell, and compacted 8-cell stages, respectively. Although the inhibitory effect of aphidicolin on blastocyst formation decreased markedly as 8-cell embryos underwent compaction, developmental capacity beyond the blastocyst stage was poor after treatment of either noncompacted or compacted 8-cell embryos. Treatment at the morula and early blastocyst stages was less harmful to embryos than treatment at earlier stages but reduced the number of trophoblast outgrowths by interfering with hatching. Autoradiographic analysis showed that during aphidicolin treatment, incorporation of 3H-thymidine was inhibited over 90% at all stages examined, indicating an inhibition of DNA synthesis. Because inhibition of blastocyst formation by aphidicolin decreased at the compacted 8-cell stage, we suggest that approximately the first half of the fourth DNA replication cycle is critical for subsequent blastocyst formation. Furthermore, the poor further development of blastocysts formed after aphidicolin treatment of compacted 8-cell embryos suggests that the DNA replication requirements for initial trophectoderm differentiation are distinct from requirements for further development of blastocysts in vitro.  相似文献   

8.
Gene expression regulating blastocyst formation   总被引:3,自引:0,他引:3  
Development of embryos to the blastocyst stage is a critical event in the early lives of all eutherian mammalian species. Blastocyst formation is essential for implantation and is the principal morphological determinant of embryo quality prior to embryo transfer. The physiological events and roles of specific gene families that regulate blastocyst formation are subjects of intense research Recent findings have demonstrated that bovine embryos express multiple members of the Na/K-ATPase ion transporter gene family. Two members of this family have been co-localized to bovine trophectoderm, but each becomes largely confined to opposing cell membrane margins. Bovine blastocysts display a greater sensitivity to ouabain (potent inhibitor of the Na/K-ATPase) than murine blastocysts, and enzyme activity (ouabain sensitive 86Rb+ uptake) undergoes a 9-fold increase from the bovine morula to the blastocyst stage. Disruption of Na/K-ATPase gene expression by antisense oligodeoxynucleotide inhibition abolishes blastocyst formation. These results have implicated the Na/K-ATPase as a key regulator of bovine blastocyst formation and have provided insights necessary for the production of healthy bovine embryos by the application of in vitro maturation, in vitro fertilization and in vitro culture methods.  相似文献   

9.
10.
The individual blastomeres of the preimplantation mouse embryo become polarized during the 8-cell stage. Microvilli become restricted to the free surface of the embryo and this region of the membrane shows increased labeling with FITC-Con A and trinitrobenzenesulfonate (TNBS). Previous studies have shown that this polarity develops in response to asymmetric cell-cell contact with stage specific induction competent blastomeres. In the present study, the ability of later stage embryos to induce 8-cell polarization has been investigated. Newly-formed, nonpolar 8-cell stage blastomeres (1/8 cells) were isolated, then aggregated with morulae, inner cell clusters (from morulae), blastocysts, or inner cell masses (ICM) and cultured for 8 hr. Aggregates were then assayed for polarity. The results show a hierarchy of inducing ability, with the ICM and IC cluster possessing greater activity than the morula and polar trophectoderm of the early blastocyst, while the mural trophectoderm shows very little inducing activity. Furthermore, the inducing ability of the polar trophectoderm decreases with complete expansion and hatching of the blastocyst. These results indicate that the ability to induce 8-cell blastomere polarization is retained by the embryo beyond the 8-cell stage and that this ability is lost with further differentiation.  相似文献   

11.
The effects of aphidicolin and α-amanitin on DNA synthesis by preimplantation mouse embryos were studied. It was found that both blastocyst and 8-cell embryos showed marked inhibition of 3H-thymidine incorporation into DNA by aphidicolin at concentrations of 20–50 μg/ml. However, aphidicolin did not inhibit the conversion of morula embryos to blastocyst embryos, although aphidicolin-treated blastocysts lost their blastocoel and collapsed into a compact form after prolonged exposure to the drug. Both 8-cell and blastocyst embryos were found to be susceptible to inhibition of DNA synthesis by α-amanitin.  相似文献   

12.
Abstract. Differences are described in the effects of treatment of preimplantation mouse embryos with low levels (0.01–1 n M ) of phorbol myristate acetate (PMA), during three different periods of a 48-h culture from the 2-cell stage, on pre- and postimplantation development. Treatment of embryos with PMA for 48 h (first group) or 24 h (second group) from the 2-cell stage caused premature cavitation (prior to the 16-cell stage) and it also reduced the size and alkaline phosphatase (ALPase) activity of inner cell masses (ICMs), as well as the numbers of cells in blastocysts, in a dose-dependent manner. Treatment of early morulae with PMA for 24 h (third group) did not have the abovementioned effects on embryos but inhibited the formation and subsequent enlargement of the blastocoel. The blastocysts that were allowed to develop in the three treatment groups were examined for postimplantation development. Implantation was unaffected in all groups. The survival rate after implantation was low in the first and second groups but relatively high in the third group. The results indicate that an embryo exposed to PMA for 24 h from the 2-cell stage forms a premature blastocoel, and, in such an embryo, quantitative and qualitative differentiation into the ICM is blocked but qualitative differentiation into trophectoderm is uninhibited. Consequently, the embryo can implant but does not survive for a long time. When embryos were exposed to PMA for 24 h from the early morula stage, the formation and enlargement of the blastocoel were inhibited even though the treatment had a minimal effect on other developmental events. It is suggested that the effects of PMA on early mouse development are specific to each period at which the drug is applied.  相似文献   

13.
14.
Production of genetically identical pairs of monkeys would have tremendous implications for biomedical research, particularly immunological studies and vaccine trials. Specific aims of this study were to (1) determine whether aggregation of embryos split into halves or quarters with equal numbers of either developmentally asynchronous or tetraploid blastomeres would enhance their developmental potential in vitro and increase total cell numbers in resulting blastocysts, and (2) determine the allocation of tetraploid and developmentally asynchronous blastomeres in resulting blastocysts. Results demonstrated that development into blastocysts was greater (p < 0.05) for embryos split into pairs (39.8%) than for those split into quadruplet sets (17.4%) and similar (p > 0.05) to that of nonmanipulated controls (59.6%). Creation of chimeras from aggregation of a single 4-cell and four 16-cell stage blastomeres resulted in blastocyst formation (69.2%) similar to that of nonmanipulated control embryos (66.9%). However, neither development nor total cell numbers in resulting blastocysts differed between aggregate chimeras and those split into quadruplet sets at the 16-cell stage. Blastocysts resulting from the aggregate chimeras were derived strictly from the 16-cell stage blastomeres, with complete exclusion of the 4-cell stage blastomeres. Aggregation of split embryos with equal numbers of tetraploid blastomeres doubled (p < 0.05) both the proportion developing into blastocysts and the total cell numbers in resulting blastocysts. Tetraploid blastomeres were allocated to both the inner cell mass and trophectoderm of resulting blastocysts. In conclusion, due to exclusion of the less advanced cells, aggregation of developmentally asynchronous blastomeres did not improve the developmental competence or cell numbers of split rhesus embryos. Reconstitution of split embryos with equal numbers of tetraploid blastomeres enhanced their developmental potential and cell numbers in resulting blastocysts. However, tetraploid blastomeres were allocated to both the inner cell mass and trophectoderm.  相似文献   

15.
Horseradish peroxidase (HRP), together with Fast Green or rhodamine-conjugated dextran (RDX), was used as an intracellular lineage tracer to determine cell fate in the polar trophectoderm of 3.5-day-old mouse embryos. In HRP-injected midstage (approximately 39-cell) and expanded (approximately 65-cell) blastocysts incubated for 24 hr, the central polar trophectoderm cell was displaced from the embryonic pole an average of 20 micron (5% of blastocyst circumference) and 29 micron (6% of blastocyst circumference), respectively. Expanded blastocysts injected with HRP + Fast Green and incubated for 24 hr or with HRP + RDX and incubated for 48 hr showed a displacement of 24 micron (4% of blastocyst circumference) and 88 micron (14% of blastocyst circumference), respectively. Up to 10 HRP-positive trophectoderm cells were observed among embryos incubated for 48 hr, indicating that in those cases, the labeled progenitor cells had divided at least three times. Our observations show that the central polar trophectoderm cell divides in the plane of the trophectoderm in expanded blastocysts and, along with its descendants, is displaced toward the mural trophectoderm. The systematic tandem displacement of labeled cells and their descendants toward the abembryonic pole suggests the presence of a proliferative area at the embryonic pole of the blastocyst. Large shifts in inner cell mass (ICM) position in relation to the trophectoderm do not occur during blastocyst expansion. Furthermore, random movements within the polar trophectoderm population do not account for the replacement of labeled cells by unlabeled polar trophectoderm cells. Rather, we propose the hypothesis that the ICM contributes these replacement cells to the polar trophectoderm during blastocyst expansion.  相似文献   

16.
The trophectoderm of the mouse blastocyst is a fluid transporting epithelium that is responsible for generating a fluid-filled cavity called the blastocoel. Vectorial transport of ions from the medium into the blastocoel generates an osmotic gradient that drives fluid across this epithelium. We report here that substitution of Na+ or Cl-, but not K+, in the medium halves the rate of blastocoel expansion in the mouse blastocyst. Entrance of Na+ into the trophectoderm may involve several routes, since both blastocoel expansion and 22Na+ uptake are decreased in the presence of the highly specific Na+/H+ exchanger inhibitor, 5-(N-ethyl-N-isopropyl)amiloride, and to a lesser extent with the amiloride-sensitive Na+-channel blocker, benzamil. Uptake of 22Na+ manifests saturation kinetics as a function of extracellular Na+ concentration, whereas uptake of 36Cl- is linear. Furthermore, neither 4,4-diisothiocyanostilbene-2,2-disulfonic acid, which is an inhibitor of the Cl-/HCO3- exchanger, nor 2-(3,4-dichlorobenzyl)-5-nitrobenzoic acid, which is a Cl- -channel blocker, affect either blastocoel expansion or 36Cl- uptake. These results suggest that Na+ entry into the mouse blastocyst is carrier-mediated and probably involves several routes that include the Na+/H+ exchanger and possibly the Na+-channel. Chloride entry, however, may not be carrier-mediated and may occur through a paracellular route, i.e., between the trophectodermal cells.  相似文献   

17.
Involvement of calmodulin-dependent processes in preimplantation development of mouse embryos was studied with the use of N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a specific antagonist of calmodulin. At 25 microM, W-7 interfered with compaction of eight-cell embryos, caused decompaction of compacted eight-cell embryos, inhibited cavitation of late morulae, and caused collapse and degeneration of blastocysts. These effects of W-7 appear to be due to specific inhibition of calmodulin-dependent processes, because W-5, a less active analogue of W-7, was less effective in interfering with development; at 25 microM, W-5 had only a slight effect on compaction and had no effect on blastocyst formation, maintenance of blastocoels, or post-blastocyst development. In addition to the developmental effects just described, W-7 inhibited cell proliferation in four-cell embryos and reduced cell numbers of morulae after treatment at the two- to eight-cell stages. There was a marked increase in embryos' sensitivity to W-7 at the late morula stage, and the sensitivity increased further as embryos developed into blastocysts; the effects of W-7 were largely reversible after treatment at the two-cell through the compacted eight-cell stages, but not after treatment at the late morula or blastocyst stage. At the blastocyst stage, inner cell mass cells appeared to be slightly more resistant to W-7 than trophectoderm cells. This differential sensitivity became more pronounced at the late blastocyst stage: after 3.5-4-h exposure of late blastocysts to 25 microM W-7, all trophectoderm cells degenerated but most of the inner cell masses survived. From these results it appears that calmodulin-dependent processes are involved in development of mouse embryos at all of the preimplantation stages examined.  相似文献   

18.
We have employed immunofluorescence with a rat kidney Na+/K+-ATPase polyclonal antibody to investigate the cellular distribution and timing of appearance of this enzyme during preimplantation development. The enzyme is first detected in the late morula within the cytoplasm of each blastomere. When cavitation begins this distribution changes dramatically to a ring encircling the blastocoel, restricted to the basolateral cell margins. Using this enzyme as a marker for cavitation, we examined its expression in embryos that had been treated with wheat germ agglutinin (WGA), which causes cleavage arrest and was reported to trigger premature compaction- and cavitation-like events in early cleavage stages (L. V. Johnson, 1986, Dev. Biol. 113, 1-9). Although WGA-treated 2-,4-, and 8-cell embryos quickly underwent compaction- and cavitation-like events, no Na+/K+-ATPase expression was observed. Thus the WGA effect does not likely involve acceleration of the developmental program for cavitation. Embryos arrested at the 8-cell stage but cultured overnight to Day 4, however, expressed the enzyme in the typical blastocyst pattern (around each fluid-filled cavity). We conclude that Na+/K+-ATPase expression is initiated or increases dramatically in the late morula and is independent of cytokinesis. The enzyme assumes a distribution during cavitation consistent with its presumed role in transtrophectodermal fluid transport.  相似文献   

19.
Noninvasive measurements of bovine embryo quality, such as timing of cleavage, morula morphology, blastocyst formation, and hatching ability, were linked with the number of inner cell mass (ICM) cells and trophectoderm (TE) cells of the resulting embryos. First, it was confirmed that fast-cleaving embryos proved to have significantly higher chances to reach advanced developmental stages vs. intermediate and slow cleavers (P = 0.01). They also showed significantly less fragmentation at the morula stage, implying the presence of more excellent morulae among fast-cleaving embryos (P < 0.05). Second, the quality of hatched blastocysts, resulting from morulae of different morphological grades, was examined by differential staining. The total cell and ICM cell numbers were significantly lower for hatched blastocysts developed from poor morulae compared to hatched blastocysts developed from excellent, good, or fair morulae. However, hatched blastocysts with <10 ICM cells were seen in embryos belonging to all four morphological scores. Finally, it was found that timing of first cleavage was not significantly correlated with timing of blastocyst formation or with cell number of blastocysts. Timing of blastocyst formation, however, was significantly correlated with cell number: day 8 blastocysts had significantly lower total cell and ICM cell numbers than day 6 and day 7 blastocysts (P < 0.001). These results suggest that the quality of in vitro-produced bovine embryos is very variable and cannot be linked with a single criterion such as embryo morphology and/or hatching ability. Timing of blastocyst formation was the most valuable criterion with regard to embryonic differentiation. Mol. Reprod. Dev. 47:47–56, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
The ability of trophectoderm (TE) cells to produce chimeric mice (pluripotency) was compared with that of inner cell mass (ICM) cells. TE and ICM cells of blastocysts and hatching or hatched blastocysts derived from albino mice (CD-1, Gpi-1a/a) were aggregated with zona cut 8- to 16-cell stage embryos or injected into the blastocoele from non-albino mice (C57BL/6 x C3H/He, Gpi-1b/b). After transfer to pseudopregnant female mice, the contribution of the donor cells was examined by glucose phosphate isomerase (GPI) analysis of embryos, membrane and placenta at mid-gestation (Day 10.5 and 12.5) or by the coat color of newborn mice. In contrast to ICM cells, there was no contribution of TE cells in the conceptuses and no coat color chimeric young were obtained. After pre-labeling of TE cells with fluorescent latex microparticles, they were aggregated with embryos and the allocation of TE cells at the compacted morula and blastocyst stages was observed under a fluorescent microscope. Although the TE cells were observed attached onto the surface of the embryos at morula and blastocyst stages, unlike the ICM cells, they were not positively incorporated into the embryos. Thus, the pluripotency of TE cells from mouse blastocysts was not induced by the aggregation and injection methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号